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Abstract

The paper establishes well-posedness and semigroup generation for a linear dynamic

plate equation with non-monotone boundary conditions. The lack of dissipation pre-

vents applicability of the classical semigroup theory, approximation techniques, or

energy methods. Investigation of such systems was originally motivated by applica-

tions, but due to the challenging nature of the problem had been essentially limited to

1-dimensional models. A more recent result [BeLa], though still dealing with a (1D)

Euler-Bernoulli beam, showed how the wellposedness in absence of dissipativity can

be approached using tools of microlocal analysis, potentially applicable in higher di-

mensions. This paper extends the later work to a two dimensional system. The main

difficulties in the 2D setting arise from a substantially increased complexity of bound-

ary operators, and the failure of the uniform Lopatinskii condition, which ultimately

necessitates additional control on tangential components of the boundary traces. The

latter issue is handled by introducing a suitably constructed boundary feedback which

acts as the additional moment present on the boundary of the two-dimensional domain.
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1 Introduction

1.1 The model

Let w = w(t;x,y) be the relative vertical displacement at point (x,y), time t ≥ 0, of a thin

plate, whose mid-surface occupies a smooth domain Ω ⊂ R
2. The following equation is a

version of the Kirchhoff plate model, sometimes referred to as “Euler-Bernoulli plate”:

(�w :=) wtt +∆2w = f in Q
T

:=]0,T [×Ω, (1)

The boundary Γ := ∂Ω consists of two segments Γ := Γ0 ∪Γ1 that are disjoint Γ0 ∩Γ1 = /0
with the edge Γ0 being clamped. For instance, consider a plate with a clamped outer edge

Γ0, and a thin slit (with boundary Γ1) being cut in the middle.

w =
∂w

∂ν
= 0 on Σ

(0)

T
:=]0,T [×Γ0. (2)

Introduce some boundary operators on Γ1:

B1 := ∆+(1−µ)B1 (3)

B2 :=
∂

∂ν
∆+(1−µ)B2, (4)

where 0 < µ < 1/2 is Poisson’s ratio. The operator B1 represents the bending moment about

the tangent vector (the moment is zero the case of a free, or a simply supported boundary),

and B2 models shear forces [Lag, Chapter 2] Here the modulus of flexural rigidity was

re-normalized to 1. The boundary operators Bi, are given by

B1w := 2ν1ν2wxy −ν2
1wyy −ν2

2wxx (5)

B2w :=
∂

∂τ

(

(ν2
1 −ν2

2)wxy +ν1ν2(wyy −wxx)

)

. (6)

Here the vector fields ν = ν(x) and τ = τ(x) are smooth, and denote respectively the outward

normal field and a tangential frame on the boundary Γ. For more information on these

boundary operators and their properties see [LaTrV1, pp. 296 – 310]

Operators (3), (4), correspond to the free boundary conditions which naturally arise in

plate theory and, as such, have attracted substantial research efforts [LagLio, Lag, LagLeu,

LLS, Las1, LaTrV1, Av]. These boundary conditions share some of the properties of Neu-

mann boundary dynamics for the wave equation, in particular, the uniform Lopatinskii

(Kreiss-Sakamoto) condition is not satisfied by such a system, causing the loss of regu-

larity in the boundary traces [Sy, Sa, Tat2] when the dimension of the domain exceeds one.

On the other hand, free boundary conditions have a lot of applications in mechanics, par-

ticularly in the context of controllability and stability. It is well-known that the absorbing

boundary feedback affecting moments, torques and shears:

B1w = −k1
∂w

∂ν t
, B2w = k2wt , ki ≥ 0, k1 +k2 > 0, (7)
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causes the overall energy of the plate

E(t)∼ ‖wt(t)‖2
L2

+‖w(t)‖2
H2

to decay to zero at an exponential rate, e.g. [Lag], [LaTrV1, Sec. 3.14].

In fact, due to the dissipativity of conditions (7), the generation of a contraction semi-

group corresponding to (1) is straightforward, and the standard energy identity confirms

that the energy of solutions is non-increasing. It is more challenging to prove that the en-

ergy decays to zero at the uniform rate, but that has been accomplished using multiplier

theory in the context of control and inverse problems (for instance see the aforementioned

references, as well as an extensive overview of known results in [Las2]).

On the other hand, physical considerations in the context of problems in robotics [LuGu]

dictate a different boundary feedback mechanism which in practice appears more suitable

for stabilization. The latter corresponds to the case when Γ1 is subject to non-monotone

boundary conditions: the bending moment feedback on Σ
(1)

T
:=]0,T [×Γ1, or its equivalent

(dual) version - shear feedback (marked with an asterisk)

B1w = −kwt (8)

B2w = 0 (9)

B1w =0 (8∗)

B2w =k
∂wt

∂ν
(9∗)

for a constant k > 0. Elementary calculations, presented in Section 2.2 below, reveal that

these boundary conditions destroy the natural symmetry in the problem and its monotonic-

ity. Since the boundary traces involved are of a higher order and cannot be controlled by

the energy, a fundamental question of well-posedness (generation of a semigroup) becomes

problematic undermining the classical and well-established role of differential calculus and

energy methods.

It was only recently that the generation of a semigroup was shown in a one-dimensional

case: a spectral argument based on Riesz basis generation was applied in [GWY] showing

that the model (1), (2), with (10, 11) or (10∗, 11∗) in 1-D leads to a strongly continuous

semigroup of contractions.

Treatment of higher-dimensional models, however, necessitates a more thorough ap-

proach and a better understanding of trace regularity of solutions, thus leading to develop-

ments in microlocal analysis and propagation of singularities theory for hyperbolic equa-

tions [BLR, Tay1, Tat1]. With the aid of microanalytic framework and pseudo-differential

operators in [BeLa] it was shown that the same (Euler-Bernoulli beam) model not only gen-

erates a strongly continuous semigroup, but the semigroup obtained is of Gevrey’s class

which indicates existence of a smoothing effect produced and propagated by the non-

monotone boundary feedback. In addition, the pseudo-differential/microlocal methods of

[BeLa] reveal, rather unexpectedly, “hidden” regularity of the boundary traces of solutions.

The goal of this paper is to address the same question for a two-dimensional dynamic

plate. Clearly, the Riesz basis argument developed in [GWY] is no longer applicable. Pseu-

dodifferential operator approach employed in [BeLa] has chances of surviving 2D analy-

sis, provided the main obstacles: calculations in higher dimensions, and the failure of the

Lopatinskii condition, are properly addressed. In fact, we show how incorporation of a suit-

able feedback boundary control via shears affects the dynamics and leads to a well-posed
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semigroup solution. The obtained solution displays a regularizing effect, often dubbed

“hidden regularity”, [LLT] on the boundary manifesting itself by the unexpected gain of 1

(time-space) tangential derivative on Γ.

To wit, we will be studying plate equation with the following feedback operator denoted

by C added to the shear forces:

B1w = −kwt (10)

B2w = C w (11)

B1w =0 (10∗)

B2w =C w+k
∂wt

∂ν
(11∗)

where

C = Cδ := c
µδ

(
∂2

∂τ2

)
∂

∂ν
, c

µδ
:= 1−µ+δ (12)

and δ > 0 is sufficiently small.

Remark 1.1. It should be noted that while (8), (9) are dual (adjoint) boundary conditions

to (8∗), (9∗), that is not the case for (10), (11) and (10∗), (11∗) when C 6= 0. However, it will

be shown that solvability of the problem follows from use of the either boundary condition.

For this reason the two problems are listed together.

Remark 1.2 (Value of δ). The choice of the “scaling” parameter δ is sensitive and the

precise value depends on the geometry of Ω. Since the feedback operator added to the model

is a higher-order differential operator (way outside the perturbation theory for semigroups),

it is not surprising that the value of the scaling parameter must be appropriately calibrated.

For a half-space version of the problem (flat boundaries) it suffices to choose δ 6= 2(1−µ)
1+µ

; in

general, to account for changes in curvature of ∂Ω, δ should be either suitably small or very

large, thus staying away from a certain “singular” region. From optimality considerations

it is better to minimize the impact of the correcting control C , hence the result is stated with

δ being sufficiently small. For more details see the proof of Theorem 7.1 in the Appendix.

1.2 Previous work

The study of dynamic beam and plate equations with various boundary conditions and the

associated feedbacks has gained great attention over the recent decades. Questions of gen-

eration of semigroups, related stability and control were thoroughly considered with many

results available in [Lag, Ko, LagLio, LLS, Las2] as well as references therein.

Boundary (velocity) feedbacks applied at the end of a beam or the edge of a plate are

typical mechanisms enabling control or stabilization of elastic structures. An almost univer-

sal feature of feedbacks considered in the prior literature is monotonicity (dissipativity) - a

fundamental property that permits applicability of the linear and nonlinear semigroup theo-

ries. In the absence of monotone dissipative behavior the problem is poorly structured since

the presence of boundary velocity traces leads to perturbations that are not even relatively

bounded; proving generation of a well-posed dynamics becomes problematic.

The main feature of this paper is that all of the boundary conditions listed above: (8) -

(9) (or their dual counterparts (8∗), (9∗)), just like (10), (11) (and the respective dual ver-

sion (10∗), (11∗)) lead to principal non-monotonicity in the underlying evolution generator,

preventing one from employing standard semigroup methods to study wellposedness of this
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system, or even formally representing it as a perturbation of a dissipative equation. In Sec-

tion 2 it will be shown that essentially there is no apparent candidate Lyapunov function,

neither based on the finite energy, nor on any perturbation of it. As a result, it becomes

difficult to merely determine whether the energy associated with the system remains finite,

even over short time-intervals, not to mention prove any kind of global behavior.

As was already stated, the above boundary conditions destroy the natural symmetry in

the problem, however, introduction of such feedbacks stems from practical considerations:

e.g. [LuGu] and references therein, which proposed to use the 1D version of (8∗) and

(9∗), for shear force stabilization of flexible robot arms with rotational joints. The issue

of semigroup generation in the 1D case gathered attention of several authors [GWY, Sh]

where it was studied by means of Riesz basis techniques. In [GWY] the authors showed that

despite the lack of dissipation, the corresponding Euler-Bernoulli beam system generates

an exponentially stable differentiable semigroup.

However, the Riesz basis approach, besides computational complexity requires one to

consider the uniform gap condition (e.g. see [KoLo]), which makes the technique essen-

tially inapplicable to models whose the space-dimension exceeds 1, unless a very special

geometry is involved. This fact motivated the work [BeLa] which offered a very different

approach and framework to study this type of non-dissipative dynamics by employing tools

of microlocal analysis developed in [Tat1]. Some related results on trace and Gevrey’s reg-

ularity can also be found in [HoLi, Las1]. In [BeLa] the authors ultimately prove that an

Euler-Bernoulli beam with the non-monotone shear feedback generates a continuous semi-

group which, moreover, possesses Gevrey’s regularity along with “hidden” boundary reg-

ularity. Geverey’s regularity is deduced from abstract results of [ChTr2, ChTr1] supported

by spectral-microlocal estimates obtained in [BeLa].

The most important aspect of the analysis in [BeLa] is that it is not intrinsically limited

to one space dimension or any special geometric configurations (rectangles etc.). In fact,

the present paper takes the approach further by generalizing the model from beams to thin

plates defined on arbitrary smooth domains in R2.

The treatment of a two dimensional framework, however, does not readily follow from

previous work and poses new challenges related exclusively to the “extra” tangential direc-

tion (the reason for the failure of the Lopatinskii condition). One must now deal with:

• increased complexity in the structure of the boundary operators and their associated

symbols,

• instability due to the lack of control on the tangential components of the traces.

