C ommunications in

Special Volume in Honor of Prof. Peter Lax
Volume 8, pp. 16-21 (2010)
www.commun-math-anal.org
ISSN 1938-9787

A Characterization of Inner Product Spaces Concerning an Euler-Lagrange Identity

M. S. Moslehian*
Department of Pure Mathematics
Center of Excellence in Analysis on Algebraic Structures
Ferdowsi University of Mashhad
P. O. Box 1159
Mashhad 91775, Iran
J. M. RASSIAS ${ }^{\dagger}$
Pedagogical Department
National and Capodistrian University of Athens
Section of Mathematics and Informatics
4, Agamemnonos str., Aghia Paraskevi
Attikis 15342, Athens, Greece

(Communicated by S. S. Dragomir)

Abstract

In this paper we present a new criterion on characterization of real inner product spaces concerning the Euler-Lagrange type identity $$
\left\|r_{2} x_{1}-r_{1} x_{2}\right\|^{2}+\left\|r_{1} x_{1}+r_{2} x_{2}\right\|^{2}=\left(r_{1}^{2}+r_{2}^{2}\right)\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right) .
$$

AMS Subject Classification: 46C015, 46B20, 46C05.
Keywords: inner product space; Day's condition; normed space; characterization of inner product spaces; operator.

1 Introduction

In 1932, the notion of (complete) normed linear space was introduced by S . Banach [6]. Then P. Jordan and J. von Neumann [12] showed that a normed linear space V is an inner product space if and only if the parallelogram equality $\|x-y\|^{2}+\|x+y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$

[^0]holds for all x and y. Later M.M. Day [9] showed that a normed linear space V is an inner product space if we require only that the parallelogram equality holds for x and y on the unit sphere. In other words, M. M. Day showed that the parallelogram equality may be replaced by the condition $R_{2}=4(\|x\|=1,\|y\|=1)$, where $R_{2}=\|x-y\|^{2}+\|x+y\|^{2}$. Over the years, interesting characterizations of inner product spaces have been introduced or developed by numerous mathematicians. Among many significant characterizations for a normed space $V,\|\cdot\|)$ to be inner product we mentioned the following items for instance, see $[1,2,3,4,8,10,11,13,17,19,23]$ and references therein for more information.
(i) For all $x, y \in V,\|x+y\|^{2}+\|x-y\|^{2} \sim 2\left(\|x\|^{2}+\|y\|^{2}\right)$, where \sim is (consistently) one of the relations $\leq,=$ or \geq; [22].
(ii) Each Diminnie orthogonally additive functional is additive; [21].
(iii) $x, y \in V,\|x\|=\|y\|=1$ and $x \perp y$ imply $\|\lambda x+y\|=\|x-\lambda y\|$; [24].
(iv) For fixed $n \in \mathbb{N}, n \geq 2$,
$$
\sum_{i=1}^{n}\left\|x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right\|^{2}=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}-n\left\|\frac{1}{n} \sum_{i=1}^{n} x_{i}\right\|^{2}
$$
for all $x_{1}, \cdots, x_{n} \in V ;[15,20]$.
(v) For x, y in V and α, β in \mathbb{R} different from $1(\alpha, \beta)$-orthogonality is either homogeneous or both right and left additive, where, x is said to be (α, β)-orthogonal to y if $\|x-y\|^{2}+\|\alpha x-\beta y\|^{2}=\|x-\beta y\|^{2}+\|y-\alpha x\|^{2} ;[5]$.
(vi) For each $x, y \in V$ with $\|x\|=\|y\|=1$,
$$
\inf \{\|t x+(1-t) y\|: t \in[0,1]\}=2^{-1 / 2} \Rightarrow x \perp y
$$
where $x \perp y$ means that x is Birkhoff-orthogonal to y, i.e. $\|x\| \leq\|x+\lambda y\|, \lambda \in \mathbb{R}$; [7].
In this paper we present a new criterion on characterization of inner product spaces concerning the Euler-Lagrange type identity (see [14])
$$
\left\|r_{2} x_{1}-r_{1} x_{2}\right\|^{2}+\left\|r_{1} x_{1}+r_{2} x_{2}\right\|^{2}=\left(r_{1}^{2}+r_{2}^{2}\right)\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right)
$$

Our result extends that of J.M. Rassias [18].

