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Abstract

The notion of outgoing and incoming spaces of Lax-Phillips [17] is generalized to
asymptoticallyoutgoing and incoming spaces. With this notion of asymptotically out-
going and incoming spaces, it is shown that the existence and asymptotic completeness
of wave operators in quantum scattering theory is obtained by a slightly modified proof
of Theorem 1.2 in [17].
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1 Introduction

Scattering theory for hyperbolic equations like acoustic wave equations has been developed
by P. D. Lax and R. S. Phillips since around 1960’s at almost the same age as the devel-
opment of quantum scattering theory for Schrödinger equations. With some initial works
of considering the existence and construction of the solutions for those equations in Lax
[13], Lax-Phillips [14], e.g., they developed an original abstract scattering theory and its
applications in [15], [16], [17], [18], [19],. . . .

When the author was a graduate student, his supervisor recommended him to read their
works, in addition to studying the literature of quantum scattering theory. He said that the
time dependent method which they developed for hyperbolic equations might be able to be
applied to the scattering theory for Schrödinger equations.

When the author first visited the US in 1980’s to attend a conference, he had an oppor-
tunity to meet Professor Lax at a party during the conference. He asked Professor Lax if his
method is applicable to quantum scattering theory. He answered “No.” He felt sorry to have
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disturbed him with such an elementary question, so he apologized “I am sorry” with no
knowledge of English speaking culture. In the author’s country, it was customary to say “I
am sorry” often in daily life. However when he said the words to Professor Lax, it seemed
that the situation might not have been appropriate in their custom. A friend explained that
it is daily custom to say so in every situation in his country. Professor Lax seemed to have
kindly understood it.

The author heard from the Editor-in-Chief Professor Toka Diagana of Communications
in Mathematical Analysis that the journal will publish a special volume in honor of Profes-
sor Lax, and he asked the author if he would write a paper at this opportunity. He reread
some of their works and noticed that it is possible to extend their method to accommodate
quantum scattering theory with a slight modification. It has passed a long time since he
questioned him. He hopes that this paper would be a compensation for his ignorance about
English custom.

2 Asymptotically Outgoing and Incoming Spaces

We consider a Schrödinger operator of the form

H = H0 +V(x) (2.1)

defined inH = L2(Rn) (n≥ 1). HereH0 =−1
2∆, where

∆ =
n

∑
k=1

∂2

∂x2
k

is Laplacian with domainD(H0) = D(∆) = H2(Rn), the Sobolev space of order two. The
potentialV(x) satisfies the following assumption. We use the notation:∂x = (∂/∂x1, · · · ,
∂/∂xn), ∂α

x = (∂/∂x1)
α1 · · ·(∂/∂xn)

αn for a multi-indexα = (α1, · · · ,αn) with α j ≥ 0 being
an integer,|α|= α1 + · · ·+αn, and〈y〉= (1+ |y|2)1/2 for y∈ Rd (d≥ 1).

Assumption V(x) is a real-valuedC∞ function ofx∈ Rn such that the derivatives∂α
xV(x)

satisfy the condition:

There exists a constantε (1 > ε > 0) such that for any multi-indexα

|∂α
xV(x)| ≤Cα〈x〉−|α|−ε

with some constantCα > 0 independent ofx∈ Rn.

H is considered a self-adjoint operator withD(H) = H2(Rn). The potentials satisfying
the above assumption are called long-range potentials. It is of course possible to include
short-range potentialVS(x) with local singularities satisfying for example as in [2]

h(R) = ‖VS(H0 +1)−1χ{x||x|>R}‖ ∈ L1((0,∞)),

whereχB(x) denotes the characteristic function of a setB, and‖T‖ denote the operator
norm of an operatorT from H = L2(Rn) into itself. For the sake of simplicity we here only
consider the long-range potentialV(x) stated above.
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Let U0(t) = e−itH0 (t ∈ R) be a unitary group generated byH0.
Lax-Phillips ([17]) considers the hyperbolic equation like

∂2u
∂t2 (x, t) = ∆u(x, t)

in free spaceRn or in an exterior domainG with some boundary conditions. For the free
case, the corresponding Hilbert spaceH LP

0 consists of all initial datad = (u(x,0),ut(x,0))
having the energy norm:

‖d‖2 =
Z

Rn

[|∂xu(x,0)|2 + |∂tu(x,0)|2]dx.