This work overcomes these obstacles showing that the system (1) with clamped conditions

(2) on Γ0 and subject to non-dissipative feedback on Γ1, generates a C0 semigroup provided

the non-dissipative boundary conditions are controlled by a feedback operator affecting

shears or moments C w, as in (10), (11), or (10∗), (11∗) (see also the dual version (21),(22)

or (21∗), (22∗)).

Let us briefly preview the strategy for the argument. By using a microlocal decompo-

sition of the principal symbol governing the dynamics, the generator is split into a princi-

pal part that has smoothing effect, and lower order terms that do not affect wellposedness

[Tay2, Tat1]. More specifically, the fourth order (anisotropic) dynamic operator is decom-
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posed algebraically into four branches according to the roots of the fourth order charac-

teristic polynomial. As shown in [Tat1] the two real roots correspond to “conservative”

dynamics while complex roots produce forward and backward diffusion. It is the forward

diffusion that provides regularizing effect producing lower order terms in the estimates

(see Sect. 4.2.3 and 4.4 below, in particular Lemma 4.2). Then the boundary operators

are rewritten according to this splitting of the principal symbol - see Section 4.3 including

Lemma 4.1. The decomposition is critical and employs the technique introduced in the sem-

inal work [Tat1] where the author shows that the Cauchy data imposed on three boundary

conditions (rather than four) in the plate equation allow to reconstruct plate dynamics mod-

ulo a “smooth” part. The decomposition is microlocal only, which explains the difficulties

faced when dealing with the differential version of the problem where energy methods seem

to be of little avail. Albeit technical, the microlocal decomposition permits to derive energy

inequality which provides quantitative information on the “hidden” boundary regularity of

the traces. At the end of the day, we obtain a well-posed semigroup solution, defined for all

times, which, however, is not of a dissipative type (unlike classical problems with absorbing

feedback boundary conditions [Lag, Las2, Ko] and references therein).

Technical complications in this program stem from complexity of boundary symbols

representing free boundary operators B1 and B2 in two dimensions [Lag] whose algebraic

structure is rather complicated (see [Las1] and Sect. 4.3 below). Once the procedure is car-

ried out, energy methods evince (at the microlocal level) a “well-behaved” monotone part

corresponding to the principal term in the decomposition, polluted, however, by unstruc-

tured terms. The subsequent challenge is to show that these latter quantities can ultimately

be treated as being of a lower order with respect to the topology of the principal dynamics.

Remark 1.3. It is strongly hoped that the methodology developed in this paper may have

further bearing and be applicable to other problems of dynamic elasticity, such as shells or

linked structures with non-monotone terms of higher energy.

1.3 Notation

For convenience define the following space-time regions

Q
t,T

:=]t,T [×Ω, Σ
(i)

t,T
:=]t,T [×Γi

and

Q := Q−∞,∞ , Σ
(i)

:= Σ
(i)

−∞,∞
.

When considering a localized version of the problem we will be applying coordinate changes

that transform a neighborhood of the boundary Γi into an open subset of a half-space. Then

employ the following notation:

ΩΩΩ := Ry ×R
+
x , ΓΓΓi := Ry, Q := Rt ×ΩΩΩ ΣΣΣ := Rt ×Ry.

Here the half-axis R
+
x corresponds to the normal direction (unit normal ν≡ (−1,0)). It will

be clear from the context which Γi is being transformed, but most of the discussion will

focus on Γ1 where the feedback is applied.
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Notation ‖·‖r,X or | · |r,X , depending on whether X has respectively an interior (in Rn) or

a boundary (in R
n−1) domain as one of its factor spaces, will denote the norm in the Sobolev

space Hr(X). The form (·, ·) will denote the inner product on L2 functions defined in the

interior, whereas 〈 , 〉 will be the corresponding bilinear form for boundary-based spaces.

Unless stated otherwise the boundary Γ1 is understood.

1.4 Function spaces

Throughout the paper we will make use of the special classes of anisotropic Sobolev spaces.

Following [Ho, Vol. III] define the Hr,s(Q) space which, roughly speaking, consists of func-

tions with r derivatives in the normal direction to the boundary with values in Hs(Σ). More

precisely, use a smooth cutoff to localize a given function to a neighborhood of the bound-

ary Σ. Use a partition of unity and introduce local coordinates that carry a neighborhood of

a point (t,x0) ∈ Σ to a subset of Q = R+
x ×ΣΣΣ where x0 is identified with the origin, and R+

x

with the (inward) normal space over x0. Then let

Hm,r(Q) :=
m

\

i=0

Hm−i
(
R

+;Hr+i(ΣΣΣ)
)
, m ∈ N∪{0}, r ∈ R,

or, equivalently,

‖v‖2
Hm,r(Q) =

m

∑
j=0

‖v‖2
H j(R+;Hr+m− j(ΣΣΣ)).

Of course, the norm is not unique and depends on the choice of local coordinates, and

does not preserve information on what happens in the interior of the domain away from the

chosen boundary Γ1-collar.

In addition, we will refer to anisotropic spaces [Is, Tat1] denoted by Hr
a(Σ) which for

r ≥ 0 are equivalent to

Hr
a(Σ)∼= L2(0,T ;Hr(Γ))∩Hr/2(0,T ;L2(Γ)) (13)

and for r < 0 are defined by duality with respect to the L2(Σ) inner product. By H
m,s
a we

will henceforth indicate the space Hm,r where the normal derivatives take their values in

Hr
a(ΣΣΣ).

2 Boundary conditions

To illustrate the effect of the boundary conditions (10, 11) or (10∗, 11∗) let us formally

construct and examine the energy identity for the corresponding system. We will often

invoke the following identity (see [LaTrV1, p. 310, Proposition C.12])

(∆2u,v) = a(u,v)+ 〈B2u,v〉−
〈

B1u,
∂v

∂ν

〉

, (14)

where the bilinear form a is given by

a(w,v) =
Z

Ω

[

wxxvxx +wyyvyy +2
(
1−µ

)
wxyvxy +µ

(

wxxvyy +wyyvxx

)]

.



116 I. Lasiecka and D. Toundykov

Note that a(w,w) yields a semi-norm ‖∆w‖0,Ω on H2(Ω), which for the H2 functions

clamped on the boundary as in (2) is equivalent to ‖w‖2,Ω.

Now formally take the L2(Ω) inner product of (1) with wt :

1
2∂t

(

‖wt‖2
0,Ω +a(w,w)

)

+ 〈B2w,wt〉−
〈

B1w,
∂wt

∂ν

〉

= ( f ,wt). (15)

Define the quadratic energy as

Ew(t) := 1
2 a(w(t),w(t))+ 1

2 ‖wt(t)‖2

0,Ω
.

Integrate (15) from t = 0 to t = T and apply the boundary conditions (10)-(11) (or their dual

(10∗)-(11∗)) to obtain the energy identity

Ew(T )+

Z T

0
〈C w, wt 〉+k

Z T

0

〈

wt ,
∂wt

∂ν

〉

= Ew(0)+

Z T

0
( f ,wt) (16)

2.1 Monotone feedback

To illustrate the implications of (16) recall the standard monotone feedback for the above

model is:

B1w = −k
∂wt

∂ν
, B2w = 0. (17)

Use the latter boundary condition, and integrate (15) over t ∈ [0,T ]

Ew(T )+k

Z T

0

∣
∣
∣
∣

∂wt

∂ν

∣
∣
∣
∣

2

0,Γ

= Ew(0)+

Z T

0
( f ,wt).

Thus, when f = 0, the energy is non-increasing and the rate of dissipation is proportional

to (∂νwt)
2. The adjoint version of this monotone feedback is

B1w = 0, B2w = kwt , (18)

in which case one likewise gets (when f = 0) non-increasing quadratic energy

Ew(T )+k

Z T

0
|wt |20,Γ = Ew(0).

2.2 Non-dissipative feedback

In contrast, conditions (8)-(9), lead to the energy identity

Ew(T )+k

Z T

0

〈

wt ,
∂wt

∂ν

〉

= Ew(0)

The “high-order” trace 〈wt ,
∂wt

∂ν 〉 is of an undetermined sign and does not provide any a priori

bounds on the energy functional. Similarly from (16) it is not apparent whether the energy,

if well-posed, is bounded, due to the absence of monotonicity in the trace dynamics.
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However, since the problem is linear, one approach to prove generation of a semigroup

associated with the system (1), (2), with (10, 11) or (10∗, 11∗) would be to establish an a

priori bound on Ew(t), and then employ an approximation argument (e.g. [Mi, pp. 480

– 481]). Thus the main challenge is precisely to acquire an energy-related bound on the

higher-order “non-monotone” trace product
〈

∂wt

∂ν ,wt

〉

, which arises in the identity (16).

This program will be accomplished by decomposing (microlocally) the normal derivative

into two parts, where one part has a positive symbol and the associated smoothing effect,

while the other is of the lower order, hence can be absorbed by the energy.

3 Main Results

For convenience let A denote the corresponding bi-Laplacian operator

Ah = ∆2h

D(A) =

{

h ∈ H4(Ω) :

[

h =
∂h

∂ν

]

Γ0

≡ 0;

[

B1h = B2h

]

Γ1

≡ 0

}

.

Theorem 3.1. The system (1), (2), with (10, 11) or (10∗, 11∗) generates a strongly continu-

ous semigroup t 7→ S(t) on the state space H = D(A1/2)×L2(Ω). Furthermore, if {w,wt}
is any semigroup solution and T > 0, then there is a constant CT = C(Ew(0),T) > 0 so that

the following trace estimate holds:

|wt |21
2
,a,Σ

(1)

T

+

∣
∣
∣
∣

∂wt

∂ν

∣
∣
∣
∣

2

− 1
2
,a,Σ

(1)

T

+ |w|2
5
2
,a,Σ

(1)

T

+

∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

2

3
2
,a,Σ

(1)

T

≤CT

(

Ew(0)+‖ f‖2
0,Q

T

)

The trace estimate in the above Theorem 3.1 demonstrates the smoothing effect of the

semigroup on the boundary. According to the trace theory H2(Ω) regularity of solutions

merely implies H1/2(Γ) regularity of the normal derivative - one derivative less than the

H3/2(Γ) regularity predicted by the Theorem. The same numerology applies to other traces,

including anisotropic regularity of time derivatives (rescaling gives 2 space derivatives for

one time derivative as defined in (13)).

As subsequent sections will show, this “hidden” boundary regularity stems from a

monotone “sub-component” (on the microlocal scale) of the principal symbol and a

parabolic smoothing effect provided by one of the symbol factors. In fact, it was first

observed in [Tay1, Ch. V, Ch. IX ] that near the boundary a second-order operator can be

decoupled into branches corresponding to backward and forward diffusion equations along

the normal direction. The smoothing of the traces results from parabolic diffusion towards

the boundary. By solving the Cauchy problem for each branch it was shown in [Tat1] that

only three boundary conditions determine the smoothness of the dynamics. The fourth

boundary condition has no effect on the smoothness. This discovery was used to show that

plate equations can be controlled or stabilized by using a feedback operator acting on one

boundary condition only (thus giving an over-determination of three traces - rather than

the customary four). By decomposing boundary conditions according to the four branches

of the principal symbol, it will be shown that the three pieces of information encoded in

symbols of B1w,B2w−C w, and ∂νwt suffice to claim the needed regularity.
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Remark 3.1. When C = 0 the result of Theorem 3.1 recovers the one-dimensional result

obtained in [BeLa].

Remark 3.2 (Global stability). As was remarked in the introduction, classical absorbing

boundary conditions (17 or 18) lead to an exponential decay of the semigroup. An interest-

ing question to raise is whether some sort of decay also holds in the present case. In the

absence of global stability (as t → ∞); it is difficult to make any conjecture. The method of

proof of existence of solutions does not control the size of lower order terms. On the other

hand, stability of the model in one-dimensional case is known [GWY] and obtained by spec-

tral analysis that depends on the Riesz basis generation. Thus, an open question whether

long-time behavior of solutions is bounded or decaying seems a legitimate and interesting

open problem.