2 Main Results

We now state our main result.
Theorem 2.1. Let $(\mathscr{X},\|\cdot\|)$ be a real normed space, n be a positive real number and $r=\left(r_{1}, r_{2}\right)$ be a pair of nonnegative real numbers. If

$$
\begin{gathered}
R_{r, n}=\left\|r_{2} x_{1}-r_{1} x_{2}\right\|^{n}+\left\|r_{1} x_{1}+r_{2} x_{2}\right\|^{n} \\
A_{r, n}=\left(r_{1}\left\|x_{1}\right\|+r_{2}\left\|x_{2}\right\|\right)^{n}+\max \left\{\left(r_{2}\left\|x_{1}\right\|-r_{1}\left\|x_{2}\right\|\right)^{n},\left(r_{1}\left\|x_{1}\right\|-r_{2}\left\|x_{2}\right\|\right)^{n}\right\} \\
\text { and } \\
B_{r, n}=\left(r_{1}\left\|x_{1}\right\|+r_{2}\left\|x_{2}\right\|\right)^{n}+\min \left\{\left(r_{2}\left\|x_{1}\right\|-r_{1}\left\|x_{2}\right\|\right)^{n},\left(r_{1}\left\|x_{1}\right\|-r_{2}\left\|x_{2}\right\|\right)^{n}\right\}
\end{gathered}
$$

Then a necessary and sufficient condition for that the norm $\|\cdot\|$ over \mathscr{X} is induced by an inner product is that
(I) $R_{r, n} \leq A_{r, n}$ for $n \geq 2$
and
(II) $R_{r, n} \geq B_{r, n}$ for $0<n \leq 2$
for any $x_{1}, x_{2} \in \mathscr{X}$.
Proof. The case $r_{1}=r_{2}$ is known; cf. [18], so let us assume that $r_{1} \neq r_{2}$.
Necessity.
Assume that the norm $\|\cdot\|$ on \mathscr{X} is induced by an inner product $\langle\cdot, \cdot\rangle$. Hence $\|x\|^{2}=$ $\langle x, x\rangle(x \in \mathscr{X})$. We have

$$
\begin{aligned}
R_{r, n} & =\left\|r_{2} x_{1}-r_{1} x_{2}\right\|^{n}+\left\|r_{1} x_{1}+r_{2} x_{2}\right\|^{n} \\
& =\left(\left\|r_{2} x_{1}-r_{1} x_{2}\right\|^{2}\right)^{\frac{n}{2}}+\left(\left\|r_{1} x_{1}+r_{2} x_{2}\right\|^{2}\right)^{\frac{n}{2}} \\
& =\left(a_{1}-b \cos p\right)^{n / 2}+\left(a_{2}+b \cos p\right)^{n / 2} \\
& =R_{r, n}(p)
\end{aligned}
$$

where $a_{1}:=r_{2}^{2}\left\|x_{1}\right\|^{2}+r_{1}^{2}\left\|x_{2}\right\|^{2}, a_{2}:=r_{1}^{2}\left\|x_{1}\right\|^{2}+r_{2}^{2}\left\|x_{2}\right\|^{2}, b:=2 r_{1} r_{2}\left\|x_{1}\right\|\left\|x_{2}\right\|$ and p is defined in such a way that $\left\langle x_{1}, x_{2}\right\rangle=\left\|x_{1}\right\|\left\|x_{2}\right\| \cos p$. Note that $\left\|x_{1}\right\| \leq\left\|x_{2}\right\|$ if and only if $a_{1} \leq a_{2}$. By the first differentiation we find

$$
\begin{array}{r}
R_{r, n}^{\prime}(p)=\frac{n}{2}\left[\left(a_{1}-b \cos p\right)^{\frac{n}{2}-1}\right. \\
\left.\quad-\left(a_{2}+b \cos p\right)^{\frac{n}{2}-1}\right] b \sin p
\end{array}
$$