For the propagatorULP
0 (t) for such an equation, thanks to the finite speed of wave propaga-

tion, there is a natural choice of two closed subspacesD+ andD− of the Hilbert spaceH LP
0

called outgoing and incoming subspaces1 with the following properties ([17]):

ULP
0 (t)D± ⊂ D± for ± t ≥ 0, (2.2)

\

t∈R
ULP

0 (t)D± = {0}, (2.3)

[

t∈R
ULP

0 (t)D± = H . (2.4)

However in the case of our Hamiltonian in (2.1), the propagation speed of the wave function
by the corresponding unitary propagatorU0(t) is infinite. Therefore we cannot have such
subspacesD± which exactly satisfy these properties. Nevertheless we can define subspaces
D± which satisfy the properties (2.2)-(2.4) in an approximate sense as follows.

We fix constantsa,b with 0 < a < b < ∞ arbitrarily and define a subspaceH (a,b) of
H by

H (a,b) = E0([a,b])H , (2.5)

whereE0(B) is the spectral measure of the HamiltonianH0 for Borel setsB⊂ R.
Let −1 < θ1 < θ2 < 1 and letχθ1,θ2± (τ) ∈C∞(R) satisfy0≤ χθ1,θ2± (τ) ≤ 1, χθ1,θ2

+ (τ)+
χθ1,θ2− (τ)≡ 1 and

χθ1,θ2
+ (τ) =

{
1 (τ≥ θ2),
0 (τ≤ θ1).

Further letψ(x) ∈C∞(Rn) with 0≤ ψ(x)≤ 1 satisfy

ψ(x) =
{

0 (|x| ≤ 1
2)

1 (|x| ≥ 1)

1As we will remark in footnote 3, the exact meaning of outgoing and incoming is slightly different in the
context of [17] from what we mentioned here, whereas in [19] the present definition is adopted under the
additional condition:D− ⊥ D+.
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andφ(ξ) ∈C∞(Rn) satisfy0≤ φ(ξ) ≤ 1, φ(ξ) = 1 for a≤ |ξ|2/2≤ b and suppφ ⊂ {ξ ∈
Rn| a/2≤ |ξ|2/2≤ 2b}.

For x,ξ ∈ Rn\{0} we setωx = x/|x| andωξ = ξ/|ξ|. We then define a real-valuedC∞

function pθ1,θ2± (x,ξ) by

pθ1,θ2± (x,ξ) = χθ1,θ2± (ωx ·ωξ)ψ(x)φ(ξ). (2.6)

We note that for|x| ≥ 1 anda≤ |ξ|2/2≤ b

pθ1,θ2
+ (x,ξ)+ pθ1,θ2− (x,ξ) = 1.

We denote byS the totality of rapidly decreasing functions onRn. Then the pseudodif-
ferential operatorsPθ1,θ2± with symbol functionspθ1,θ2± (x,ξ) are defined by

Pθ1,θ2± f (x) = Pθ1,θ2± (X,Dx) f (x) = (2π)−n/2
Z

Rn
eixξ pθ1,θ2± (x,ξ) f̂ (ξ)dξ (2.7)

for f ∈ S , where f̂ (ξ) = F f (ξ) denotes the Fourier transform off ∈ S :

f̂ (ξ) = F f (ξ) = (2π)−n/2
Z

Rn
e−iyξ f (y)dy.

If we use the notion of oscillatory integral,2 this is equivalently expressed as follows.

Pθ1,θ2± f (x) = (2π)−n
ZZ

R2n
ei(x−y)ξ pθ1,θ2± (x,ξ) f (y)dydξ. (2.8)

It is well-known (Calderon-Vaillancourt theorem) that the pseudodifferential operatorsP±
with those symbols are extended to bounded linear operators fromH = L2(Rn) into itself.
We note that the adjoint operators ofPθ1,θ2± are given by

(Pθ1,θ2± )∗ f (x) = (2π)−n
ZZ

R2n
ei(x−y)ξ pθ1,θ2± (y,ξ) f (y)dydξ (2.9)

for f ∈ S . From the definition of the symbol functions we have

(Pθ1,θ2
+ +Pθ1,θ2− ) f (x) = f (x) (2.10)

for |x| ≥ 1 and f ∈H (a,b) = E0([a,b])H .
Now we give our definition of asymptotically outgoing and incoming spaces.