It appears plausible that the method presented in this paper may be applied to a variety

of non-monotone problems where natural symmetry of boundary conditions goes away, yet

intrinsic properties of the dynamics are still encoded in the formulation.

4 PROOFS I: Microlocal analysis

4.1 Outline

It was observed in [Tay1, Tat1] that interior hyperbolic dynamics provides parabolic-like

smoothing propagating from the interior to the boundary. As a consequence, for the plate

problem one of the four boundary traces (roughly speaking, three space derivatives, and a

trace of the velocity) can be controlled by the other three modulo some lower order terms,

and a certain microlocal perturbation.

Following [BeLa] we consider the higher-order non-dissipative trace

(
∂

∂ν

∂

∂t

)

w

and, on a microlocal level, algebraically express it as a perturbation of the “natural” mono-

tone feedback wt . However, due to the fact that the problem is two-dimensional, the co-

efficient of the monotone part will be degenerate (precisely because of the presence of the

tangential component) and the purpose of the correcting feedback C w will be to handle that

issue.

At the end of the day (10, 11) or (10∗, 11∗) will be represented as a tractable perturbation

of monotone boundary conditions. As an additional technicality, to justify the microlocal

approach, in particular the Fourier(-Laplace) transforms in the tangential and time-variables

the analysis will be performed on the backward adjoint problem and then extended to the

original one by duality.
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4.2 Preliminary steps

4.2.1 Backward adjoint problem

Consider the (backward) adjoint system of (1), (2), with (10, 11) or (10∗, 11∗) with a right-

hand side that will be specified later:

�z = rhs(z) in ]−∞,T [×Ω (19)

z(T) = zt(T) = 0 (20)

The dynamics is clamped on Γ0, whereas on Γ1 we have:

B1z = C ∗z+h(t) (21)

B2z = −k
∂zt

∂ν
+g(t) (22)

B1z = C ∗z+kzt +h(t) (21∗)

B2z = g(t) (22∗)

We will show how to come up with the adjoint auxiliary feedback C ∗, but running ahead

one can think of it as

C ∗ = −c
µδ

∂2

∂τ2

which by duality will then yield the announced earlier definition of C in (12). Extend z by

zero for t > T , so now we can work on space-time cylinders Q and Σi (with the time domain

now being all of Rt).

Remark 4.1. We note that the boundary conditions in (21,22) and (21∗,22∗) are not for-

mally dual problems, unless C = 0.

4.2.2 Localization near the boundary

Let x0 ∈ Γ1, and U be some open neighborhood of x0. Introduce a smooth cutoff φ com-

pactly supported in U and a local change of coordinates ψ : U ∩Ω → Rn
+. Set

z̃ = (φz)◦ψ−1

Let P and F denote respectively the operators � = (∂tt + ∆2) and rhs(·) expressed in the

local coordinates. With a slight abuse of notation we shall omit “∼” over the boundary

data h and g assuming they have been modified accordingly whenever local coordinates

are involved. Using a partition of unity to generate such cutoffs, the system (19) is locally

equivalent (see [Ho, Vol I., Sect. 6.4]) to:

P(x,y,Dx,Dy,Dt)z̃ = F(x,y,Dx,Dy)z̃+[[P−F, φ◦ψ−1]]
(
z
∣
∣
U∩Ω

◦ψ−1
)

The adjoint system (19) is locally equivalent to the half-space problem:

Pz̃ = Fz̃+[[P−F, φ]]z (23)

defined on ΩΩΩ := Ry ×R
+
x with Ry corresponding to the tangential component (the image of

a neighborhood of x0 in Γ1), and the half-axis R+
x :=]0,∞[ collinear to the normal direction,

with the unit normal vector being (−1,0).
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4.2.3 Principal symbol of P

Formally (assuming a sufficiently rapid decay in the time variable) apply the Fourier trans-

forms in tangential and time directions: ∂y → iη, ∂t → is. Symbolically substitute −iξ for

the normal derivative (i.e. ∂x → iξ). Differential operator P(x,y,Dx,Dy,Dt) in (23) has

principal symbol of the form

p(x,y,ξ,η, s) = −a(x,y)s2 +(ξ2 + r(x,y,η))2 (24)

where a(x,y)≥ a0 > 0 in ΩΩΩ, and the positive real symbol r(x,y,η) corresponds to a strongly-

elliptic 2nd-order tangential operator. Henceforth, without loss of generality we assume that

our symbols vanish in some neighborhood of the zero-section of the cotangent bundle, thus

avoiding singularities, if any, contained within a bounded set. The latter assertion can be

formalized by introducing suitable cutoffs near the origin in the frequency variables.

Following [Tat1] and [BeLa] we factor

p = p−p+ (25)

p−(x,y,ξ,η, s) = ξ+ i

√

r(x,y,η)+
√

a(x,y) |s|

p+(x,y,ξ,η, s) =

(

ξ− i

√

r(x,y,η)+
√

a(x,y)|s|
)(

ξ2 + r(x,y,η)−
√

a(x,y)|s|
)

The factor p−, corresponding to the root with negative imaginary part, exhibits parabolic-

like behavior form the interior towards the boundary and provides additional smoothing on

the traces of p+.

4.3 Algebraic decomposition of the trace ∂νzt

Lemma 4.1. If z is a finite energy solution to (19), with (21, 22) or (21∗, 22∗), integrable

in time variable z ∈ L2(Rt ;Q), z
∣
∣
Γ1

∈ L2(Rt;Σ
(1)
), then

∂zt

∂ν
= M1zt +A1h+A0P+z+ iA0g+ l.o.t.(z) (26)

where

M1 ∈ OPS1
a(Σ

(1)
), A1 ∈ OPS1

a(Σ
(1)
), A0 ∈ OPS0

a(Σ
(1)
)

and l.o.t.(z) stands for the lower order terms: those which can be estimated by norms of the

solution in spaces below the finite energy level

l.o.t.(z)≤C

Z T

0

(

‖w(t)‖2
2−ε,Ω +‖wt(t)‖2

− 1
2 +ε,Ω

)

dt

for some 0 < ε < 1/2.

Furthermore, if C ∗ = −c
µδ

∂2

∂τ2 , then the operator M1 is positive and strongly elliptic (of

anisotropic order 1).
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Proof. Step1. Principal symbols for the boundary operators B1 and B2. We shall use

the following representation for B1 and B2 ([LaTrV1, pp. 296, 307])

B1 = −
(

∂

∂τ

)2

−κ(x)
∂

∂ν
, B2 =

∂

∂τ

(
∂

∂τ

∂

∂ν
−κ(x)

∂

∂τ

)

where κ(x) stands for the mean curvature div(ν(x)). The respective principal symbols are:

b1 = r, b2 = iξr

Hence the principal symbols of the boundary operators B1 and B2 have the form:

β1(x,y,ξ,η) = −ξ2 − r +(1−µ)r = −ξ2 −µr (27)

β2(x,y,ξ,η) = −iξ
(
−ξ2 − r

)
+(1−µ)iξr = iξ3 +(2−µ)iξr (28)

Step 2. Microlocal decomposition of the higher-order trace.

We factored the principal symbol of P in (23) as p = p−p+ with

p+ =

(

ξ− i

√

r +
√

a|s|
)
(
ξ2 + r−

√
a|s|
)
.

Now decompose sξ (formally of anisotropic order 3) in terms of the other traces, in partic-

ular the dissipative feedback (is)∼ ∂t . Solving for the coefficients find

sξ = a0 p+ +a1β1 + ia0β2 +a3 (29)

a0 =
−s

(1−µ)r +
√

a |s| ∈ S0
a(T∗Σ

(1)
)

a1 = −ia0

√

r +
√

a |s| ∈ S1
a

a3 = a1

(√
a |s|− (1−µ)r

)
∈ S3

a

The boundary conditions (21), (22) or their dual versions (21∗), (22∗) on the principal

symbol level translate into:

β1 = {ĥ}+θ1 (30)

β2 = −ksξ+{ĝ}+θ2 (31)

β1 = iks+{ĥ}+θ1 (30∗)

β2 = {ĝ}+θ2 (31∗)

where θ1 is the symbol corresponding to C ∗. The extra variable θ2 has been introduced

to investigate what happens when the auxiliary feedback is applied at the other boundary

condition. To simplify the subsequent calculations the reader may simply ignore θ2 and its

coefficients.

Substituting the boundary conditions into (29) respectively get:

sξ = a0p+ +a1

(
{ĥ}+θ1

)
+ ia0 (−ksξ+{ĝ}+θ2)+a3 (32)

sξ = a0 p+ +a1iks+a1

(
{ĥ}+θ1

)
+ ia0 ({ĝ}+θ2)+a3 (32∗)
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Step 3. Express sξ as a perturbation of the “dissipative” symbol is.

The goal now is to rewrite sξ as a multiple of (is) plus terms dependent only on the boundary

data {ĥ},{ĝ} and p+. From (32) and (32∗) respectively obtain

sξ =
1

(1+ ia0k)

(
(a3 +a1θ1 + ia0θ2)+a1{ĥ}+a0 p+ + ia0{ĝ}

)

=
−i(a3 +a1θ1 + ia0θ2)

(1+ ia0k)s
(is)+

1

(1+ ia0k)

(
a1{ĥ}+a0 p+ + ia0{ĝ}

)

=
−i
(
(1−µ)r +

√
a |s|
)
(a3 +a1θ1 + ia0θ2)

(1−µ)rs+(
√

a|s|− iks)s
(is)

+
1

(1+ ia0k)

(
a1{ĥ}+a0 p+ + ia0{ĝ}

)

=
−
√

r +
√

a |s|
(1−µ)r +

√
a|s|− iks

(

(1−µ)r−
√

a|s|−θ1 +
θ2

√

r +
√

a |s|

)

(is)

+
1

(1+ ia0k)

(
a0 p+ +a1{ĥ}+ ia0{ĝ}

)

(33)

sξ =a1k(is)+a1θ1 + ia0θ2 +a3 +a0 p+ +a1{ĥ}+ ia0{ĝ}

=

(

a1k− ia1θ1 −a0θ2 + ia3

s

)

(is)+a0p+ +a1{ĥ}+ ia0{ĝ} (33∗)

=
−
√

r +
√

a |s|
(1−µ)r +

√
a |s|

(

(1−µ)r−
√

a|s|− iks−θ1 +
θ2

√

r +
√

a |s|

)

(is)

+a0 p+ +a1{ĥ}+ ia0{ĝ}
Note that as long as θ1 ∈ S2

a and θ2 ∈ S3
a the (boxed) coefficients of (is) in equations (33),

(33∗) have regularity S1
a. Since ∂ν∂t corresponds to the symbol (ξs), then from either ex-

pression conclude
∂z̃t

∂ν
= M1z̃t +A1h+A0P+z̃+ iA0g+ l.o.t.(z̃)

with

Symb(M1) ∈ S1
a(T ∗Σ

(1)
), Symb(A1) ∈ S1

a, Symb(A0) ∈ S0
a

and the lower order terms l.o.t.(z) originating from those in B1, B2 and from commutators

of operators corresponding to Sm
1,0 symbols.

