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A NOVEL INFORMATION TRANSMISSION PROBLEM AND ITS

OPTIMAL SOLUTION∗

ERIC BACH† AND JIN-YI CAI‡

Abstract. We propose and study a new information transmission problem motivated by today’s

internet. Suppose a real number needs to be transmitted in a network. This real number may

represent data or control and pricing information of the network. We propose a new transmission

model in which the real number is encoded using Bernoulli trials. This differs from the traditional

framework of Shannon’s information theory. We propose a natural criterion for the quality of an

encoding scheme. Choosing the best encoding reduces to a problem in the calculus of variations,

which we solve rigorously. In particular, we show there is a unique optimal encoding, and give an

explicit formula for it.

We also solve the problem in a more general setting in which there is prior information about

the real number, or a desire to weight errors for different values non-uniformly.

Our tools come mainly from real analysis and measure-theoretic probability. We also explore a

connection to classical mechanics.

1. Introduction. In Shannon’s information theory and the theory of error cor-

recting codes, the following communication model is basic. Two parties A and B

share a line of transmission, on which one can send an ordered sequence of bits. The

receiver gets another ordered sequence of bits, possibly corrupted. While this corrup-

tion can change, omit, or locally transpose bits, by and large the order of the bits is

kept intact. (Most work has focused on the so-called discrete memoryless channel, in

which only bit changes are allowed. The model of [15] allows arbitrary changes, but

only on fixed-length blocks.) Of course this model was very much motivated by the

teletype networks of Shannon’s day.

With today’s internet, one might revisit this model. When a message is sent from

one node to another, it has no fixed path. Abstractly, one might imagine a model in

which symbols are being sent in a highly parallel and non-deterministic fashion with

no particular fixed route. The receiver receives these symbols in some probabilistic

sense but in no particular order.

Suppose we still consider sending bit sequences. Then if arbitrary re-orderings are

allowed, then only the cardinality, or what amounts to the same thing, the fraction of

1’s observed, will matter. Furthermore, if some omissions occur probabilistically then

even this fraction is only meaningful approximately. Thus, with arbitrary re-ordering
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of the bits, it severely restricts the ways by which information may be meaningfully

conveyed.

Instead of sending bit sequences, what about sending a real number holistically?

Let’s consider the following new model of information transmission. Two parties A

and B have access to a one-way communication medium, and A wishes to transmit a

real number x to B. The medium may transmit signals, with some probabilistic error,

in large multiplicity but in no particular order. By normalizing we assume 0 ≤ x ≤ 1,

and think of x as a probability. Communication is done by the following process.

Party A can send a large number of i.i.d. samples from a Bernoulli distribution to B.

The receiver observes these bits and estimates x. (The Bernoulli distribution, on the

samples generated a priori, accounts for the probabilistic nature of errors and losses

of signals due to the communication medium.)

The new information transmission problem is the following. We may think of the

Bernoulli random variable as an “encoding” of x, through its mean value. Then what

does it mean to be a good encoding scheme? How do we evaluate encoding strategies,

and is there an optimal one? We note that x is only transmitted completely in the

limit, so the answers must be asymptotic.

Although abstract, this problem is motivated by concrete current research in

computer networking. As is familiar, messages are broken up into small packets

which are then sent more or less independently along different routes. These routes

can vary with time of day, system load, etc., so the network must maintain and

transmit information about their quality.

We can think of a particular route as consisting of ℓ links, say vi−1 → vi for

i = 1, . . . , ℓ. Each link has an associated number pi, 0 ≤ pi ≤ 1. For example, pi

could be a normalized cost or a measure of congestion for using the i-th link. The

network can determine through observation the average x = (
∑

i pi)/ℓ for a particular

route, allowing the routing protocol to take this into account so as to avoid congestion.

To allow efficient estimation of this average, researchers have investigated the

possibility of using current packet designs, which already specify a bit called the

Explicit Congestion Notification (ECN) bit. Each link on a route may set this bit

to 0 or 1 as it sees fit, for every packet it handles. This bit then gets transmitted

to the next link, which may be reset again. Recently, networking researchers have

focused on a class of protocols using ECN (so-called one-bit protocols), which can be

defined mathematically as follows. The link vi−1 → vi receives a bit Xi−1 ∈ {0, 1}
from the previous link; based on Xi−1 and pi it uses randomization to produce Xi.

The last node can observe Xℓ many times and combine these observations to produce

an estimate for x.

Several protocols of this type appear in the literature [2, 12]. What they have in

common is that the expected value of Xℓ is some function f of the average x. The

observer then tries to infer x from the observed approximate value of f(x). This is
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an example of our new model of information transmission, in that, one produces a

collection of 0-1 random variables all with the expected value equal to some function f

of some number x. The receiver observes these 0-1 random variables, in no particular

order and with probabilistic losses and delays. From an observational record the

receiver tries to infer x.

