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Abstract

We establish two uniform convergence theorems for an iterative scheme which ap-
proximates fixed points of strictly contractive set-valued mappings in complete metric
spaces.
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1 Introduction and preliminaries

In the last forty-five years there has been considerable interest in the fixed point theory
of single- and set-valued contractive and nonexpansive mappings. See, for, example, de
Blasi and Myjak [BMa, BMb], Goebel and Kirk [GK], Goebel and Reich [GR], Kirk [Ki],
Nadler [N], Ricceri [R], and the references mentioned therein. More recently, set-valued
dynamical systems induced by set-valued nonexpansive mappings have been investigated
and some new iterative methods for approximating the corresponding fixed points have been
obtained (de Blasi, Myjak, Reich and Zaslavski [BMRZ], Reich and Zaslavski [RZa, RZb,
RZc)).
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It is well known that there is a strong connection between functional analysis, approxi-
mation theory and numerical analysis (see, for instance, Kantorovich [Ka], Kantorovich and
Akilov [KA], and Lax [L]). Indeed, convergence of many iterative schemes in numerical
analysis follows from the properties of certain operators acting on functional spaces. More-
over, the Banach fixed point theorem plays an important role in some of these schemes.
This connection also works in the opposite direction. For example, Banach’s theorem is
usually established by proving the convergence of iterates. Also, Nadler [N] establishes the
existence of a fixed point of a set-valued contractive mapping by using a certain iterative
scheme. A more general form of this scheme is employed in [BMRZ].

In the present paper we consider the question of approximating the fixed points of
strictly contractive set-valued mappings. More precisely, we provide sufficient conditions
for the iterative scheme of [BMRZ] to converges either to a fixed point or to the fixed point
set, uniformly for all initial points taken from any bounded set. See Theorems 5 and 6 in
Sections 2 and 3, respectively. Although our results are stated for complete metric spaces,
we emphasize that they are new even in Banach spaces.

We begin with some notation and terminology which are used throughout the paper.

Let (X,p) be a complete metric space. For x € X and a nonempty subset A of X, set

p(x,A) =inf{p(x,y): y € A}.

For each pair of nonempty closed sets A,B C X, put

H(A,B) = max{supp(x,B), sugp(y,A)}.

XEA ye

Let 7 : X — 2%\ {0} be such that T'(x) is a closed subset of X for each x € X and assume
that
H(T(2),T(3)) < cp(x,y) forall x,y € X, (1)

where ¢ € [0,1) is a constant .
We now quote Theorems 4.1-4.4 of [BMRZ]. These theorems provide information on
the asymptotic behavior of certain trajectories of a dynamical system induced by 7.

Theorem 1. Let T : X — 2%\ {0} be a strict contraction such that T (x) is a closed set for
each x € X and T satisfies (1). Assume that xo € X, {€;}7 5 C (0,00), Y72 (& < oo, and that
for each integer i > 0,

xip1 € T(xi), p(xiyxit) < p(xi, T(x:)) +&:.
Then {x;}, converges to a fixed point of T.

Theorem 2. Let T : X — 2%\ {0} be a strict contraction such that T (x) is a closed set for
all x € X and T satisfies (1). Let € > 0 be given. Then there exists & > 0 such that if x € X
and p(x,T (x)) < O, then there is X € X such that X € T (%) and p(x,x) < €.

Theorem 3. Let T : X — 2%\ {0} be a strict contraction such that T (x) is a closed set for
all x € X and T satisfies (1). Fix 0 € X. Let € > 0 and M > 0 be given. Then there exist
d € (0,€) and an integer ny > 1 with the following property:
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for each sequence {x;}7 , C X such that p(xo,0) < M and such that for each integer
n>0,
Xnt1 € T(%n) and p(Xp41,%n) < 8+ p(xn, T (X)),

we have
P(Xnt+1,%n) < € for all integers n > ny.

Theorem 4. Let T : X — 2%\ {0} be a strict contraction such that T (x) is a closed set for
all x € X and T satisfies (1). Fix © € X. Let positive numbers € and M be given. Then there
exist & > 0 and an integer ny > 1 such that if a sequence {x;}> , C X satisfies

p(x076) <M, x11 € T(xn) and P(men-s-l) < P(me(xn)) +9d

for all integers n > 0, then for each integer n > ny, there is 'y € X such that'y € T(y) and
p(xn) <e.

The following example [BMRZ] shows that Theorem 4 cannot be improved in the sense
that the fixed point y, the existence of which is guaranteed by this theorem, is not, in general,
the same for all integers n > ny.

Example 1.