Step 4. Strong ellipticity of M1. Finally we construct the auxiliary feedbacks θi

in order to ensure ellipticity of M1. We may assume that θi are real. Then computing

ℜ(Symb(M1)), which corresponds to the coefficient of (is) in (33) or (33∗), it becomes

apparent that in order to have

ℜ(Symb(M1))≥ C(
√

r + |s|)

it suffices to ensure that

(1−µ)r−
√

a|s|−θ1 +
θ2

√

r +
√

a|s|
≤ −c

√

r + |s|
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at infinity in the (s,η)-plane. Here it becomes apparent that adding the correcting feedback

via θ2 requires an extra derivative in time and space,

θ2 ∼
∂3

∂τ3
∂t ,

which is a viable strategy, however a simpler approach would be to choose

θ2 = 0, θ1 = (1−µ+δ)r

Thus θ1 microlocally corresponds to −c
µδ

∂2
τ . Change to the original coordinates and “piece

together” the identities from each coordinate patch. Accordingly redefine (preserving the

order and ellipticity) the operators M1, A0, A1 to obtain the statement of Lemma 4.1.

Remark 4.2. It may be possible to extend the argument to the case δ = 0 in (12). Then M1

is not, strictly speaking, strongly elliptic since its symbol degenerates as r → ∞ provided

|s| remains bounded; however, in this situation we enter the “elliptic” sector of the phase

space where the tangential symbol η2 dominates the time |s|. One may be able to exploit

the elliptic regularity in order to obtain a priori estimates for this scenario.

4.4 Parabolic smoothing from the interior

Lemma 4.2. Suppose z is a finite-energy time-integrable solution to (19), with (21, 22) or

(21∗, 22∗). Decompose P = P−P+ so that the principal symbol of P+ is the polynomial p+

in the factorization (25). Assuming rhs(·) corresponds to a linear operator in OPSm
a (Σ

(1)
),

the following estimate holds:

|A0P+z|− 1
2
,a,Σ

(1) ≤ C

(

‖z‖2,a,Q +‖ rhs(z)‖
H

0,−1
a (Q)

+ l.o.t.(z)

)

(34)

Proof. The result is a special case of [Tat1, Lemma 3.4]. In order to have a self-contained

presentation we provide a specialization of that argument to our case (see also [Las1]).

Recall that A0 ∈ S0
a, so the task is to estimate P+z. As before carry out the analysis on the

half-space problem (23)

Pz̃ = Fz̃+[[P−F, φ]]z =: R (z)

hence

P−P+z̃ = R (z)+ l.o.t.(z)

For a fixed y, set v(x) = iP+z̃(x,y) and without loss of generality ignore the lower order

terms, arriving at:

−iP−v = R (z)

Since the principal symbol of −iP− is −ip− = −iξ +
√

r +
√

a|s|, we have a parabolic

system in variable x with evolution directed along the outward normal (ν = −1 in these

local). Denote v′ = −∂xv

v′+Λ1v = R (z), Λ1 ∼
√

r +
√

a |s| ∈ S1
a (35)
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For the half-space formulation corresponding to a collar of the boundary we can fix x and

take the inner product of (35) with v(x) in H
p
a (ΣΣΣ(1)):

− d

dx
|v|2

p,a,ΣΣΣ(1) +2
∣
∣
∣Λ

1/2
1 v

∣
∣
∣

2

p,a,ΣΣΣ(1)
=2〈R (z),v〉

p,a,ΣΣΣ(1)

≤
∣
∣
∣Λ

1/2
1 R (z)

∣
∣
∣

2

p,a,ΣΣΣ(1)
+
∣
∣
∣Λ

−1/2
1 v

∣
∣
∣

2

p,a,ΣΣΣ(1)

Recall from Section 1.4 that H
0,p
a (Q) := L2

(
0,∞;H

p
a

(
ΣΣΣ(1)
))

. Integrate on x ∈ (0,∞)

|v(0)|2
p,a,ΣΣΣ(1) +2

∥
∥
∥Λ

1/2
1 v

∥
∥
∥

2

H
0,p
a

≤
∥
∥
∥Λ

−1/2
1 R (z)

∥
∥
∥

2

H
0,p
a

+
∥
∥
∥Λ

1/2
1 v

∥
∥
∥

2

H
0,p
a

.

From here

|v(0)|2
p,a,ΣΣΣ(1) ≤

∥
∥
∥Λ

−1/2
1 R (z)

∥
∥
∥

2

H
0,p
a

.

Since Λ1 is a first-order (anisotropic) strongly elliptic operator on ΣΣΣ(1), get

|P+z̃|
p,a,ΣΣΣ(1) = |v(0)|2

p,a,ΣΣΣ(1) ≤ ‖R (z)‖2

H
0,p−1/2
a (Q)

.

Set p = −1/2; the principal part is given by the commutator [[P, φ]]z which we need to

estimate in H
0,−1
a (Q) (recall that z here is just a shorthand for z

∣
∣
U∩Ω

◦ψ−1 for a local

coordinate map ψ). Since φ is time-independent [[P, φ]] = [[P0, φ]] and the principal symbol

of P0 is (ξ2 + r)2.

Remark 4.3. Formally P0 is of (anisotropic) order 4, hence the commutator could be

thought of as being in OPS3
a and the desired norm would then coincide with the space

L2(R+
x ;S2

a) which corresponds to the L2(R+
x ) bound on one time and two space derivatives,

as desired.

To make the argument rigorous, however, directly estimate the normal derivatives in the

principal symbol of the commutator (up to the order 3, since φ is smooth):

‖ [[P0, φ]]z‖2

H
0,−1
a (ΣΣΣ(1))

≤C
3

∑
i=0

|z̃|2
Hi(R

+
x ;H−1

a (ΣΣΣ(1)))
≤C|z̃|2

H
3,−1
a (Q)

.

The latter norm corresponds to the space H(3,p=−1) of [Tat1, (1.11)]; now we can use [Tat1,

Appendix B, and Proposition B.9a] since z satisfies the problem Pz = rhs, to infer that

‖ [[P0, φ]]z‖2

H
(3,−1)
a (Q)

≤C‖z‖2
H2

a (Q) +‖ rhs(z)‖
H

0,−1
a (Q)

.

Now pass to the original coordinates to obtain the statement of the lemma. Note that the

coordinate patches away from the boundary will create additional lower order terms.
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5 PROOFS II: Estimates for the backward adjoint problem

Lemma 5.1. Assume z is a finite-energy solution to the adjoint problem (19), with (21, 22)
or (21∗, 22∗) with rhs(z)≡ 0. There exists a constant C

t,T > 0 such that

|zt| 1
2 ,a,Σ

(1)

t,T

+ |z| 5
2 ,a,Σ

(1)

t,T

+

∣
∣
∣
∣

∂zt

∂ν

∣
∣
∣
∣
− 1

2
,a,Σ

(1)

t,T

+

∣
∣
∣
∣

∂z

∂ν

∣
∣
∣
∣

3
2
,a,Σ

(1)

t,T

≤ C
t,T btt,T (36)

|B1z| 1
2 ,a,Σ

(1)

t,T

+ |B2z|− 1
2 ,a,Σ

(1)

t,T

≤Ct,T btt,T (37)

and

Ez(t)≤C
t,T btt,T (38)

where

btt,T := |h| 1
2
,a,Σ

(1)

t,T

+ |g|− 1
2
,a,Σ

(1)

t,T

The rest of this section will be devoted to the proof of Lemma 5.1. Overall one can

subdivide the argument into two major parts: (i) derive the fundamental identity which

sets up the foundation the estimates and identify the “critical” terms present therein which

must be assessed in order to verify the statement of the Lemma; and part (ii): the estimates

themselves, taking advantage of Lemmas 4.1 and 4.2.

5.1 Proving Lemma 5.1 - Part I: Fundamental inequalities

5.1.1 Step 1: Introducing decay in time and the frequency cutoff

To take advantage of Lemmas 4.1 and 4.2 we must ensure L2 integrability of the solution

in time. In addition, the phase space will be (microlocally) partitioned into “elliptic” and

“hyperbolic” sectors and the final estimates will be pieced together from the information

obtained in each subregion. For these purposes introduce respectively an exponential weight

eγt with a large parameter γ > 0 (for the backward-in-time problem), and let χχχ denote a zero-

order operator, which (up to a change of coordinates) resides in the class OPS0
a (T ∗ΣΣΣ), i.e.

χχχ could be thought of a tangential near the boundary with arbitrary smooth extension to the

interior. Introduce

z̄ := eγtz, v := χχχz

and combining the two

v̄ := eγtχχχz

Similarly let

h̄ = eγth, ḡ = eγtg

This proof will focus on the boundary conditions (21)-(22) since the analysis for (21∗)-

(22∗) is analogous. Apply eγtχχχ to the adjoint system (19), with (21, 22) or (21∗, 22∗) with

rhs(z)≡ 0:

�v̄ +[[eγtχχχ, �]]z = 0

B1v̄+[[χχχ, B1]]z̄ = C ∗v̄ +[[χχχ, C ∗]]z̄+χχχh̄

B2v̄+[[χχχ, B2]]z̄ = −k

(

∂νv̄t +[[eγtχχχ, ∂t∂ν]]z

)

+χχχḡ
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Rewrite the commutator terms:

[[eγtχχχ, �]]z =[[eγt, ∂tt ]]v− [[χχχ, ∆2]]z̄ = −2γv̄t + γ2v̄− [[χχχ, ∆2]]z̄

and

[[eγtχχχ, ∂t∂ν]]z =eγtχχχ∂νzt −∂ν v̄t = eγt (∂νvt +[[χχχ, ∂ν]]zt)−∂ν v̄t =

=∂ν(eγtvt)+[[χχχ, ∂ν]](e
γtzt)−∂ν v̄t

=− γ∂νv̄+[[χχχ, ∂ν]](z̄t − γz̄) = −γ∂νv̄,

where in the last step we used the fact that on the boundary χχχ acts as a tangential operator

(by construction). Thus, v̄ satisfies the following system

�v̄−2γv̄t + γ2v̄ = K3z̄ (39)

B1v̄ = C ∗v̄ +χχχh̄+K1 z̄ (40)

B2v̄ = (kγ)(∂νv̄)−k(∂νv̄t)+χχχḡ+K2z̄ (41)

v̄(T ) = v̄t(T ) = 0. (42)

Operators Ki denote the commutators:

K1 = [[χχχ, C ∗−B1]] (43)

K2 = [[B2, χχχ]]. (44)

As for K3, recall that χχχ is tangential operator (and locally smoothing, e.g. vanishing in

the interior) consequently [[χ, ξ]] = 0, so K3 is a third order operator in tangential and time

variables only

K3 = [[χχχ, ∆2]] ∈loc OPS3
a(ΣΣΣ) (45)

From the principal symbols of B1, B2 ((27), (28)) and [[χχχ, ξ]] = 0 derive

K1 ∈ OPS1
a(T ∗Σ) and K2 =

∂

∂ν
◦
[

OPS1
a(T∗Σ)

]

. (46)

5.1.2 Step 2: The fundamental identity for the v̄-system.

At this stage use standard multiplier techniques to relate the interior and boundary dynam-

ics. Multiply (39) - (42) by v̄t in L2(Ω) to procure an energy identity

1

2

d

dt

(

‖v̄t‖2
0,Ω

+a(v̄, v̄)+ γ2‖v̄‖2
0,Ω

)

−2γ‖v̄t‖2
0,Ω

+ 〈B2v̄, v̄t〉−
〈

B1v̄,
∂v̄t

∂ν

〉

=

= (K3z̄, v̄t)

(47)

Recall that by assumption v̄ is a semigroup solution (vanishing for t > T ), so for γ suffi-

ciently large v̄ tends to 0 as t →−∞. Integration in time yields

Z

Rt

2γ‖v̄t‖2
0,Ω

=

Z

Rt

[

〈B2v̄, v̄t〉−
〈

B1v̄,
∂v̄t

∂ν

〉]

−
Z

Rt

(K3z̄, v̄t). (48)
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Similarly, multiplication by v̄ produces the “equipartition” equation:

Z

Rt

‖v̄t‖2
0,Ω

=

Z

Rt

a(v̄, v̄)+ γ2
Z

Rt

‖v̄‖2
0,Ω

+

Z

Rt

[

〈B2v̄, v̄〉−
〈

B1v̄,
∂v̄

∂ν

〉]

−
Z

Rt

(K3z̄, v̄). (49)

Multiply (49) by γ and substitute into the energy identity (48):

γ

Z

Rt

[

‖v̄t‖2 +a(v̄, v̄)

]

+ γ3
Z

Rt

‖v̄‖2
0,Ω

=

Z

Rt

[

〈B2v̄, v̄t − γv̄〉−
〈

B1v̄,
∂v̄t

∂ν
− γ

∂v̄

∂ν

〉]

−
Z

Rt

(K3z̄, v̄t − γv̄).

