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Abstract

We consider the initial value problem for discrete nonlinear wave equations. Under
natural assumptions, we prove results on global well-posedness in a wide class of
weighted l2 spaces. Admissible spaces include spaces power and exponential decaying
sequences.
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1 Introduction

In this paper we consider discrete nonlinear wave equations of the form

q̈n = anqn+1 +an−1qn−1 +bnqn− fn(qn) , n ∈ Z , (1.1)
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where the coefficients an and bn are sequences of real numbers, and the nonlinearity fn

is a sequence of functions fn : R → R such that fn(0) = 0. Here and in what follows ˙
and ¨ stand for the first and second time derivatives respectively. The unknown qn(t) is a
sequence of real functions of real variable t. We study the initial value problem for equation
(1.1) with initial conditions

qn(0) = q(0)
n , q̇n(0) = q(1)

n , n ∈ Z , (1.2)

where q(0)
n and q(1)

n are given real sequences.
In fact, (1.1) is an infinite sequence of ordinary differential equations. But a better point

of view is to consider equation (1.1) as an operator differential equation

q̈ = Aq−B(q) (1.3)

in certain Hilbert, or even Banach, space E of sequences. Here A is the linear operator
defined by

(Aq)n = anqn+1 +an−1qn−1 +bnqn , n ∈ Z , (1.4)

and B is the nonlinear operator defined by

(B(q))n = fn(qn) , n ∈ Z . (1.5)

Within this framework, initial conditions (1.2) become

q(0) = q(0) , q̇(0) = q(1) , (1.6)

where q(0) and q(1) are given elements of the space E.
The simplest choice of such space is E = l2, the space of two-sided square summable

sequences. In this space equation (1.1) is Hamiltonian. In [4] (see also [9, Section 1.4])
the Hamiltonian structure, together with the classical existence and uniqueness theorem for
operator differential equations and a cut-off argument, is used to obtain rather general global
well-posedness of the initial value problem in l2. We review those results in Section 2. The
aim of the present paper is to extend the l2-well-posedness results to weighted l2-spaces and,
hence, provide a refined information about problem (1.1), (1.2). This is done in Section 4.
Similar idea has been used in [7] to study the discrete nonlinear Schrödinger equation. In
Section 3 we discuss weighted l2-spaces l2

Θ
and operators in such spaces. Section 5 is

devoted to simplest examples appearing in applications.

2 Hamiltonian Structure and l2-theory

Throughout the paper we impose the following assumptions.

(i) The coefficients an and bn are bounded real sequences .

(ii) The nonlinearity fn is a real valued function on R such that fn(0) = 0, and fn is locally
Lipschitz continuous uniformly with respect to n ∈ Z, i.e., for any R > 0 there exists
a constant C(R) > 0 such that

| fn(r1)− fn(r2)| ≤C(R)|r1− r2| , |r1|, |r2| ≤ R , n ∈ Z .
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Sometimes we use the following stronger than (ii) assumption

(ii′) Assumption (ii) is satisfied with the constant C independent of R, i.e., there exists a
constant C > 0 such that

| fn(r1)− fn(r2)| ≤C|r1− r2| , n ∈ Z .

We denote by l2 the Hilbert space of two-sided square summable sequences. The norm
and inner product in this space are denoted by ‖ ·‖ and (·, ·), respectively. Occasionally, we
shall use more general spaces lp, 1≤ p≤∞. The space lp, 1≤ p < ∞, consists of two-sided
real sequences u = (un) such that the norm

‖u‖lp = (∑
n∈Z

|un|p)1/p

is finite. The space l∞ consists of all bounded sequences. The norm in this space is given
by

‖u‖l∞ = sup
n∈Z

|un| .

Assumption (i) guaranties that the operator A is a bounded self-adjoint operator in l2.
With this choice of the configuration space, the phase space of equation (1.1) is l2× l2, and
the equation is a Hamiltonian system. The Hamiltonian is given by

H(q, p) =
1
2
[‖p‖2− (Aq,q)]+

∞

∑
n=−∞

Fn(qn) ,

where
Fn(r) =

Z r

0
fn(s)ds

is the primitive function of fn. The Hamiltonian H is a C1 functional on the phase space
and, hence a conserved quantity, i.e., for any solution of equation (1.1) or, equivalently,
(1.3)

H(q, q̇) = const .