Definition 2.1. Asymptotically outgoing and incoming spacesDθ1,θ2
+ (a,b) andDθ1,θ2− (a,b)

for constantsa,b with 0 < a < b < ∞ are defined as follows.

Dθ1,θ2± (a,b) = (Pθ1,θ2± )∗H ∩H (a,b). (2.11)

We quote some estimate in Lemma 3.3 of [6] or Theorem 4.2 in [10] in the form given
in Theorem 5.7 of [11].

2We should remark that the notion of oscillatory integral was first introduced by Lax [13].



16 H. Kitada

Theorem 2.2. Let 0 < ρ < 1,−1 < θ−−ρ < θ− < θ+ < θ+ +ρ < 1. LetP+ = Pθ+,θ++ρ
+

andP− = Pθ−−ρ,θ−
− be as above. Then we have for anys≥ 0 andδ≥ 0

‖〈x〉δP−e−itH0P∗+〈x〉δ‖ ≤Csδ〈t〉−s (t ≥ 0), (2.12)

‖〈x〉δP+e−itH0P∗−〈x〉δ‖ ≤Csδ〈t〉−s (t ≤ 0), (2.13)

where the constantCsδ > 0 is independent oft.

From (2.10) and (2.12) follows that forf ∈ D+(a,b) = Dθ+,θ++ρ
+ (a,b)

‖U0(t) f −Pθ−−ρ,θ−
+ U0(t) f‖→ 0 as t → ∞. (2.14)

Similarly we have forf ∈ D−(a,b) = Dθ−−ρ,θ−
− (a,b)

‖U0(t) f −Pθ+,θ++ρ
− U0(t) f‖→ 0 as t →−∞. (2.15)

It is easy to see that‖(P∗+−P+)U0(t) f‖ → 0 as t → ∞. Therefore this implies that the

stateU0(t) f = E0([a,b])U0(t) f for f ∈ Dθ+,θ++ρ
+ (a,b) asymptotically equals an element

g(t) = E0([a,b])(Pθ−−ρ,θ−
+ )∗U0(t) f ∈Dθ−−ρ,θ−

+ (a,b) ast →∞, and similarly for the case of

Dθ−−ρ,θ−
− (a,b). Namely for f ∈ Dθ+,θ++ρ

+ (a,b)

‖U0(t) f −g(t)‖→ 0 (2.16)

ast→+∞ for g(t)= E0([a,b])(Pθ−−ρ,θ−
+ )∗U0(t) f ∈Dθ−−ρ,θ−

+ (a,b), and for f ∈Dθ−−ρ,θ−
− (a,b)

‖U0(t) f −g(t)‖→ 0 (2.17)

ast →−∞ for g(t) = E0([a,b])(Pθ+,θ++ρ
− )∗U0(t) f ∈ Dθ+,θ++ρ

− (a,b). In this sense the con-
dition (2.2) is satisfied ast →±∞ asymptotically for the spacesD±(a,b).

It is easy to see that the condition (2.3) holds.
To show a property analogous to (2.4), we quote Theorem 5.6 of [11].

Theorem 2.3. Let P± = Pθ1,θ2± (−1 < θ1 < θ2 < 1) be as above. Then we have for any
s≥ 0 ands≥ δ≥ 0

‖〈x〉−se−itH0P∗+〈x〉δ‖ ≤Csδ〈t〉−s+δ (t ≥ 0), (2.18)

‖〈x〉δP−e−itH0〈x〉−s‖ ≤Csδ〈t〉−s+δ (t ≥ 0), (2.19)

where the constantCsδ > 0 is independent oft.