(50)

The next step will be to obtain bounds on the RHS of the identity (50). We will exploit

the strong ellipticity of positive operator M1 (from Lemma 4.1) and the gain in smoothness

provided by Lemma 4.2, which altogether yield, roughly speaking, one anisotropic unit of

“hidden” regularity. Formally one could express it with the following table:

Finite energy level

(apply space trace first)

Monotone trace M1

and smoothing of P+

“+1” anisotropic unit

on zt and P+z

Maximal corresponding

boundary regularity

(dual to zt ∈ H
1/2
a )

zt ∈ H
−1/2
a (Σ

(1)
) zt ∈ H

1/2
a A1h ∈ H

−1/2
a ⇒ h ∈ H

1/2
a

∂νzt ∈ H
−3/2
a ∂νzt ∈ H

− 1
2

a A0g ∈ H
− 1

2
a ⇒ g ∈ H

− 1
2

a

P+z ∈ H
− 3

2
a (Σ

(1)
) P+z ∈ H

−1/2
a

5.1.3 Step 3. Monotone branch: operator M1

First, expand the boundary operators on the RHS of (50). From the condition (41) obtain

〈B2v̄, v̄t − γv̄〉 =

〈

(kγ)(∂νv̄)+χχχḡ+K2 z̄, v̄t − γv̄

〉

−k

〈
∂v̄t

∂ν
, v̄t − γv̄

〉

. (51)

Apply the decomposition in Lemma 4.1, in which we need to

• replace “h” in Lemma 4.1 with χχχh̄+K1 z̄,

• replace “g” in Lemma 4.1 with χχχḡ+kγ
∂v̄

∂ν
+K2z̄,

to conclude (omitting the lower order terms):

∂v̄t

∂ν
= M1v̄t +A1

(
χχχh̄+K1 z̄

)
+A0P+v̄− iA0

(

χχχḡ+kγ
∂v̄

∂ν
+K2 z̄

)

, (52)
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−k

〈
∂v̄t

∂ν
, v̄t

〉

= −k

〈

M1v̄t , v̄t

〉

+

〈

. . . , v̄t

〉

.

Likewise, from the boundary condition (40) and Lemma 4.1 get

−
〈

B1v̄,
∂v̄t

∂ν

〉

=−
〈

C ∗v̄ +χχχh̄+K1 z̄ ,

M1v̄t +A1

(
χχχh̄+K1 z̄

)
+A0P+v̄− iA0

(

χχχḡ+kγ
∂v̄

∂ν
+K2z̄

)

.

〉 (53)

By Lemma 4.1 operator M1 is positive strongly elliptic of (anisotropic) order 1. Use

Gårding’s inequality to claim that there exists a constant c > 0 for which

c|v̄t |21
2
,a,Σ

(1) ≤
Z

Rt

ℜ〈M1v̄t , v̄t〉+ l.o.t. (54)

From the term (51) it follows that the coefficient of M1 is negative (=−k) on the RHS (50).

Thus, after extracting the real parts on each side of the identity, we can pass to an estimate

which in the next step yields a bound on the energy and on |v̄t| 1
2 ,a,Σ

(1) .

5.1.4 Step 4. Fundamental inequality

Taking into the account the orders of the operators: C ∗ ∈ OPS2
a, M1 ∈ OPS1

a, Ai ∈ OPSi
a,

K1 ∈ OPS1
a and K2 = ∂

∂ν
◦OPS1

a, we obtain from (50) - (53) and the monotone estimate (54),

the following inequality (the parameter ε will be specified later)

γ

Z

Rt

[

‖v̄t‖2 +a(v̄, v̄)

]

+ γ3
Z

Rt

‖v̄‖2
0,Ω

+kc

Z

Rt

|v̄t |21
2 ,a,Σ

(1) ≤

≤−
Z

Rt

ℜ〈C ∗v̄,M1v̄t〉+ . . .

(55)

· · ·+ℜ

Z

Rt







kγ
〈
∂νv̄, v̄t

〉

+
〈
χχχḡ, v̄t

〉

+
〈
K2z̄, v̄t

〉

−k
〈
A1χχχh̄, v̄t

〉

−k
〈
A1K1 z̄, v̄t

〉

−k
〈
A0P+v̄, v̄t

〉

+ik
〈
A0χχχḡ, v̄t

〉

+ik2γ
〈
A0∂νv̄, v̄t

〉

+ik
〈
A0K2 z̄, v̄t

〉







. O
(

1
ε

)




























γ2
∣
∣
∣

∂v̄
∂ν

∣
∣
∣

2

− 1
2
,a,Σ

(1)

|ḡ|2
− 1

2 ,a,Σ
(1)

|h̄|2
1
2
,a,Σ

(1)

|A0P−v̄|2
− 1

2 ,a,Σ
(1)

∣
∣
∣

∂z̄
∂ν

∣
∣
∣

2

1
2
,a,Σ

(1)

|z|23
2 ,a,Σ

(1)




























+ε|v̄t |21
2 ,a,Σ

(1)
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· · ·+ℜ

Z

Rt







−
〈

C ∗v̄

+χχχh̄

+K1z̄

, M1v̄t

〉

−
〈
. . . , A1χχχh̄

〉

−
〈
. . . , A1K1z̄

〉

−
〈
. . . , A0P+v̄

〉

+i
〈
. . . , A0χχχḡ

〉

+ikγ
〈
. . . , A0∂νv̄

〉

+i
〈
. . . , A0K2z̄

〉

+γ
〈
. . . , ∂νv̄

〉







.O
(

1
ε

)




























|h̄|2
1
2
,a,Σ

(1)

|ḡ|2
− 1

2 ,a,Σ
(1)

(

|z̄|2
1
2
,a,Σ

(1)

)

|z̄|2
3
2 ,a,Σ

(1)

|A0P+v̄|2− 1
2
,a,Σ

(1)

γ2
∣
∣
∣

∂v̄
∂ν

∣
∣
∣

2

− 1
2 ,a,Σ

(1)




























+ε












|v̄t |21
2 ,a,Σ

(1)

.|v̄|2
5
2

,a,Σ
(1)

︷ ︸︸ ︷

|C ∗v̄| 1
2
,a,Σ

(1)












· · ·+ℜ

Z

Rt

{
−(K3z̄, v̄t)
+[terms with (γv̄)]

}

. −
R

Rt
ℜ(K3z̄, v̄t)+O(γ)l.o.t.

The relation . will henceforth indicate that the right-hand side is dominant when mul-

tiplied by a sufficiently large constant C which is independent of the critical parameters

(such as γ or ε, for example). It may be easier to think of these estimates as being dual to

the “hidden” regularity v̄t ∈H
1/2
a (Σ

(1)
) and the boundary data ḡ∈H

−1/2
a (Σ

(1)
), h̄∈H

1/2
a (Σ

(1)
).

The product 〈C ∗v̄,M1v̄t〉 will require a special treatment, since if one formally replaces

two space derivatives in C ∗ by the anisotropic equivalent of one time derivative, at best this

term will be of the order |v̄t|21
2 ,a,Σ

. Since only a limited amount of the hidden regularity can

be accommodated (as dictated by the monotone estimate (54)), the direct bound may be

insufficient in general for this critical term. Instead take advantage of the fact that both C ∗

and M1 are strongly elliptic operators with positive principal parts.

Now further adjust (55):

• Note that from (52) it follows
∣
∣
∣
∣

∂v̄t

∂ν

∣
∣
∣
∣
− 1

2
,a,Σ

(1)
. |v̄t| 1

2 ,a,Σ
(1) + |h̄| 1

2 ,a,Σ
(1) + |z̄| 3

2 ,a,Σ
(1)

+ |A0P+v̄|− 1
2 ,a,Σ

(1) + |ḡ| 1
2 ,a,Σ

(1)

+O(γ)

∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣
− 1

2 ,a,Σ
(1)

+

∣
∣
∣
∣

∂z

∂ν

∣
∣
∣
∣

1
2 ,a,Σ

(1)

(56)

where the norms on the RHS are of the same order as on the RHS of (55). Conse-

quently we can add a small multiple (of order O(ε)) of inequality (56) to (55) without

introducing new terms on the RHS of the latter, and still preserving order O(ε) of the

coefficient of the term |v̄t|21
2 ,a,Σ

(1) on the right-hand side.

• Recall that to verify the statement of Lemma 5.1 the norms
∣
∣
∣

∂z̄
∂ν

∣
∣
∣

3
2
,a,Σ

(1)
and |z̄| 5

2
,a,Σ

(1)

must be analyzed as well. To keep all the estimates together, let us add to each side of



130 I. Lasiecka and D. Toundykov

the inequality obtained in the last step the term ε2
∣
∣
∣

∂z̄
∂ν

∣
∣
∣

2

3
2 ,a,Σ

(1)
+ ε|v̄| 5

2
. Jumping ahead

we mention that the smaller coefficient ε2 is chosen so that one could eventually ab-

sorb the resulting bounding terms into the term |∂νv̄t | (which, in turn, has coefficient

O(ε)).

As a result get an inequality of the form:

γ
Z

Rt

[

‖v̄t‖2 +a(v̄, v̄)

]

+ γ3
Z

Rt

‖v̄‖2
0,Ω

+kc|v̄t |21
2
,a,Σ

(1) +

+ε

∣
∣
∣
∣

∂v̄t

∂ν

∣
∣
∣
∣

2

− 1
2
,a,Σ

(1)
+ε|v̄|2

5
2
,a,Σ

(1) +ε2

∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣

2

3
2
,a,Σ

(1)
≤

≤ Nγ,ε +ε|v̄t |21
2
,a,Σ

(1) +O(ε−1)

(

|ḡ|2
− 1

2
,a,Σ

(1) + |h̄|2
1
2
,a,Σ

(1)

)

+ l.o.t.

(57)

Where

Nγ,ε ≈ O(ε−1)|A0P+v̄|2
− 1

2 ,a,Σ
(1) +ε|v̄|2

5
2 ,a,Σ

(1) +O(ε−1)|z̄|2
3
2 ,a,Σ

(1)

+ε

∣
∣
∣
∣

∂z̄

∂ν

∣
∣
∣
∣

2

3
2
,a,Σ

(1)
+O

(
ε−1γ2

)
∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣

2

− 1
2
,a,Σ

(1)
+O(ε−1)

∣
∣
∣
∣

∂z

∂ν

∣
∣
∣
∣

2

1
2
,a,Σ

(1)

−ℜ

Z

Rt

[
〈C ∗v̄, v̄t〉+(K3z̄, v̄t)

]

The the cutoff χχχ added to the solution (with v̄ = χχχz̄) permits to (micro) localize the of study

of Nγ,ε. We will choose an open cover of the phase space and consider different values for

operator χχχ supported so that when combined they partition the identity:

χχχ := χχχα, ∑
α

χχχα = I

for α in some finite index set. In this setting it is possible to estimate terms involving z̄

by separately analyzing χχχαz̄ for each value of χ (except the case when z̄ is acted upon by

a χ-dependent commutator K3). Since the trace estimates pose the grater challenge, the

subsequent argument will focus on χχχ whose projected support corresponds to a Γ1-collar of

the domain, i.e. patches in some neighborhood of the boundary Γ1.