Now we reproduce some results from [4] (see also [9, Section 1.4]). The first one is a
simple straightforward consequence of classical theorems on existence and uniqueness of
global solutions for operator differential equations (see, e.g., [6, Chaptrer 6, Theorem 1.2]
and [10, Chapter 6, Theorems 1.2 and 1.4]). This result does not use the Hamiltonian
structure of equation (1.1).

Theorem 2.1. Under assumptions (i) and (ii′), for every q(0) ∈ l2 and q(1) ∈ l2 there exists
a unique solution q ∈C2(R, l2) of problem (1.1), (1.2).

The proof of the next theorem makes use of Theorem 2.1, the Hamiltonian structure of
the equation and a cut-off argument.

Theorem 2.2. Assume (i) and (ii). Suppose that the operator A is non-positive, i.e.,
(Aq,q) ≤ 0 for all q ∈ l2 and Fn(r) ≥ 0 for all r ∈ R. Then problem (1.1), (1.2) has a
unique global solution q ∈C2(R, l2) for all q(0) ∈ l2 and q(1) ∈ l2.
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A completely different type of nonlinearities is considered in the following

Theorem 2.3. Assume (i), and let fn(r) = be a positively homogeneous function of degree
p > 1 such that | fn(±1)| ≤C for some positive constant C. Suppose that the operator A is
negative definite, i.e.,

(Aq,q)≤−α‖q‖2 , (2.1)

where α > 0. Then there exists δ > 0 such that for every q(0) ∈ l2 and q(1) ∈ l2, with
‖q(0)‖ < δ and ‖q(1)‖ < δ, problem (1.1), (1.2) has a unique solution q ∈ C2(R, l2). The
solution q is a bounded function with values in l2.

Let us point out that in [4] Theorem 2.3 is proven in the case when fn(r) = dnr2. The
general case requires only minor changes in the proof.

Now we supplement Theorem 2.2 with the following result on the boundedness of the
solution.

Theorem 2.4. Assume that (i) and (ii) are satisfied, and Fn(r)≥ 0 for all n ∈ Z and r ∈R.
(a) If the operator A is non-positive and limr→±∞ Fn(r) = +∞ uniformly with respect

to n ∈ Z, then the unique solution of problem (1.1), (1.2), with q(0) ∈ l2 and q(1) ∈ l2, is a
bounded function on R with values in l∞. In addition, if, for some s ≥ 2, there exist R > 0
and c > 0 such that

Fn(r)≥ c|r|s , ∀r ∈ [−R,R] ,∀n ∈ Z , (2.2)

then the solution is a bounded function on R with values in ls.
(b) If the operator A is negative definite, then the unique solution of problem (1.1), (1.2),

with q(0) ∈ l2 and q(1) ∈ l2, is a bounded function on R with values in l2.

Proof . (a) We have that

H(q(t), q̇(t)) =
1
2
[‖q̇(t)‖2− (Aq(t),q(t))]+

∞

∑
n=−∞

Fn(qn(t)) = H(q(0),q(1)) (2.3)

because the Hamiltonian H is a conserved quantity. Since A is non-positive while Fn is
non-negative, this implies that

Fn(qn(t))≤ H(q(0),q(1)) .

Therefore, there exists a constant C > 0 such that |qn(t)| ≤C for all t ∈R and n∈Z because
Fn has infinite limit at infinity uniformly with respect to n ∈ Z.

Let us prove the second part of statement (a). The assumption on the limit of Fn at
infinity implies that if inequality (2.2) holds for some R > 0, then it holds for every R > 0,
with the constant c > 0 depending on R. By the first part of the statement, there exists R > 0
such that ‖q(t)‖l∞ ≤ R for all t ∈ R. Hence, by (2.3) and (2.2),

c
∞

∑
n=−∞

|qn(t)|s ≤ H(q(0),q(1))

for all t ∈ R which implies the required.
(b) In this case equation (2.3) and inequality (2.1) imply that

α‖q(t)‖2 ≤ H(q(0),q(1))

for all t ∈ R and the result follows.
�
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3 Weighted Spaces

Let Θ = (θn) be a sequence of positive numbers (weight). The space l2
Θ

consists of all
two-sided sequences of real numbers such that the norm

‖u‖Θ = (∑
n∈Z

u2
nθn)1/2

is finite. This is a Hilbert space.
We always suppose that the weight Θ satisfies the following regularity assumption:

(iii) the sequence Θ is bounded below by a positive constant and there exists a constant
c0 > 0 such that

c−1
0 ≤ θn+1

θn
≤ c0

for all n ∈ Z.