The relations (2.18) and (2.19) together with‖(P∗±−P±)U0(t) f‖→ 0 ast →±∞ imply
that for anyf ∈H (a,b)

lim
t→±∞

P∗∓U0(t) f = 0. (2.20)

This and (2.10) yield that for anyf ∈H (a,b)

f = lim
t→±∞

U0(−t)P∗±U0(t) f . (2.21)
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This means that anyf ∈ H (a,b) is asymptotically equal toU0(−t) f (t) when t → ∞ for
an elementf (t) = E0([a,b])P∗+U0(t) f ∈ D+(a,b) = Dθ1,θ2

+ (a,b), and similarly for the case
t →−∞. Therefore (2.20) gives an asymptotic analogue to (2.4).

These justify our definition of asymptotically outgoing and incoming spaces.
For later use, we quote Theorem 5.5 from [11].

Theorem 2.4. Letq(ξ) ∈C∞(Rn) satisfy

sup
ξ∈Rn

|∂α
ξ q(ξ)|< ∞ (∀α),

q(ξ) = 0 (|ξ|< d) (∃d > 0).

Then for anys≥ 0 we have

‖〈x〉−sq(Dx)U0(t)〈x〉−s‖ ≤Cs〈t〉−s (t ∈ R), (2.22)

where the constantCs > 0 is independent oft ∈ R.

3 Asymptotic Completeness

In Lax-Phillips [17], the perturbed system is the lossy wave equation in an exterior domain
G. In section 8 of Part II in [17], they consider for simplicity a lossless medium with
dissipative boundary conditions of the form

un +αut = 0 on ∂G

for α ≥ 0, wheren denotes the outward normal toG on ∂G. The corresponding Hilbert
spaceH LP consists of all initial datad = ( f1, f2) with the energy norm inG:

‖d‖2 =
Z

G

[|∂x f1(x)|2 + | f2(x)|2
]
dx.

The propagatorTLP(t) (t ≥ 0) for this system is a contraction and satisfies certain conditions
which are similar to conditions (2.2)-(2.4).

Let Dρ
± = ULP

0 (±ρ)D± for ρ > 0. Then it is shown for someρ thatH LP containsDρ
±

as subspaces,ULP
0 (−t) and

(
TLP

)∗ (t) coincide onDρ
−, andULP

0 (t) and TLP(t) coincide
on Dρ

+. The relations (2.2) and (2.3) when combined with those facts yield the following
relations (3.1) and (3.2).

(
TLP)∗ (t)Dρ

− ⊂ Dρ
−, TLP(t)Dρ

+ ⊂ Dρ
+ (t ≥ 0), (3.1)

\

t≥0

(
TLP)∗ (t)Dρ

− = {0},
\

t≥0

TLP(t)Dρ
+ = {0}. (3.2)

Those correspond to the properties (2.2) and (2.3) forULP
0 (t). For the property (2.4), Lax-

Phillips [17] (p. 175) gives an analogous property forT(t) andT∗(t) as follows instead of
giving a form similar to (2.4). LetPρ

+ andPρ
− be orthogonal projections onto the orthogonal
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complements ofDρ
+ andDρ

−, respectively.3 It is proved in Theorem 9.5 of [17] that the
following limit relations hold forf ∈H LP.

lim
t→∞

Pρ
−

(
TLP)∗ (t) f = 0, lim

t→∞
Pρ

+TLP(t) f = 0. (3.3)

As easily seen, this is a property forTLP(t) and(TLP)∗(t) analogous to (2.4) in the same
sense that (2.20) is analogous to (2.4) forU0(t).

In the case of our HamiltonianH = H0 +V in (2.1), the corresponding propagator is a
unitary groupT(t) = e−itH .

Under these circumstances, the existence of wave operator

W1 = s-lim
t→∞

W1(t) (3.4)

and the inverse wave operator

W2 = s-lim
t→∞

W2(t) (3.5)

is shown in Theorem 1.2 of [17]. Here

W1(t) = TLP(t)JLP
0 ULP

0 (−t), W2(t) = ULP
0 (−t)JLPTLP(t),

where the operatorsULP
0 (t) andTLP(t) are considered to act on different Hilbert spaces

H LP
0 andH LP as in the above, andJLP

0 : H LP
0 −→H LP andJLP : H LP−→H LP

0 are bounded
linear operators which act as the identity on the common subspaceDρ

+ + Dρ
− of H LP

0 and
H LP.