Summarizing: the goal so far is to obtain bounds on the term Nγ,ε, namely the norms

and products:

|A0P+v̄|− 1
2 ,a,Σ

(1) , |v̄| 3
2 ,a,Σ

(1) , ε |v̄| 5
2 ,a,Σ

(1)

ε2

∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣

2

3
2
,a,Σ

(1)
,O
(
γ2
)
∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣

2

− 1
2
,a,Σ

(1)
,

∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣

1
2
,a,Σ

(1)
,

ℜ

Z

Rt

〈C ∗v̄,M1v̄t〉, ℜ

Z

Rt

(K3z̄, v̄t)

(58)

for the cases χχχ = χχχα ( ∑α χχχα = I restricted to a neighborhood of Γ1), via:



“Hidden” Trace Regularity of a Dynamic Plate with Non-Monotone Feedbacks 131

1. The finite energy (e.g. ‖v̄‖2,a,Q or ‖z̄‖2,a,Q) scaled by a parameter � γ;

2. lower order terms, which we can always interpolate as a small fraction of the energy

plus Cγ‖v̄‖0,Q for sufficiently large Cγ. Here we will not outright take advantage of

the coefficient γ3 on the LHS of (57), and will need no restriction on the order of the

coefficient of the lower order norms;

3. the hidden regularity due to the monotone part: ‖v̄t‖ 1
2
,a,Σ

(1) with a coefficient propor-

tional to parameters of smaller order than constant c in (54);

4. The normal velocity trace
∣
∣
∣

∂v̄t

∂ν

∣
∣
∣
− 1

2
,a,Σ

(1)
with a coefficient � ε;

5. The boundary data in the spaces dual to the order of the “hidden” regularity, namely

the norms |h̄| 1
2
,a,Σ

(1) and |ḡ|− 1
2
,a,Σ

(1) .

5.1.5 Step 5. Elliptic regularity

As already mentioned above, the estimates will be carried out for different values of the

(tangential) cutoff operator χχχ. Denote the first case by χχχel . The projection (onto Q) of the

support of χχχel will fall into a neighborhood of the space time cylinder Σ
(1)

, so whenever the

point (x,y) ∈ Ω lies away from a collar of the boundary Γ1 we can assume χχχel(t,x,y) ≡
0. Near the boundary Σ

(1)
modulo a coordinate transformation χχχel will be defined as an

“elliptic” cutoff with the following symbol

χχχel ∼ χel(t,x,y; s,η) ∈C∞
(

T ∗
(t;x,y)ΣΣΣ; [0,1]

)

∈ S0
a(T∗ΣΣΣ)

With exception of a bounded neighborhood of the zero section of the cotangent bundle we

define

χel(s,η) :=

{

1 |s| ≤ 1
2
ε0|η|2

0 |s| ≥ ε0|η|2
(59)

assuming χel is smooth near the zero section and in the transition region between the two

parabolas in the fibers (see Figure 1).

On the support of the operator χχχel with the symbol given by (59), the (principal) symbol

representation (24) of the operator � yields

p(x,y,ξ,η, s) = −a(x,y)s2 +
(
ξ2 + r(x,y,η)

)2
> −a(x,y)ε0|η|4 +(ξ2 + r(x,y,η))2

Since r(x,y,η) is strongly elliptic there is a constant r0 > 0 such that

r2
0|η|4 ≤ r(x,y,η)2

Consequently, if

ε2
0 <

r2
0

2supa(x,y)
(60)
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Figure 1: Microlocal partition of the cotangent bundle by the “elliptic” cutoff χχχel (the def-

inition can be altered in a bounded neighborhood of the zero section since such a change

corresponds to a C∞ perturbation). It will be shown that on the regions of the phase space

where χχχel is strictly positive the solution z̄ possesses (microlocal) H3 regularity.

then for (s,η) ∈ suppχel (for η away from the origin)

p(x,y,ξ,η, s) =ξ4 +
(
ξ2r(x,y,η)+ r(x,y,η)ξ2

)
+ r2(x,y,η)−a(x,y)s2

>ξ4 +
(
ξ2r(x,y,η)+ r(x,y,η)ξ2

)
+ 1

2 r2(x,y,η) > 1
2

(
ξ2 + r(x,y,η)

)2

We obtain that for χχχ = χχχel , the corresponding solution v̄ = v̄el satisfies the elliptic system

(39) - (41)

P0v̄el = rhs(v̄el, z̄)

where Symb(P0) ∼ (ξ2 + r)2, i.e. P0 ∼ ∆2. Furthermore, now we can work with regular

isotropic norms since since Hr
a regularity on suppχχχel is equivalent to r space derivatives.

Theorem 7.1 in the Appendix shows that this elliptic system system corresponding to

the bi-laplacian and boundary operators {B1−C ∗,B2} satisfies the Shapiro-Lopatinskii con-

dition (e.g. see the L-condition in [Wl, p. 389]). Consequently the following elliptic esti-

mate applies [LiMa, P. 188, Theorem 7.4]

‖v̄el‖m,Q . ‖K3z̄+2γv̄el

t − γ2v̄el‖m−4,Q

+
∣
∣χχχel h̄+K1z̄

∣
∣
m−2− 1

2 ,Σ
(1)

+ |(kγ)∂νv̄el −k∂νv̄el

t +χχχelḡ+K2 z̄|
m−3− 1

2
,Σ

(1) ,

(61)

where we may take m = 3 because the differential operators K3 and ∂t are tangential,

whereas v̄el has a priori regularity in H1
a ; hence the right-hand side in the interior has a

well defined anisotropic derivative of order −1. Due to the support of the cutoff χχχel (59) we

can bound the time derivative by the tangential component:

|v̄el

t |θ,Σ
(1) ≤ O(ε0)|v̄el|

θ+2,Σ
(1) ≤ O(ε0)‖v̄el‖θ+ 5

2 ,Q, (62)
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‖v̄el

t ‖θ,Q ≤ O(ε0)‖v̄el‖θ+2,Q. (63)

Likewise:
∣
∣
∣
∣

∂v̄el

∂ν

∣
∣
∣
∣

3
2 ,Σ

(1)
+

∣
∣
∣
∣

∂v̄el
t

∂ν

∣
∣
∣
∣
− 1

2 ,Σ
(1)
≤ O(ε0)

∣
∣
∣
∣

∂v̄el

∂ν

∣
∣
∣
∣

3
2 ,Σ

(1)
≤ O(ε0)‖v̄el‖3,Q. (64)

In addition, since commutator K3 is a tangential operator, then

‖K3z̄‖−1,Q . ‖z̄‖2,Q. (65)

Similarly, taking into account K2 = ∂
∂ν ◦

[

OPS1(Σ
(1)
)

]

‖K2z̄‖− 1
2
,Σ

(1) .

∣
∣
∣
∣

∂z̄

∂ν

∣
∣
∣
∣

1
2 ,Σ

(1)
. ‖z̄‖2,Q. (66)

Now setting m = 3 in (61) along with (62)-(66) produces

‖v̄el‖3,Q . ‖z̄‖2,Q +O(γ)‖v̄el‖1,Q +O(γ2)‖v̄el‖−1,Q

+ |h̄| 1
2 ,Σ

(1) + |z̄| 3
2 ,Σ

(1) + |ḡ|− 1
2 ,Σ

(1)

+O(γ)‖v̄el‖1,Q +‖z̄‖2,Q

Interpolate the lower norms (below H3(Q)) of v̄el to obtain the elliptic regularity estimate

‖v̄el‖3,Q . ‖z̄‖2,Q +O(γ2)‖v̄el‖0,Q + |h̄| 1
2 ,Σ

(1) + |ḡ|− 1
2 ,Σ

(1) (67)

5.1.6 Step 6. Cutoff functions for the energy estimates

The cutoff χχχel, however, will not be directly used to carry out the energy estimates for the

problem. Having established (67) it is now more convenient to change the partition. We

shall consider cases denoted

χχχ = χχχI and χχχ = χχχII , where χχχII := I −χχχI

with the respective solutions named v̄I, v̄II . Similarly, use superscripts I and II to label the

commutators K j corresponding to each cutoff.

Let ε0 be as defined for the elliptic cutoff χχχel and now let the symbol χI satisfy (away

from a bounded neighborhood of the zero section)

χI :=

{

1 |s| ≤ 1
8
ε0|η|2

0 |s| ≥ 1
4
|η|2

(68)

Essentially χχχI and χχχII form the same decomposition of the domain into the “elliptic” and

complementary “hyperbolic” parts, only now the transition region between the two falls

into the set where the elliptic regularity holds according to (67), as illustrated in Figure 2.

Such a “redundant” construction will help bound the commutators in the region when it

comes to the trace estimates for the equation.
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Figure 2: Partition of the phase space by the microlocal cutoffs χχχI and χχχII .

The cutoff χχχI has the properties analogous to χχχel , in particular, we can restate (62) -

(67) for v̄I , obtaining:

|v̄I

t |θ,Σ
(1) +‖v̄I

t‖θ,Q ≤ O(ε0)‖v̄I‖θ+2,Q (69)
∣
∣
∣
∣

∂v̄I

∂ν

∣
∣
∣
∣

3
2 ,Σ

(1)
≤ O(ε0)‖v̄I‖3,Q (70)

‖v̄I‖3,Q . ‖z̄‖2,Q +O(γ2)‖v̄I‖0,Q + |h̄| 1
2 ,Σ

(1) + |ḡ|− 1
2 ,Σ

(1) . (71)

Furthermore, on the entire support of χχχI it is now possible to take advantage of the

elliptic regularity estimate (67). Whereas on the complementing supp(χχχII) (just as on the

complement of χχχel or on any region “parabolically” bounded away from the line |s|= 0 for

that matter) the dynamics is time-like. Reversing the relations in (68) gives the frequency

relation for the hyperbolic sector:

|η|2 ≤ 8

ε0

|s| (72)

Thus the tangential gradient of the function v̄II = χχχII z̄ can be estimated by the time-derivative.

Consequently when the elliptic regularity does not hold it will be possible to “trade” the

hidden regularity v̄t ∈ H
1/2
a (Σ) for tangential derivatives in the space variable.

5.2 Proving Lemma 5.1 - Part II: The estimates

5.2.1 Step 1. Smoothing from the interior dynamics

In this subsection there is no need to specialize to a particular cutoff, since the argument

works for both χχχI and χχχII . Invoke Lemma 4.2, with rhs(z) := K3z̄+2γv̄t −γ2v̄ (without loss

of generality ignoring the lower order terms)

|A0P+v̄|− 1
2
,a,Σ . ‖v̄t‖0,Q +‖∆v̄‖0,Q +

∥
∥K3z̄+2γv̄t − γ2v̄

∥
∥

H
0,−1
a (Q)
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Since microlocally K3 is of order zero in the normal direction then

∥
∥K3z̄+2γv̄t − γ2v̄

∥
∥

H
0,−1
a (Q)

. ‖z̄‖2,a,Q + γ‖v̄t‖H
0,−1
a (Q)

+ γ2‖v̄‖0,Q

The term γ‖v̄t‖H
0,−1
a (Q)

needs a more careful attention since it’s factor is O(γ) hence cannot

be directly bounded by the finite energy, which is of the same order in (50). Instead, expand

the norm and apply interpolation in space and time

γ‖v̄‖2

H
0,−1
a (Q)

=γ

Z

R
+
x

|v̄t(x)|2
H−1

a (Σ)
dx ≤ γ

Z

R
+
x

|v̄(x)|2H1
a (Σ)dx

. ‖v̄‖2
2,a,Q +O(γ2)‖v̄‖2

0,Q

Combining the above three inequalities conclude

|A0P+v̄|− 1
2 ,a,Σ ≤ ‖z̄‖2,a,Q +O(γ2)‖z̄‖0,Q

Here the L2 norm of v̄ was estimated by a multiple of the L2 norm of z̄.