Let X =[0,1], p(x,y) = |x—y|, x,y € X and T'(x) = [0, 1] for all x € [0,1]. Let & > 0.
Choose a natural number & such that 1/k < §. Put

x0=0,xi=i/k,i=0,...,k,
Xpp=1—i/k, i=0,... k,
and for all integers p > 0 and any i € {0,...,2k}, put
X2pk+i = Xi-
Then {x;}*, C X and for any integer i > 0, we have
xip1 € T(x;) and |x; —x; 1] <k~ ' <.
On the other hand, for all x € X and any integer p > 0,

max{|x—x;|: i=2kp,..., 2pk+2k}>1/2.

2 Uniform convergence to a fixed point

In this section we state and prove Theorem 5, which shows that the iterative scheme of

Theorem 1 with a summable sequence {€;}7, converges to a fixed point, uniformly for all
initial points taken from any bounded set.

Theorem 5. Let T : X — 2%\ {0} be a strict contraction such that T (x) is a closed set for
eachx € X and T satisfies (1). Fix © € X. Assume that {&;}7° , C (0,00), Y72 (& < oo, M >0
and & > 0. Then there exists a natural number ng such that each sequence {x;}>, C X
which satisfies

p(-x0>9) <M, (2)
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Xip1 € T(xi), p(xiyxitn) < p(xi, T(x:)) +&, i=0,1,..., (3)
converges in (X,p), lim;_..x; is a fixed point of T, and
p(xj,limx;) <O for all integers j > ny.
[—00
Proof. : Set
Mo =M+ (Y)Y &)+ (X " +1)(2M +e9+p(8, T(6)). (4)
n=0 n=1 n=0
Choose a natural number py > 2 such that
Z €p) Zcf < §/8, (5)
p=po+1 Jj=0
and a natural number ny > 2pg + 2 such that
C”O(Zci)(2M+80+p(G,T(G))) <9d/8 (6)
i=0
and N =
(Zs,-) Z ¢l < §/8. (7)
i=1

J=no—po

Let {x;}*, C X satisfy (2) and (3). By Theorem 1, {x;}*, converges in (X,p) and
lim;_,. x; is a fixed point of T'. In the proof of Theorem 1 (see Theorem 4.1 of [BMRZ]) it

was shown by induction that for each integer n > 1,

n—1

P, 1) < €"Plxo,x1) + ) cEni.
i=0

This implies that

oo oo

n
Z P (Xn, Xn41) < p(x0,x1) Z c"p(x0,x1) ZCrHEi)
i=1

n=0 n=1

< p(x0,x1) Zc + Z )(Zc”)
n=0 i=1 0

n=|
It follows from (9) that for each integer k > 1,

oo

p(x0,) < Y P(nsXnt1)
n=0

By (3), (2) and (1),

p(x0,x1) < p(xo, T (x0)) +€0 < p(x0,0) +p(6,T (x0)) +€o

(8)

(10)
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< p(x0,0) +p(6,7(8)) +H(T(8),T (x0)) +&o
<M+p(8,T(0))+M+egp.
By (2), (10), (11) and (4), for each integer k > 1, we have

P(0,xx) < p(0,x0) + p(x0,xk)

S}

By (12),
p(0,lim x;) < M.

l—

By (8), (11), (6), (5) and (7), for each integer k > no,

n—1
P (e, lim.x;) = lim p(xy,x,) < Hm[ Y p(xi,xisr)]
j—o0 —o0 —00 i

n—1 i—1

< lim[Y (¢'p(xo,x1) + Y cPei))]

n—o0 %

i=k p=0

n—o0 ¢

< plro.r)e" Yo+ lim X (Y e,
i=0 =k p=I

SP(Xo,xl)Cki)CiJr%,( i ey + i (icj)gp

p=1 j=k—p p=po+1 j=0

oo

<c™[Y ' (2M +e0+p(6,7(8))]
i=0

oo

+(iei)( y cf')+(f‘6cf')( Y e, <388,

J=no—po p=po+1

Theorem 5 is proved.

3 Uniform convergence to the fixed point set

(11)

In this section we state and prove Theorem 6, which shows that the iterative scheme of
Theorem 1 with a possibly nonsummable null sequence {€;}>, still converges to the fixed
point set of 7', uniformly for all initial points taken from any bounded set. We also provide
an example (see Example 2 below) which shows that Theorem 6 cannot be improved in
the sense that under its conditions the constructed sequence {x;};* , need not converge to a

fixed point of 7.
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Theorem 6. Let T : X — 2%\ {0} be a strict contraction such that T (x) is a closed set for

each x € X and T satisfies (1). Fix 0 € X.