Let us see how they prove the existence ofW2 in Theorem 1.2 of [17] as the other case
for W1 is similar. They pick an arbitrary elementf of H LP and decomposeTLP(t) f as a
sum of elements ofDρ

+ and its orthogonal component

TLP(t) f = d(t)+e(t), (3.6)

where
d(t) ∈ Dρ

+ and e(t)⊥ Dρ
+.

Then they use (3.6),d(t) ∈ Dρ
+ andJLP = I onDρ

+ to show that

W2(t) f = ULP
0 (−t)JLPTLP(t) f = ULP

0 (−t)d(t)+ULP
0 (−t)JLPe(t). (3.7)

Similar argument with using (3.1) shows that fors≥ 0

W2(t +s) f =ULP
0 (−t−s)JLPTLP(t +s) f

=ULP
0 (−t−s)TLP(s)d(t)+ULP

0 (−t−s)JLPTLP(s)e(t).

3We should note that the usage of signs+ and− in the definition of our operatorsP± in the previous section
is in a sense reverse to that ofPρ

+ andPρ
− in [17]. As announced in footnote 1, we state the exact definition of

outgoing and incoming in the context of [17]: “outgoing” means “orthogonal toDρ
−,” and “incoming” means

“orthogonal toDρ
+.” Namely the “outgoing space” is the spacePρ

−H LP, and “incoming space” is the space
Pρ
+H LP.
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As ULP
0 (s) andTLP(s) coincide onDρ

+, it follows from this that

W2(t +s) f = ULP
0 (−t)d(t)+ULP

0 (−t−s)JLPTLP(s)e(t). (3.8)

Subtracting (3.7) from (3.8) yields

W2(t +s) f −W2(t) f = ULP
0 (−t−s)JLPTLP(s)e(t)−ULP

0 (−t)JLPe(t). (3.9)

By (3.3),‖e(t)‖ goes to0 ast tends to∞. This shows that the right hand side of (3.9) goes
to 0 ast → ∞ uniformly in s≥ 0, which proves that the limit (3.5) exists.

In the case of our Hamiltonian (2.1), the identification operatorJ is a bounded operator
from H = L2(Rn) into itself, and is defined as follows. The original construction of the
identification operator in [6] introduces two identification operators corresponding to the
two casest → ∞ and t → −∞. We here follow the definition in [11], where only one
identification operatorJ is defined as a Fourier integral operator as follows.

J f(x) = (2π)−n
ZZ

ei(ϕ(x,ξ)−yξ) f (y)dydξ

= (2π)−n/2
Z

eiϕ(x,ξ) f̂ (ξ)dξ. (3.10)

Here the phase functionϕ(x,ξ) is constructed as a solution of an eikonal equation for the
Schr̈odinger equation corresponding to (2.1) and satisfies the following theorem (Theorem
2.5 [6], Theorem 6.6 [11]).

Theorem 3.1. Letd > 0 and−1< σ− < σ+ < 1 be fixed. Then there isR= Rd = Rdσ± > 1
and a real-valuedC∞ functionϕ(x,ξ) of (x,ξ) ∈ R2n such thatRd > 1 increases asd > 0
decreases and the following holds.

i) For |ξ| ≥ d, |x| ≥ Randωx ·ωξ ≥ σ+ or ωx ·ωξ ≤ σ−

1
2
|∇xϕ(x,ξ)|2 +V(x) =

1
2
|ξ|2. (3.11)

ii) For any multi-indicesα,β there is a constantCαβ > 0 such that

|∂α
x ∂β

ξ(ϕ(x,ξ)−x ·ξ)| ≤Cαβ〈x〉1−ε−|α|〈ξ〉−1. (3.12)

In particular for |α| 6= 0, we have forε0,ε1 ≥ 0 with ε0 + ε1 = ε

|∂α
x ∂β

ξ(ϕ(x,ξ)−x ·ξ)| ≤CαβR−ε0〈x〉1−ε1−|α|〈ξ〉−1. (3.13)

iii) Set

a(x,ξ) = e−iϕ(x,ξ)
(
−1

2
∆+V(x)− 1

2
|ξ|2

)
eiϕ(x,ξ) (3.14)

=
1
2
|∇xϕ(x,ξ)|2 +V(x)− 1

2
|ξ|2− i

2
∆xϕ(x,ξ).