5.2.2 Step 2. Analysis on the support of χχχI - elliptic sector.

With the help of elliptic estimates (69) - (71) obtain bounds on the target terms (58):

• Operator C ∗ is in OPS2(Σ
(1)
) so bound it directly (taking into account M1 ∈OPS1

a(Σ
(1)
)):

∣
∣
R

Rt
〈C ∗v̄I,M1v̄I

t〉
∣
∣≤ |C ∗v̄I| 1

2 ,Σ
(1) |v̄I| 1

2 ,Σ
(1) and invoke

|C ∗v̄I| 1
2 ,Σ

(1) + |v̄I| 5
2 ,Σ

(1) . ‖v̄I‖3,Q (73)

• For norms with large coefficient interpolate:

γ2

∣
∣
∣
∣

∂v̄I

∂ν

∣
∣
∣
∣

2

− 1
2 ,a,Σ

(1)
.γ2 |v̄I|21,Q . |v̄I|22,a,Q +O(γ4)|v̄I|20,Q (74)

• Finally, for the commutator in the interior will exploit the fact that by construc-

tion (possibly excluding a bounded neighborhood of the zero section) suppKI
3 ⊂

suppχχχI ⊂ {χχχel = 1}. Consequently on the support of KI
3 the functions v̄I = χχχI z̄,

v̄el = χχχel z̄ and z̄ possess the same microlocal regularity. From (67) we have

‖KI
3v̄I‖0,Q .‖KI

3v̄el‖0,Q . ‖v̄el‖3,Q

.‖z̄‖2,Q +O(γ2)‖z̄‖0,Q + |h̄| 1
2
,Σ

(1) + |ḡ|− 1
2
,Σ

(1)

(75)

Combine (69) - (71) with the latter bounds (73) - (75), square each side, and switch

back to the anisotropic norm notation (equivalent to the regular one in the elliptic sector):

N
I
γ,ε . ‖z̄‖2

2,a,Q +O(γ4)‖z̄‖2
0,Q + |h̄|2

1
2 ,a,Σ

(1) + |ḡ|2
− 1

2 ,a,Σ
(1) (76)

which completes the analysis for the region described by χχχ = χχχI .
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5.2.3 Step 3. Analysis in the “hyperbolic” sector: χχχII

Due to the microlocal relation (72) in this sector two spatial derivatives can be bounded by

their anisotropic equivalent of one time derivative:

|v̄|
r,a,Σ

(1) . O(ε−1
0 )|v̄|

r−2,a,Σ
(1) and

∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣
r,a,Σ

(1)
. O(ε−1

0 )

∣
∣
∣
∣

∂v̄

∂ν

∣
∣
∣
∣
r−2,a,Σ

(1)
. (77)

Hence it is possible can take advantage of the hidden regularity arising due to the mono-

tone part of the trace, namely the equation (54), which shows control of the trace norm

kc |v̄t | 1
2 ,a,Σ

(1) for some c > 0. Now this gain in regularity is equivalent to being able to con-

trol small multiples of |v̄| 5
2 ,a,Σ

(1) .

• Using (77) obtain

ε|v̄II|2
5
2
,a,Σ

(1) . O(εε−1
0 )|v̄II

t |21
2
,a,Σ

(1) . (78)

Now simply choosing ε ∼ ε2
0 for small enough ε0 will permit to absorb the RHS of

this estimate into the hidden regularity term on the LHS of (57).

• Similarly,

ε2

∣
∣
∣
∣

∂v̄II

∂ν

∣
∣
∣
∣

2

3
2 ,a,Σ

(1)
.O(ε2ε−1

0 )

∣
∣
∣
∣

∂v̄II

t

∂ν

∣
∣
∣
∣

2

− 1
2 ,a,Σ

(1)
. (79)

If we choose, as in the previous step ε ∼ ε2
0, then ε2ε−1

0 ∼ ε3/2 which, for small ε, will

permit us to absorb the RHS of the last inequality into the term ε| ∂v̄t

∂ν |2− 1
2
,a,Σ

(1) on the

LHS of (57).

• Since the term |v̄II|2
3
2
,a,Σ

(1) has no small coefficient in front, but represents a norm of a

smaller order (than 5/2), use interpolation:

|v̄II|2
3
2 ,a,Σ

(1) .Cε|v̄II |2
0,a,Σ

(1) +ε2|v̄II|2
2,a,Σ

(1)

.Cε‖v̄II‖2
2,a,Ω +O(ε2ε−1

0 )|v̄II

t |21
2 ,a,Σ

(1) .
(80)

• Next,

O(γ2)

∣
∣
∣
∣

∂v̄II

∂ν

∣
∣
∣
∣

2

− 1
2 ,a,Σ

(1)
.O(γ2)‖v̄II‖2

L2(Rt ;H3/2+δ (Ω))
. ‖v̄II‖2

2,a,Q +Cγ‖v̄II‖2
0,Q, (81)

∣
∣
∣
∣

∂v̄II

∂ν

∣
∣
∣
∣

2

1
2 ,a,Σ

(1)
.Cε

∣
∣
∣
∣

∂v̄II

∂ν

∣
∣
∣
∣

2

0,Σ
(1)

+ε2

∣
∣
∣
∣

∂v̄II

∂ν

∣
∣
∣
∣
1,a,Σ

(1)

.Cε‖v̄II‖2
2,a,Q +O(ε2ε−1

0 )

∣
∣
∣
∣

∂v̄II

t

∂ν

∣
∣
∣
∣

2

− 1
2 ,a,Σ

(1)
.

(82)

Note that Cε is independent of γ (which is the coefficient of the energy norms on the

LHS of (57).
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• Since the supports of commutators KI
3 and KII

3 coincide, the estimate on the interior

product
R

Rt
(KII

3 z̄, v̄II) is analogous to that in the previous case (for χχχI), and simply

takes advantage of the elliptic regularity estimate (67) for v̄el.

• Finally, it remains to estimate the product ℜ〈C ∗v̄II,M1v̄II

t 〉Σ
(1) which is critical with

respect to the level of the hidden regularity, and cannot be interpolated by a mere

adjustment of weights. Operators C ∗ ∈ OPS2
a(Σ

(1)
) and M1 ∈ OPS1

a(Σ
(1)
) have real

positive principal symbols, hence modulo lower order terms are self-adjoint, and

〈C ∗v̄II ,M1v̄II

t 〉Σ
(1) =

〈

(C ∗M1)
1
2 v̄II, (C ∗M1)

1
2 v̄II

t

〉

Σ
(1)

+

〈

(C ∗)
1
2 [[M

1
2

1 , (C ∗)
1
2 ]]v̄II +[[M

1
2

1 , (C ∗)
1
2 ]](C ∗)

1
2 v̄II , M

1
2

1 v̄II

t

〉

Σ
(1)

.

+ l.o.t.

(83)

The higher order term cancels due to the decay in time:

Z

Rt

〈
(C ∗M1)

1
2 v̄II , (C ∗M1)

1
2 v̄II

t

〉
=

0
︷ ︸︸ ︷
Z

Rt

1

2
∂t

∣
∣
∣(C ∗M1)

1/2v̄II

∣
∣
∣
0,Γ1

+

〈

(C ∗M1)
1
2 v̄II ,

[[
(C ∗M1)

1
2 , ∂t

]]
v̄II

〉

Σ
(1)

.

As for the commutator, since
[[
(C ∗M1)

1
2 , ∂t

]]
∈OPS

5/2
a (Σ) and (C∗M1)

1/2 ∈OPS
3/2
a (Σ),

it only remains to assess

O(ε−1)|v̄II| 3
2
,a,Σ

(1) +ε|v̄II | 5
2
,a,Σ

(1)

which was already done in (78) and (80).

The other two products on the RHS of (83) are handled analogously: apply

[[M
1
2

1 , (C ∗)
1
2 ]] ∈ OPS

1/2
a (Σ) to derive

∣
∣
∣
∣
∣
(C ∗)

1
2

[[

M
1
2

1 , (C ∗)
1
2

]]

v̄II+

[[

M
1
2

1 , (C ∗)
1
2

]]

(C ∗)
1
2 v̄II

∣
∣
∣
∣
∣
0,Σ

×
∣
∣
∣
∣
M

1
2

1 v̄II

t

∣
∣
∣
∣
0,Σ

. O(ε)|v̄II| 3
2 ,a,Σ

(1) +ε|v̄II

t | 1
2 ,a,Σ

(1)

Summarizing, we conclude
∣
∣
∣
∣
ℜ

Z

Rt

〈C ∗v̄II ,M1v̄II

t 〉
∣
∣
∣
∣
≤ O(ε+εε−1

0 )|v̄II

t |21
2 ,a,Σ

(1) +Cε‖v̄II‖2
2,a,Q (84)

Combining the estimates (78) -(84), and interpolating the lower order norms yields

N
II
γ,ε .O(εε−1

0 )|v̄II

t |21
2 ,a,Σ

(1) +O(ε2ε−1
0 )

∣
∣
∣
∣

∂v̄II

t

∂ν

∣
∣
∣
∣
− 1

2
,a,Σ

(1)

+Cε‖z̄‖2
2,a,Q +Cγ‖z̄‖2

0,Q + |h̄|2
1
2 ,a,Σ

(1) + |ḡ|2
− 1

2 ,a,Σ
(1)

(85)
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Now set ε = ε2
0. Then there is a sufficiently small value for ε0 (one of the requirements is to

satisfy the elliptic condition (60)) and a large enough value for γ so that the energy terms on

the RHS of (76) and (85) can be absorbed into the terms on the left of (57). Combine these

three inequalities and use equivalence of a(·, ·) with the H2(Ω) norm to conclude (after

renormalization)

|z̄t|21
2 ,a,Σ

(1) + |z̄|2
5
2 ,a,Σ

(1) +

∣
∣
∣
∣

∂z̄t

∂ν

∣
∣
∣
∣

2

− 1
2 ,a,Σ

(1)
+

∣
∣
∣
∣

∂z̄

∂ν

∣
∣
∣
∣

2

3
2 ,a,Σ

(1)

≤Cγ

(

|h̄|2
1
2 ,a,Σ

(1) + |ḡ|2
− 1

2 ,a,Σ
(1) +‖z̄‖2

0,Q

)

.

(86)

Here all other lower order terms have interpolated and absorbed into the finite energy along

with c(γ)‖z̄‖2
0,Q.

5.2.4 Step 4. Absorbing the lower order terms

Since h and g are arbitrary, and the measured regularity in time does not exceed H1/4 (=

H
1/2
a ) we can truncate h and g in time and claim that (86) holds on every interval [t,T ]. On a

finite interval simply bound the exponential weight eγt above and below by time dependent

constants. Then (86) is equivalent to

|zt|21
2
,a,Σ

(1)

t,T

+ |z|2
5
2
,a,Σ

(1)

t,T

+

∣
∣
∣
∣

∂zt

∂ν

∣
∣
∣
∣

2

− 1
2
,a,Σ

(1)

t,T

+

∣
∣
∣
∣

∂z

∂ν

∣
∣
∣
∣

2

3
2
,a,Σ

(1)

t,T

≤Ct,T

(

|h|2
1
2
,a,Σ

(1)

t,T

+ |g|2
− 1

2
,a,Σ

(1)

t,T

+Ct,T ‖z‖2
0,Q

t,T

)

which is the first statement (36) of the Lemma 5.1, but perturbed by ‖z‖2
0,Q

t,T
. Next, from

the boundary conditions (21), (22) (or their dual versions (21∗), (22∗)) and the previous

inequality, conclude that the second statement (37) of the lemma holds as well modulo the

L2 norm of the solution

|B1z| 1
2
,a,Σ

(1)

t,T

+ |B2z|− 1
2
,a,Σ

(1)

t,T

≤ btt,T +Ct,T ‖z‖2
0,Q

t,T
.