Let F be the set of all fixed points of T, M > 0, and let the sequence {€;}7, C (0,0)
satisfy 1im; ...€; = 0. Then for each & > 0, there exists a natural number ng such that for

each sequence {x;}7>, C X which satisfies
P(XO, e) < Ma

Xi+1 € T(X,‘), p(xi+17xi) < p(xiaT(xi)) +¢&,i=0,1,...,
and each integer j > ng, we have p(x;,F) <

Proof. :
Set
€ =max{g:i=0,1,...}.

Fix 6; € X such that
0, €T(9).

Foreach x € X,
p(x, T (x)) <p(x,0)+p(8,T(x)) < p(x,0)+p(6,61) +p(6:,7(x))

<p(x,0)+p(6,01) +H(T(8),T(x)) <2p(x,8) +p(6,61).

Put
My =2M+p(8,0,)+&(1—c) .

Let > 0. By Theorem 2, there is ¥ > 0 such that
ifxeX, px,T(x)) <7Yo, thenp(x,F) <34.

Choose a positive number
Y1 <Yo(l— 0)4_].

There is a natural number 7n; such that
€; < for all integers j > ny.
Next, choose a natural number k such that
k(1—c)yl6™' > My +1.

Put
no =nj +k.

(13)
(14)

(15)

(16)

(22)

(23)

Assume that a sequence {x;}3*, C X satisfies (13) and (14). Let j > 0 be an integer. By

(14,
P, xj42) <P, T(xj11)) + €)1

< H(T (%)), T(xj41)) +&j41

(24)
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and, in view of (1) and (15),
P(xjr1,xj42) < ep(xj,xjr) +E. (25)
By (14), (17), (15), (13) and (18),
p(x0,x1) < p(x0,T (x0)) +€0 < 2p(x0,0) +p(0,01) +& < Mp. (26)
We now show by induction that for all integers j > 0,
p(xjxj+1) < Mo. (27)

By (26), inequality (27) indeed holds for j = 0.
Assume that (27) holds for an integer j > 0.
Then we have by (25), (27) and (18),

P(xjr1,Xj42) < cp(xj,xjy1) +& < cMo+E
c(2M +p(0,0))) +cE(1—c) ' +&
=c(2M +p(8,01)) +&(1—c)"! < M.

Thus (27) is true for all integers j > 0.
Let an integer j > n; satisfy

p(xj,xj+1) > Yo/2. (28)
By (24), (1), (21), (20) and, (28),
P(xjr1,Xj12) < ep(xj,xj1) €141 < op(xj,xj1) + M

<p(xj,xjp1) = (L=c)p(xj,xj41) + (1 =)0 /4
<plxj,xie1) = (I=c)v/4

Thus we have shown that the following property holds:
(P1) If an integer j > n; satisfies p(x;,xj+1) > Yo/2, then

P(jr1,Xj12) < P(xjoxj1) — (1 =)y /4.
Assume now that an integer j > n; satisfies
P(xj,%j41) < Yo/2. (29)
By (24), (1), (29), (21) and (20),
P(Xj1,%j+2) < ep(xj,Xje1) +€j41 < cYo/2+11 < cYo/2+ (1 —¢)Y0/4 < Y0/2.

This means that the following property also holds:

(P2) If an integer j > n; satisfies p(xj,xj11) < Yo/2, then p(xj41,X4+2) < Yo/2.

By (P2), (19) and (14), in order to complete the proof it is sufficient to show that
p(x;,xj+1) < Yo/2 for some integer j € [ny,ng).



Approximating Fixed Points

77

Assume the contrary. Then for each integer j € [n,ng],
P(xj,Xjt1) > Yo/2
and, in view of (P1),
P(xjsxjr1) = P(xj+1,X42) > (1 —c)Y0/4.

When combined with (27), this inequality implies that

My > P(Xm 7xﬂ1+1) - p(xﬂovxﬂoJrl)
1o
=Y p(xj,xj1) = p(xjsn,xj42)] = (1—c)yod ' (k+1).

J=ni

This contradicts (22). The contradiction we have reached proves Theorem 6.

Example 2.
LetX =[0,1], p(x,y) = |x—y

,x,y € X and T(x) = [0, 1] for all x € [0, 1]. Put

x0 =0, x; :271,)62 =1, x3 :271, x4 = 0.

Let n be a natural number and assume we have already defined x; € X,i=0,... ,Z’}:l 27+1,

and that Xy o1 = 0. Set
’ n
Sp=Y 2"
i=1

Fori=1,...,2""! put
x4 =2"""1i

and
—n—1-
x5n+2n+1+l~:1—2 n l.

Using induction, we have thus constructed a sequence {x j}‘}"zo such that
fim [lejr =207 =Pl T(x))] = 0

and any z € X is one of its limit points.
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