Thena(x,ξ) satisfies for|ξ| ≥ d, |x| ≥ Rand anyα,β

|∂α
x ∂β

ξa(x,ξ)| ≤
{

Cαβ〈x〉−1−ε−|α|〈ξ〉−1, ωx ·ωξ ∈ [−1,σ−]∪ [σ+,1],
Cαβ〈x〉−ε−|α|, ωx ·ωξ ∈ [σ−,σ+].

(3.15)
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Our J corresponds toJLP
0 of [17] andJ is known to have a bounded inverseJ−1 when

the domain is restricted suitably. Thus we can defineW1(t) andW2(t) as follows:

W1(t) = T(−t)JU0(t), W2(t) = U0(−t)J−1T(t),

whereU0(t) = e−itH0 andT(t) = e−itH .
The elementf which was assumed to belong toH LP in the proof of the existence of

the inverse wave operatorW2 = s-limt→∞W2(t) in [17] will be an element of the continuous
spectral subspaceHc for the HamiltonianH in the present case. Here we assume that
f ∈Hc(a,b) = EH([a,b])Hc with 0< a< b< ∞, whereEH(B) denotes the spectral measure
for the HamiltonianH. As our propagatorsT(t) andU0(t) are unitary operators, we can
consider the two limits

W±
2 = s- lim

t→±∞
W2(t).

We consider the asymptotic behavior ofT(t) f for f ∈Hc(a,b) to derive an asymptotic
analogue to (3.1) for ourT(t) = e−itH . Let the pseudodifferential operatorsP± = Pθ1,θ2±
(−1 < θ1 < θ2 < 1) be defined as in (2.7) or (2.8) with the same constants0 < a < b < ∞
as above. We calculate as follows fort ∈ R.

T(t)P∗± = (T(t)−JU0(t)J−1)P∗±+JU0(t)J−1P∗±
= T(t)(I −T(−t)JU0(t)J−1)P∗±+JU0(t)J−1P∗±

=−T(t)
Z t

0

d
dσ

(
T(−σ)JU0(σ)J−1)P∗±dσ+JU0(t)J−1P∗±

=−iT (t)K±(t)+JU0(t)J−1P∗±, (3.16)

where

K±(t) =
Z t

0
T(−σ)(HJ−JH0)U0(σ)J−1P∗±dσ. (3.17)

We note that we can write forf ∈ S with using the functiona(x,ξ) in Theorem 3.1-iii)
(3.14)

(HJ−JH0) f (x) = (2π)−n/2
Z

Rn
eiϕ(x,ξ)a(x,ξ) f̂ (ξ)dξ. (3.18)

Therefore, if we take−1 < θ1 = σ+ + ρ < θ2 < 1 for someρ > 0 and the constantσ+ ∈
(−1,1) of Theorem 3.1,K+(t) defines a compact operator onH and converges to a com-
pact operatorK+ of H = L2(Rn) in operator norm whent → +∞ by Theorems 2.2 – 2.4,
Theorem 3.1 and the factorφ(ξ) in the symbolp±(x,ξ) in (2.6) with some calculation of
Fourier integral and pseudodifferential operators (section 6.3 [11]). Similarly if we take
−1 < θ1 < θ2 = σ−−ρ < 1 for someρ > 0 and the constantσ− ∈ (−1,1) of Theorem 3.1,
K−(t) converges to a compact operatorK− of H = L2(Rn) in operator norm whent →−∞
by the same reason. Therefore we have proved that fort ∈ R

J−1T(t)P∗± =−iJ−1T(t)K±(t)+U0(t)J−1P∗±, (3.19)

where the first term is a compact operator onH . This means that the operatorJ−1T(t)P∗±
behaves likeU0(t)J−1P∗± except for a compact operator−iJ−1T(t)K±(t). We will see that
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this fact plays a role similar to (3.1) in the proof of asymptotic completeness for quantum
scattering.