Next, integrate the energy identity (47) on [0,T ] and let v̄ = z̄ (i.e. χχχ ≡ 1 cutoff and conse-

quently K3 ≡ 0). Then in combination with the last two inequalities it yields

|Ez(T )−Ez(t)|= Ez(t)≤ btt,T +Ct,T ‖z‖2
0,Q

t,T
. (87)

Thus we have all three statements of Lemma 5.1. It remains to eliminate the norm ‖z‖2
0,Q

t,T
=

R T
t ‖z‖2

0,Ω. Use
Z T

t
‖z‖2

0,Ω .

Z T

t
Ez(s)ds,

which holds due to the fact that the segment Γ0 of the boundary is non-empty, whence the

form a(·, ·) controls the L2 norm as well. Consequently, Gronwall’s inequality applied to
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(87) permits to conclude that the energy is pointwise dominated (for a readjusted constant

Ct,T ) by the boundary data alone

Ez(t)≤Ct,T

(

|h|2
1
2
,a,Σ

(1)

t,T

+ |g|2
− 1

2
,a,Σ

(1)

t,T

)

Thus
Z T

t
‖z‖2

0,Ω . (T − t)Ct,T

(

|h|2
1
2
,a,Σ

(1)

t,T

+ |g|2
− 1

2
,a,Σ

(1)

t,T

)

,

which precisely eliminates the lower order terms in the preceding estimates. Relabeling the

leading time-dependent constant by Ct,T we recover the statements of Lemma 5.1.

�

6 PROOFS III: Energy estimates for the original problem

Finally by duality we will transfer the estimates established in Lemma 5.1 for the adjoint

problem to the original system (1), (2), with (10, 11) or (10∗, 11∗) . From equations (1)

and (19) we have

Z T

t
( f , zt) =

Z T

t
[(�w, zt)+(wt ,�z)]

=
Z T

t
∂t(wt , zt)+

Z T

t
(∆2w, zt)+(∆2z,wt)

=

Z T

t
∂t [(wt , zt)+a(w, z)]

+

Z T

t

[

〈B2w, zt〉−
〈

B1z,
∂wt

∂ν

〉

+ 〈B2z,wt〉−
〈

B1w,
∂zt

∂ν

〉]

= . . .

(88)

Apply boundary conditions (10) - (11) and corresponding conditions of the backward ad-

joint z problem (21)-(22); alternatively use the dual versions (10∗) - (11∗) and (21∗)-(22∗).

In either case obtain the same expression which, after cancelation, continues the chain of

identities (88) as

. . . =− (wt(t), zt(t))−a(w(t), z(t))

+

Z T

t

[

〈C w, zt〉−
〈

C ∗z,
∂wt

∂ν

〉

−
〈

h,
∂wt

∂ν

〉

+ 〈g,wt〉
]

.
(89)

Since Γ1 is closed, the operator ∂2
τ is self-adjoint, so

Z T

t
〈C w, zt〉−

〈

C ∗z,
∂wt

∂ν

〉

=

Z T

t
c

µδ

〈
∂2

∂τ2

∂w

∂ν
, zt

〉

+c
µδ

〈
∂2z

∂τ2
,

∂wt

∂ν

〉

=
Z T

t
∂tcµδ

〈
∂2z

∂τ2
,

∂w

∂ν

〉

= −c
µδ

〈
∂2z

∂τ2
(t),

∂w

∂ν
(t)

〉

.
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Substituting into the preceding derivation obtain

Z T

t
( f , zt) =− (wt (t), zt(t))−a(w(t), z(t))+

Z T

t

[

〈g,wt〉−
〈

h,
∂wt

∂ν

〉]

−c
µδ

〈
∂2z

∂τ2
(t),

∂w

∂ν
(t)

〉

.

(90)

Thus
Z T

t

[

〈g,wt〉−
〈

h,
∂wt

∂ν

〉]

=(wt(t), zt(t))+a(w(t), z(t))+cµδ

〈
∂2z

∂τ2
(t),

∂w

∂ν
(t)

〉

+
Z T

t
( f , zt).

Furthermore, for −∂2
τ = R we have (for any t)

∣
∣
∣
∣

〈
∂2z

∂τ2
,

∂w

∂ν

〉∣
∣
∣
∣
=

∣
∣
∣
∣

〈

R3/4z, R1/4 ∂w

∂ν

〉∣
∣
∣
∣
≤C|z| 3

2 ,Γ1
·
∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

1
2 ,Γ1

≤C′‖z‖0,Ω‖∆w‖0,Ω.

Setting t = 0, conclude
∣
∣
∣
∣

Z T

0
〈g,wt〉−

〈

h,
∂wt

∂ν

〉∣
∣
∣
∣≤‖w1‖

0,Ω
‖zt(0)‖

0,Ω
+C‖∆w0‖

0,Ω
‖∆z(0)‖

0,Ω
+

∣
∣
∣
∣

Z T

0
( f , zt)

∣
∣
∣
∣ .

Now apply Lemma 5.1 with t = 0 to estimate the RHS
∣
∣
∣
∣

Z T

0
〈g,wt〉−

〈

h,
∂wt

∂ν

〉∣
∣
∣
∣
≤CT

(

|g|− 1
2
,aΣ

(1)

T

+ |h| 1
2
,a,Σ

(1)

T

)

×

×
(

‖w1‖
0,Ω

+‖∆w0‖
0,Ω

+‖ f‖0,Q
T

)

.

(91)

Since g and h are arbitrary we infer

|wt |21
2 ,a,Σ

(1)

T

+

∣
∣
∣
∣

∂wt

∂ν

∣
∣
∣
∣

2

− 1
2 ,a,Σ

(1)

T

≤CT

(

Ew(0)+‖ f‖2
0,Q

T

)

(92)

Repeat the duality pairing, as in (88), but now with Rz , where R is locally given by the

symbol r(x,y,η) i.e. a strongly elliptic self-adjoint tangential operator of order 2, which

could be smoothly extended to the interior of domain Ω:

Z T

t
( f ,Rz) =

Z T

t
[(�w,Rz)− (Rw,�z)]

=[(wt,Rz)− (Rw, zt)]

∣
∣
∣
∣

T

t

+

Z T

t

[

〈B2w,Rz〉+
〈

B1z,
∂

∂ν
Rw

〉

−〈B2z,Rw〉−
〈

B1w,
∂

∂ν
Rz

〉]

=[(wt,Rz)− (Rw, zt)]
∣
∣T

t

+
Z T

t

[〈

h,
∂

∂ν
Rw

〉

−〈g,Rw〉
]

+
Z T

t
k∂t

〈
∂z

∂ν
,Rw

〉

.



“Hidden” Trace Regularity of a Dynamic Plate with Non-Monotone Feedbacks 141

Thus, after setting t = 0

Z T

0

[

〈g,Rw〉−
〈

h,
∂Rw

∂ν

〉]

=(Rw0, zt(0))− (w1,Rz(0))−k

〈
∂z(0)

∂ν
, Rw0

〉

−
Z T

0
( f ,Rz).

As before, via Lemma 5.1, and using

〈
∂z(0)

∂ν
,Rw0

〉

≤
∣
∣
∣
∣

∂z(0)

∂ν

∣
∣
∣
∣

1
2 ,Γ1

|Rw0|− 1
2 ,Γ1

≤ ‖z(0)‖2,Ω‖w0‖2,Ω.

Conclude:
∣
∣
∣
∣

Z T

0
〈g,Rw〉−

〈

h,
∂Rw

∂ν

〉∣
∣
∣
∣
≤ CT

(

|g|− 1
2
,aΣ

(1)

T

+ |h| 1
2
,a,Σ

(1)

T

)

×

×
(

‖w1‖
0,Ω

+‖∆w0‖
0,Ω

+‖ f‖0,Q
T

)

,

obtaining by duality

|w|2
5
2
,a,Σ

(1)

T

+

∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

3
2
,a,Σ

(1)

T

≤ CT

(

Ew(0)+‖ f‖2
0,Q

T

)

(93)

Finally, substitute (92) and (93) into the energy identity (16) for the original w-problem

E(T ) ≤CT

(

E(0)+

Z T

0
‖ f‖2

0,Ω
+

Z T

0
E(t)dt

)

Then Gronwall’s lemma helps establish an a priori bound

E(t) ≤Ct

(

E(0)+

Z t

0
‖ f‖2

0,Ω

)

where Ct is continuous increasing in t. Since the system is linear, such an priori estimate

implies that (1), (2), with (10, 11) or (10∗, 11∗) generates a strongly continuous semigroup

on the energy space H2
Γ(Ω)× L2(Ω) (e.g. see the proof of Theorem 3 in [Mi]). Here

H2
Γ denotes the H2 closure of smooth functions satisfying the homogeneous free boundary

conditions on Γ1, and clamped condition on Γ1.

7 APPENDIX

Theorem 7.1 (The L-condition). For any sufficiently small δ > 0 the elliptic system







∆2v = 0 in Ω

(B1v+c
µδ

∂2
τ)v = g on Γ1

B2v = h on Γ1

v = ∂v
∂ν = 0 on Γ0

with c
µδ

= 1−µ+δ, satisfies the Shapiro-Lopatinskii condition (the L-condition).
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Proof. It suffices to prove the result for the half space problem, with Ω = ΩΩΩ := R+
x ×Ry,

ΓΓΓ := Ry ([Ho, Wl]). Following [Wl, Def. 9.28] we consider the system

(

−
(

1

i
∂x

)2

−|η|2
)2

v = 0 in ΩΩΩ (η 6= 0) (a-94)

[
∂2

x − (1+δ)|η|2
]

v = 0 in ΓΓΓ (x = 0) (a-95)
[
−∂3

x +(2−µ)|η|2∂x

]
v = 0 in ΓΓΓ (a-96)

For a fixed η the general solution to (a-94) has the form

v(x) = (a0 +a1x)e|η|x +(b0 +b1x)e−|η|x

Let M
+ denote all solutions v(x) of (a-94) which vanish as x → ∞. Then

M
+(∆2) =

{

v(x) = e−|η|x (c1 +c2x) , c1,c2 ∈ C

}

To verify the statement of the theorem it remains to check that the homogeneous boundary

conditions (a-95), (a-96) uniquely determine the constants c1, c2. For v(x) ∈ M
+ we have

vx(x) = e−|η|x (−|η|c1 −|η|c2x+c2)

vxx(x) = e−|η|x ( |η|2c1 + |η|2c2x−2|η|c2

)

vxxx(x) = e−|η|x (−|η|3c1 −|η|3c2x+3|η|2c2

)

v(0) = c1

vx(0) = −|η| c1 +c2

vxx(0) = |η|2c1 −2|η|c2

vxxx(0) = −|η|3c1 +3|η|2c2

Substitute these values into (a-95) and (a-96):







|η|2c1 −2|η|c2 − (1+δ)|η|2c1 = 0

|η|3c1 −3|η|2c2 +(2−µ)|η|2(−|η|c1 +c2) = 0

Simplify






δ|η|c1 +2c2 = 0

(1−µ)|η|c1 +(1+µ)c2 = 0

Computing the determinant implies that c1 = 0, c2 = 0 is a unique solution to the system

provided δ 6= 2(1−µ)
1+µ

. To account for coordinate transformations when going back to the

original system on Ω, it may be necessary to make δ sufficiently small (or, instead, suffi-

ciently large) in order to guarantee that it stays away from the “singular” value regardless

of the changes in the curvature of ∂Ω.
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