A weight satisfying assumption (iii) is called regular.
Obviously, under this assumption l2

Θ
is densely and continuously embedded into l2 and

‖u‖ ≤C‖u‖Θ , u ∈ l2
Θ ,

with some C > 0. Therefore, all these spaces are densely and continuously embedded into
the the space l∞ of bounded sequences, with sup-norm. If θn ≡ 1, then l2

Θ
= l2.

From the point of view of functional analysis assumption (iii) is quite natural. It means
that the space l2

Θ
is translation invariant. More precisely, let T+ and T− be the operators of

right and left shifts, respectively, defined by

(T+w)n = wn−1 and (T−w)n = wn+1 .

Lemma 3.1. Assumption (iii) holds if and only if both T+ and T− are linear bounded
operators in l2

Θ
.

Proof . Indeed, we have that

‖T+w‖2
Θ = ∑

n∈Z
w2

n−1θn = ∑
n∈Z

w2
nθn

θn+1

θn
.

Hence, T+ is bounded in l2
Θ

if and only if θn+1/θn is bounded. Similarly, T− is bounded in
l2
Θ

if and only if θn−1/θn is bounded.
�

Note that T+ and T− are mutually inverse operators. But let us point out that the trans-
lation invariance of the space l2

Θ
does not mean that the norm ‖ · ‖l2

Θ

is translation invariant.
The most important examples of regular weights are

(a) power weight
θn = (1+ |n|)b , b > 0; (3.1)

(b) exponential weight
θn = exp(α|n|) , α > 0 . (3.2)

More generally, the weight θn = exp(α|n|β), α > 0, satisfies assumption (iii) if and only if
0 < β ≤ 1.
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4 Well-posedness in Weighted Spaces

We start with two simple lemmas.

Lemma 4.1. Assume (i). Let Θ be a regular weight. Then the operator A defined by
equation (1.4) acts in l2

Θ
as a bounded linear operator.

Proof . The operator A can be represented in the form

A = a◦T−+T+ ◦a+b ,

where a and b are the operators of multiplication by the sequences (an) and (bn) respec-
tively, and ◦ stands for the composition of operators. The operators T−, T+, a and b are
bounded operators in l2

Θ
by Lemma 3.1 and assumption (i) respectively. Hence, the result

follows.
�

Lemma 4.2. Under assumption (ii), the nonlinear operator B defined by equation (1.5) is
a locally Lipschitz continuous operator in the space l2

Θ
, i.e., for any R > 0 there exists a

constant CR > 0 such that

‖B(v)−B(w)‖l2
Θ

≤CR‖v−w‖l2
Θ

(4.1)

for all v ∈ l2
Θ

and w ∈ l2
Θ

such that ‖v‖l2
Θ

≤ R and ‖w‖l2
Θ

≤ R. If assumption (ii′) is satisfied,
then the operator B is Lipschitz continuous, i.e., the constant in inequality (4.1) can be
chosen independent of R.

Proof . Straightforward.
�

Our key observation is the following

Theorem 4.3. Assume (i), (ii) and (iii). Suppose that q ∈C2((−T,T ); l2) is a solution of
problem (1.1), (1.2) with q(0) ∈ l2

Θ
and q(1) ∈ l2

Θ
. Then q ∈C2((−T,T ); l2

Θ
).

Proof . Let q ∈C2((−T,T ), l2) be a solution of problem 1.1), (1.2) with q(0) ∈ l2
Θ

and
q(1) ∈ l2

Θ
. Pick any τ∈ (0,T ) and set Rτ = supt∈[−τ,τ] ‖u(t)‖. Let f̃n(r) = fn(r) if |r| ≤ Rτ +1

and f̃n(r) = fn(Rτ + 1) if |r| > Rτ + 1. Then on [−τ,τ] the function q(t) obviously solves
the equation

q̈n = anqn+1 +an−1qn−1 +bnqn− f̃n(qn) , n ∈ Z , (4.2)

with the same initial data.
Obviously, the functions f̃n satisfy assumption (ii′), and, by Lemma 4.2, the corre-

sponding operator B̃ is globally Lipschitz continuous in the space l2
Θ

. By Lemma 4.1, the
operator A is a bounded linear operator in l2

Θ
. By the classical result [6, Chaptrer 6, The-

orem 1.2] and [10, Chapter 6, Theorems 1.2 and 1.4], problem (4.2), (1.2) has a unique
solution q̃ ∈C2(R, l2