The property (3.2) is easily seen to hold for our case also.
Finally we will see a correspondent to (3.3). If we could have a similar thing to (3.3), it

would be that for anyf ∈Hc(a,b)

lim
t→±∞

P∗∓T(t) f = 0. (3.20)

In fact this is known to hold. We quote some result from section 6.2 [11] in the case of two
body quantum scattering. Namely from Theorem 3.2 [11] follows that for anyf ∈Hc(a,b)
with 〈x〉2 f ∈ H = L2(Rn), there exists a sequencetk →±∞ ask→±∞ such that for any
φ ∈C∞

0 (R) andR> 0

‖χ{x∈Rn||x|<R}T(tk) f‖→ 0, (3.21)

‖(φ(H)−φ(H0))T(tk) f‖→ 0, (3.22)∥∥∥∥
(

x
tk
−Dx

)
T(tk) f

∥∥∥∥→ 0 (3.23)

ask→±∞, whereDx =−i∂x. In the two body case this is a consequence of Ruelle-Amrein-
Georgescu theorem ([1], [20]). The relation (3.23) is proved in [3] by extending the result
of [1], [20]. This relation in particular implies that the configurationx is proportional to
momentum±ξ in phase space asymptotically ast →±∞. As a consequence, the relation
(3.20) holds forf ∈Hc(a,b) whent tends to±∞ along the sequencet = tk→±∞ (k→±∞)
given above. The relation (3.21) implies that w-limk→±∞ T(tk) f = 0.

Summarizing the arguments up to here we have proved the following theorem.

Theorem 3.2.

i) Whent ≥ 0, let−1 < θ1 = σ+ + ρ < θ2 < 1 for someρ > 0 and the constantσ+ ∈
(−1,1) of Theorem 3.1, and whent ≤ 0 let −1 < θ1 < θ2 = σ−− ρ < 1 for some
ρ > 0 and the constantσ− ∈ (−1,1) of Theorem 3.1, and defineP± = Pθ1,θ2± by (2.7)
or (2.8) with0 < a < b < ∞. Then fort ∈ R

J−1T(t)P∗± =−iJ−1T(t)K±(t)+U0(t)J−1P∗±, (3.24)

whereK±(t) in the first term on the right hand side is a compact operator onH and
converges to a compact operatorK± on H in operator norm ast →±∞.

ii)
\

t≥0

T(−t)D−(a,b) = {0},
\

t≥0

T(t)D+(a,b) = {0}, (3.25)

iii) For any f ∈Hc(a,b) there is a sequencetk →±∞ ask→±∞ such that

lim
k→±∞

P∗∓T(tk) f = 0, (3.26)

w- lim
k→±∞

T(tk) f = 0, (3.27)
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and for anyφ ∈C∞
0 (R)

‖(φ(H)−φ(H0))T(tk) f‖→ 0 (k→±∞). (3.28)

We now prove the asymptotic completeness ofW±
2 . As the caset → −∞ is treated

similarly to the caset →∞, we will consider the caset →∞ below. It thus suffices to prove
the existence of the limit

W+
2 = s-lim

t→∞
W2(t) (3.29)

on Hc(a,b) for any 0 < a < b < ∞. For this purpose we will prove as in [17] that for
f ∈Hc(a,b)

W2(t +s) f −W2(t) f =U0(−t−s)J−1T(t +s) f −U0(−t)J−1T(t) f

=
{
U0(−t−s)J−1T(s)−U0(−t)J−1}T(t) f (3.30)

converges to0 uniformly in s≥ 0 ast goes to∞ along the sequencet = tk → ∞ (k→ ∞)
specified in Theorem 3.2-iii). If we have shown this, we have proved the existence ofW+

2 .
To prove this we letP± = Pθ1.θ2± for −1 < θ1 = σ+ + ρ < θ2 < 1 for someρ > 0 and the
constantσ+ ∈ (−1,1) of Theorem 3.1. Then the stateT(t) f is decomposed

T(t) f = d(t)+e(t)+ r(t),

where

d(t) = P∗+T(t) f , e(t) = P∗−T(t) f , r(t) = T(t) f − (P∗+ +P∗−)T(t) f .

By (3.24) of Theorem 3.2-i), we have

J−1T(s)P∗+ =−iJ−1T(s)K+(s)+U0(s)J−1P∗+. (3.31)

Thus

U0(−t−s)J−1T(s)d(t) =U0(−t−s)J−1T(s)P∗+T(t) f

=−iU0(−t−s)J−1T(s)K+(s)T(t) f +U0(−t)J−1P∗+T(t) f .