Therefore the critical values of $R_{r, n}$, being the roots of $R_{r, n}^{\prime}(p)=0$, are $p=k \pi(k=0, \pm 1, \pm 2, \cdots)$. By the second differentiation we get
$R_{r, n}^{\prime \prime}(p)=\frac{n}{2}\left[\left(a_{1}-b \cos p\right)^{\frac{n}{2}-1}-\left(a_{2}+b \cos p\right)^{\frac{n}{2}-1}\right] b \cos p+\frac{n(n-2)}{4}\left[\left(a_{1}-b \cos p\right)^{\frac{n}{2}-2}+\left(a_{2}+\right.\right.$ $\left.b \cos p)^{\frac{n}{2}-2}\right] b^{2} \sin ^{2} p$.

If $p=2 k \pi$, then

$$
\begin{aligned}
& R_{r, n}^{\prime \prime}(2 k \pi)= \\
&= \begin{cases}2 & \frac{n}{2}\left[\left(a_{1}-b\right)^{\frac{n}{2}-1}-\left(a_{2}+b\right)^{\frac{n}{2}-1}\right] b \\
<0 & a_{1} \geq a_{2}, n>2, b>\frac{a_{1}-a_{2}}{2} \\
<0 & a_{1} \geq a_{2}, 0<n<2,0<b<\frac{a_{1}-a_{2}}{2} \\
<0 & a_{1} \leq a_{2}, n>2,0<b \\
>0 & a_{1} \geq a_{2}, n>2,0<b<\frac{a_{1}-a_{2}}{2} \\
>0 & a_{1} \geq a_{2}, 0<n<2, b>\frac{a_{1}-a_{2}}{2} \\
>0 & a_{1} \leq a_{2}, 0<n<2,0<b\end{cases}
\end{aligned}
$$

If $p=(2 k+1) \pi$, then

$$
\begin{array}{r}
R_{r, n}^{\prime \prime}((2 k+1) \pi)=\frac{n}{2}\left[\left(a_{2}-b\right)^{\frac{n}{2}-1}-\left(a_{1}+b\right)^{\frac{n}{2}-1}\right] b \\
= \begin{cases}<0 & a_{1} \leq a_{2}, n>2, b>\frac{a_{2}-a_{1}}{2} \\
<0 & a_{1} \leq a_{2}, 0<n<2,0<b<\frac{a_{2}-a_{1}}{2} \\
<0 & a_{1} \geq a_{2}, n>2,0<b \\
>0 & a_{1} \leq a_{2}, 0<n<2, b>\frac{a_{2}-a_{1}}{a_{1}} \\
>0 & a_{1} \leq a_{2}, n>2,0<b<\frac{a_{2}-a_{1}}{2} \\
<0 & a_{1} \geq a_{2}, 0<n<2,0<b\end{cases}
\end{array}
$$

For $n>2$, by utilizing the second differentiation test, we infer that

$$
\begin{aligned}
& A_{r, n}(2 k \pi) \\
= & \left(r_{1}\left\|x_{1}\right\|+r_{2}\left\|x_{2}\right\|\right)^{n}+ \\
& \max \left\{\left(r_{2}\left\|x_{1}\right\|-r_{1}\left\|x_{2}\right\|\right)^{n},\left(r_{1}\left\|x_{1}\right\|-r_{2}\left\|x_{2}\right\|\right)^{n}\right\} \\
= & \left(a_{2}+b\right)^{\frac{n}{2}}+\max \left\{\left\{\left(a_{1}-b\right)^{\frac{n}{2}},\left(a_{2}-b\right)^{\frac{n}{2}}\right\}\right. \\
= & \max \left\{R_{r, n}(2 k \pi), R_{r, n}((2 k+1) \pi)\right\} \\
= & \max R_{r, n}(p)
\end{aligned}
$$