Θ
)⊂C2(R, l2). By uniqueness for the initial value problem in the space

l2, we have that q̃ = q on [−τ,τ]. Since τ ∈ (0,T ) is an arbitrary point, we obtain that
q ∈C2((−T,T ), l2

Θ
).

�
Combining Theorem 4.3 with Theorems 2.1 – 2.3, we obtain the following corollaries.
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Corollary 4.4. Under assumptions (i) and (ii′), for every q(0) ∈ l2
Θ

and q(1) ∈ l2
Θ

there exists
a unique solution q ∈C2(R, l2

Θ
) of problem (1.1), (1.2).

Corollary 4.5. Assume (i) and (ii). Suppose that the operator A is non-positive, i.e.,
(Aq,q) ≤ 0 for all q ∈ l2 and Fn(r) ≥ 0 for all r ∈ R. Then problem (1.1), (1.2) has a
unique global solution q ∈C2(R, l2

Θ
) for all q(0) ∈ l2

Θ
and q(1) ∈ l2

Θ
.

Corollary 4.6. Assume (i), and let fn(r) be a positively homogeneous function of degree
p > 1 such that | fn(±1)| ≤C for some positive constant C. Suppose that the operator A is
negative definite, i.e.,

(Aq,q)≤−α‖q‖2 , (4.3)

where α > 0. Then there exists δ > 0 such that for every q(0) ∈ l2
Θ

and q(1) ∈ l2
Θ

, with
‖q(0)‖< δ and ‖q(1)‖< δ, problem (1.1), (1.2) has a unique solution q ∈C2(R, l2

Θ
).

Let us highlight that in Corollary 4.6 the smallness of the initial data is with respect to
the l2-norm, not in the space l2

Θ
.

5 Examples

Now we present some examples that often appear in applications (see, e.g., [1, 5, 11]). In
these examples ∆ stands for the one-dimensional Laplacian defined by

(∆q)n = qn+1 +qn−1−2qn .

The first example is the well-known Frekel-Kontorova (FK) model. The equation reads

q̈n = a(∆q)n− sinqn , (5.1)

where a > 0. This is a straightforward discretization of the sin-Gordon equation

utt −auxx + sinu .

The last equation is a completely integrable system (see, e.g., [2]). At the same time its
discrete counterpart (5.1) is not completely integrable.

In the case of equation (5.1) the nonlinearity satisfies (ii′). Hence, Corollary 4.4 shows
that the initial value problem for (5.1) is globally well-posed in every space l2

Θ
with a regular

weight Θ.
Now consider the equation

q̈n = a(∆q)n−m2qn±q3
n . (5.2)

If the sign in front of the cubic nonlinearity is positive, this is the repulsive discrete nonlin-
ear Klein-Gordon (DNKG−) equation in case when m2 > 0, and repulsive discrete nonlin-
ear wave (DNW−) equation when m2 = 0. In case of negative sign, we obtain the attractive
discrete nonlinear Klein-Gordon (DNKG+) equation (m2 > 0) and the attractive discrete
nonlinear wave (DNW+) equation (m2 = 0) respectively.
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It is easy to verify that
(∆q,q) = ∑

n∈Z
(qn−qn−1)2

and, hence, the operator ∆ is nonnegative. By Corollary 4.5, in the attractive case the initial
value problem for both DNKG+ and DNW+ is globally well-posed in all spaces l2

Θ
with

regular weight Θ. This is because Fn(r) = r4/4 ≥ 0. On the other hand, in the repulsive
case Fn(r) = −r4/4 ≤ 0. In case of DNKG− the operator ∆−m2 is negative definite, and
Corollary 4.6 guaranties the existence of global solution in l2

Θ
for all initial data in l2

Θ
that

have sufficiently small l2-norm, provided the weight Θ is regular. The case of DNW−
remains open.
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