On the other hand we have

U0(−t)J−1d(t) = U0(−t)J−1P∗+T(t) f .

The difference (3.30) is thus equal to

W2(t +s) f −W2(t) f

= K̃+(t,s)T(t) f +
{
U0(−t−s)J−1T(s)−U0(−t)J−1}(e(t)+ r(t)), (3.32)

where

K̃+(t,s) =−iU0(−t−s)J−1T(s)K+(s). (3.33)
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By (3.26) of Theorem 3.2-iii)

e(tk)→ 0 as k→ ∞. (3.34)

From the definition of pseudodifferential operatorsP±, it is easy to see thatP±−P∗± are
compact operators onH . From this fact and (3.27) in Theorem 3.2-iii) we have

‖r(tk)−{I − (P+ +P−)}T(tk) f‖→ 0 as k→ ∞. (3.35)

From f ∈Hc(a,b) and (3.28) in Theorem 3.2-iii), we have

‖T(tk) f −E0([a,b])T(tk) f‖→ 0 as k→ ∞. (3.36)

By (3.35), (3.36), (2.10) and (3.27), we have

‖r(tk)‖→ 0 as k→ ∞. (3.37)

From (3.32), (3.34) and (3.37), we have uniformly ins≥ 0

∥∥W2(tk +s) f −W2(tk) f − K̃+(tk,s)T(tk) f
∥∥→ 0 as k→ ∞. (3.38)

Here by Theorem 3.2-i), (3.33) and (3.27), we have uniformly ins≥ 0

∥∥K̃+(tk,s)T(tk) f
∥∥ =

∥∥J−1T(s)K+(s)T(tk) f
∥∥→ 0 as k→ ∞. (3.39)

The relations (3.38) and (3.39) imply that uniformly ins≥ 0

‖W2(tk +s) f −W2(tk) f‖→ 0 as k→ ∞. (3.40)

This proves that the inverse wave operatorW+
2 exists onHc, and concludes the proof of the

asymptotic completeness for quantum mechanical scattering with Hamiltonian (2.1).

4 Concluding Remarks

We have shown that the usual quantum scattering theory can be incorporated into the frame-
work of Lax-Phillips scattering theory with slightly extending their abstract framework.
The concrete method of estimation used in applying the abstract framework is what has
been done in (i) [1], [20] and (ii) [4], [5], [6], [7], [8], [10], [11], [12]. The first group (i)
is concerned with the Ruelle-Amrein-Georgescu theorem which was used in proving that
the incoming/outgoing part of the solution vanishes whent →±∞, i.e.

∥∥P∗∓T(tk) f
∥∥→ 0 as

tk →±∞. The main point of the proof of their theorem, i.e. Proposition 3 on page 660 of
[20] and Lemma 2 on page 641 of [1], is almost the same in essence as that of Theorem 9.1,
especially as Lemma 9.3, Corollary 9.4 and the argument thereafter on page 216 of Lax-
Phillips [17], utilizing which and the properties of wave equation, they prove their crucial
result: Theorem 9.5 [17], i.e. (3.3)limt→∞ Pρ

+TLP(t) f = 0 andlimt→∞ Pρ
−

(
TLP

)∗ (t) f = 0.
The works in the group (ii) were done in the atmosphere when the Enss method was

fashionable and the trend at the age. Looking back upon those days, there were problems
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of many-body scattering as another fashion and trend. In either case, what is essential has
been the micro-local analysis, the essential part of which was developed in [4]-[12].

While people are tending to be enthusiastic over some trendy fashion at each age and
even if a seemingly new clever method looks having been invented, the important thing is
not changed. In fact the essential part, both in abstract framework and concrete method of
estimation, had been given in Lax-Phillips theory already.

An example of the flexibility of their framework is that we can adopt other operators
instead ofP± = Pθ1,θ2± in (2.8). Jensen-Mourre-Perry [9] defined the notion of conjugate of
a self-adjoint operatorA with respect to HamiltonianH and then-smoothness ofH with
respect toA in definition 2.1 of [9]. As a substitute for ourP± one can use the projection
operatorsP+

A andP−A onto the subspacesEA((0,∞))H andEA((−∞,0))H . The details are
left to the reader.
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