which yields (I). For $0<n<2$, by applying the second differentiation test, we deduce that

$$
\begin{aligned}
& B_{r, n}(2 k \pi) \\
= & \left(r_{1}\left\|x_{1}\right\|+r_{2}\left\|x_{2}\right\|\right)^{n}+ \\
& \min \left\{\left(r_{2}\left\|x_{1}\right\|-r_{1}\left\|x_{2}\right\|\right)^{n},\left(r_{1}\left\|x_{1}\right\|-r_{2}\left\|x_{2}\right\|\right)^{n}\right\} \\
= & \left(a_{2}+b\right)^{\frac{n}{2}}+\min \left\{\left\{\left(a_{1}-b\right)^{\frac{n}{2}},\left(a_{2}-b\right)^{\frac{n}{2}}\right\}\right. \\
= & \min \left\{R_{r, n}(2 k \pi), R_{r, n}((2 k+1) \pi)\right\} \\
= & \min R_{r, n}(p)
\end{aligned}
$$

which yields (II).
Sufficiency.
Assume that condition (I) to be held. The continuity of the function $n \mapsto\|\cdot\|^{n}$ implies that

$$
R_{r, 2} \leq A_{r, 2}=2\left(r_{1}^{2}+2 r_{2}^{2}\right)
$$

for $\left\|x_{1}\right\|=\left\|x_{2}\right\|=1$. From the pertinent sufficient condition of M.M. Day, it can be proved the following criterion:
"The necessary and sufficient condition for a norm defined over a vector space \mathscr{X} to spring from an inner product is that $R_{r, 2} \leq 2\left(r_{1}^{2}+2 r_{2}^{2}\right)$ where r_{1}, r_{2} are positive numbers and $\left\|x_{1}\right\|=$ $\left\|x_{2}\right\|=1$ ". Due to the fact that this condition holds, we conclude that the norm $\|\cdot\|$ on \mathscr{X} can be deduced from an inner product. Similarly, if condition (II) holds, then we get

$$
R_{r, 2} \geq A_{r, 2}=2\left(r_{1}^{2}+2 r_{2}^{2}\right)
$$

for $\left\|x_{1}\right\|=\left\|x_{2}\right\|=1$. Applying the same statement as the above criterion except that $R_{r, 2} \geq$ $2\left(r_{1}^{2}+2 r_{2}^{2}\right)$, we conclude that the norm $\|\cdot\|$ can be deduced from an inner product.
Corollary 2.2. A normed space $(\mathscr{X},\|\cdot\|)$ is an inner product space if and only if

$$
\left\|r_{2} x_{1}-r_{1} x_{2}\right\|^{2}+\left\|r_{1} x_{1}+r_{2} x_{2}\right\|^{2}=\left(r_{1}^{2}+r_{2}^{2}\right)\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right)
$$

for any non-negative real numbers r_{1}, r_{2} and any $x_{1}, x_{2} \in \mathscr{X}$.
We can have an operator version of Corollary above. In fact a straightforward computation shows that
Corollary 2.3. Let T_{1}, T_{2} be bounded linear operators acting on a Hilbert space and r_{1}, r_{2} be real numbers. Then

$$
\left|r_{2} T_{1}-r_{1} T_{2}\right|^{2}+\left|r_{1} T_{1}+r_{2} T_{2}\right|^{2}=\left(r_{1}^{2}+r_{2}^{2}\right)\left(\left|T_{1}\right|^{2}+\left|T_{2}\right|^{2}\right),
$$

where $|T|=\left(T^{*} T\right)^{1 / 2}$ denotes the absolute value of T.

Acknowledgments

The first author was supported by a grant from Ferdowsi University of Mashhad; (NO. MP88061MOS).

References

[1] J. Alonso and A. Ullán, Moduli in normed linear spaces and characterization of inner product spaces. Arch. Math. (Basel) 59 (1992), no. 5, pp 487-495.
[2] C. Alsina, P. Cruells and M. S. Tomás, Characterizations of inner product spaces through an isosceles trapezoid property. Arch. Math. (Brno) 35 (1999), no. 1, pp 21-27.
[3] D. Amir, Characterizations of inner product spaces. Operator Theory: Advances and Applications 20. Birkhäuser Verlag, Basel, 1986.
[4] E. Andalafte and R. Freese, Altitude properties and characterizations of inner product spaces. J. Geom. 69 (2000), no. 1-2, pp 1-10.
[5] E. Z. Andalafte, C. R. Diminnie and R. W. Freese, (α, β)-orthogonality and a characterization of inner product spaces. Math. Japon. 30 (1985), no. 3, pp 341-349.
[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales. Fund. Math. 3 (1922), pp 133-181.
[7] M. Baronti and E. Casini, Characterizations of inner product spaces by orthogonal vectors. J. Funct. Spaces Appl. 4 (2006), no. 1, pp 1-6.
[8] C. Benitez and M. del Rio, Characterization of inner product spaces through rectangle and square inequalities. Rev. Roumaine Math. Pures Appl. 29 (1984), no. 7, pp 543546.
[9] M. M. Day, Some characterizations of inner-product spaces. Trans. Amer. Math. Soc. 62 (1947), pp 320-337.
[10] C. R. Diminnie, E. Z. Andalafte and R. Freese, Triangle congruence characterizations of inner product spaces. Math. Nachr. 144 (1989), pp 81-86.
[11] S. S. Dragomir, Some characterizations of inner product spaces and applications. Studia Univ. Babes-Bolyai Math. 34 (1989), no. 1, 50-55.
[12] P. Jordan and J. von Neumann, On inner products in linear, metric spaces. Ann. of Math. (2) 36 (1935), no. 3, pp 719-723.
[13] J. Mendoza and T. Pakhrou, Characterizations of inner product spaces by means of norm one points. Math. Scand. 97 (2005), no. 1, pp 104-114.
[14] M. S. Moslehian and J. M. Rassias, Power and Euler-Lagrange norms. Aust. J. Math. Anal. Appl. 4 (2007), no. 1, Art. 17, 4 pp.
[15] M. S. Moslehian and F. Zhang, An operator equality involving a continuous field of operators and its norm inequalities. Linear Algebra Appl. 429 (2008), no. 8-9, pp 2159-2167.
[16] P. L. Papini, Inner products and norm derivatives. J. Math. Anal. Appl. 91 (1983), no. 2, 592-598.
[17] [J. M. Rassias, Two new criteria on characterizations of inner products. Discuss. Math. 9 (1988), pp 255-267 (1989).
[18] J. M. Rassias, Four new criteria on characterizations of inner products. Discuss. Math. 10 (1990), pp 139-146 (1991).
[19] Th. M. Rassias, New characterizations of inner product spaces. Bull. Sci. Math. (2) 108 (1984), no. 1, pp 95-99.
[20] Th. M. Rassias, On characterizations of inner product spaces and generalizations of the H. Bohr inequality. Topics in mathematical analysis, 803-819, Ser. Pure Math., 11, World Sci. Publ., Teaneck, NJ, 1989.
[21] J. Rätz, Characterization of inner product spaces by means of orthogonally additive mappings. Aequationes Math. 58 (1999), no. 1-2, pp 111-117.
[22] I. J. Schoenberg, A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal. Proc. Amer. Math. Soc. 3, (1952). pp 961-964.
[23] P. Šemrl, Additive functions and two characterizations of inner-product spaces. Glas. Mat., III. Ser. 25(45) (1990), no. 2, pp 309-317.
[24] I. Şerb, Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces. Comment. Math. Univ. Carolin. 40 (1999), no. 1, pp 107-119.

[^0]: *E-mail address: moslehian@ferdowsi.um.ac.ir and moslehian@ams.org
 ${ }^{\dagger}$ E-mail address: jrassias@ primedu.uoa.gr