Since one can imagine more general schemes using this idea, there is no reason to

expect developments to stop with ECN. For inspiration, we look to Shannon, who did

not waste time optimizing teletype codes, but rather went on to study general methods

of symbolic encoding. It is compelling, therefore, to develop a theory applicable to all

of the more general schemes, and ask if there is any choice of f that is in some sense

optimal. In this paper, we answer this question affirmatively, under conditions on f

that are as general as could be desired.

2. The Formalized Problem and a Guide to its Solution. Initially, A and

B agree on a transformation function f . To send x ∈ [0, 1], to B, the transmitter

A generates random bits, which are i.i.d. 0-1 random variables with expected value

y = f(x). The receiver B gets n of these, say Y1, . . . , Yn, and uses f−1
(

1
n

∑n
i=1 Yi

)

to estimate x. For this to work, f must be strictly monotonic, say increasing. Also,

f should map 0 to 0 and 1 to 1, to avoid loss of bandwidth.

We now outline our criterion for evaluating f , and justify its choice. Let g = f−1

and Ȳ = n−1
∑n

i=1 Yi. If g is smooth, then by the strong law of large numbers,

g(Ȳ ) → x, a.e. We expect g(Ȳ ) − x to be Θ(n−1/2), so the natural measure for the

error is E[n(g(Ȳ )−x)2]. By the mean value theorem, we should have n(g(Ȳ )−x)2 ≈
g′(y)2[n(Ȳ − y)2], and E

[

n(Ȳ − y)2
]

= y(1 − y). Thus, we expect

(1) E
[

n(g(Ȳ ) − x)2
]

→ g′(y)2y(1 − y).

Written in terms of f , this is f(x)(1−f(x))
f ′(x)2 . Thus, we should try to minimize

(2)

∫ 1

0

f(x)(1 − f(x))

f ′(x)2
dx,

over a suitable class of functions f . The optimal choice turns out to be

(3) f =
1 − cos(πx)

2
.

In particular, the optimal choice is not the identity function, as one might naively

suppose. Nor is the naive choice even close: its value of (2) exceeds the optimum by

about 64%.

In the rest of this paper, we carry out this argument in a rigorous way. The

interchange of limits and integration is not trivial, because we want it to hold for the

optimum curve, for which the integrand is unbounded. Also, we derive the optimal

curve using Calculus of Variations by the Euler-Lagrange equation. But as is typical



144 ERIC BACH AND JIN-YI CAI

with Calculus of Variations, this derivation only suggests optimality. (Euler’s mathe-

matics was brilliant, but it was from a time when the standard of mathematical rigor

was different.) It is notorious with such problems, as typified by the Dirichlet problem

[9, p. 119], the hard part is to prove optimality. We will do this by an independent

argument, under very general conditions on the curve. Our tools come mainly from

real analysis and measure-theoretic probability, in particular Lebesgue’s convergence

theorems, Fatou’s lemma, and uniform integrability.

The rest of the paper is organized as follows. In Section 3 we prove the point-wise

(almost everywhere) convergence stated in (1). Next we show that the limit of its

average (the integration over possible values of x) is given by (2), for the particular

choice (3). In Section 4 we prove that (3) actually minimizes (2). The more difficult

proof of a general limit theorem is given in Section 5, where we show that the average

of (1) has a limit, for a wide class of transformations. In Section 6 we treat these

problems in a more general setting in which the receiver has prior information about

x, or wishes to weight errors for different x differently. In Section 7 we connect our

variational problems to classical mechanics. In Section 8 we discuss open problems.

3. Two Convergence Theorems.

3.1. Notation. We call f admissible if f ∈ C[0, 1] (continuous), and is strictly

increasing, with f(0) = 0 and f(1) = 1. Let g = f−1 be its inverse function (also

admissible). Since f and g are increasing, f ′ and g′ exist a.e. [14]. Whenever f ′(x) 6=
0, then at y = f(x), g′(y) exists and g′(y) = 1/f ′(x). If f ′(x) = 0, we say g′ has a

singularity at y.

Our class of functions is the natural one to consider, for f can only be computable

if it is continuous, as is well known [8].

Let Y1, Y2, . . . , Yn be i.i.d. 0-1 random variables with Pr[Yi = 1] = y, and let Y =
∑

n

i=1 Yi

n be their sample mean. We also let Ŷ =
(
∑

n

i=1(Yi−y)√
n

)2

, so that n(Y −y)2 = Ŷ .

Note that 0 ≤ Ŷ ≤ n.

We will find it convenient to use measure theory notation. Accordingly, let Ω =

{0, 1}n, with the measure µ induced by n Bernoulli trials with success probability y.

Then, for example, E[Ŷ ] =
∫

Ω Ŷ dµ = Var(Y1) = y(1 − y).

For a choice of f as above, it will be convenient to let

(4) Fn(y) =

∫

Ω

n(g(Y ) − g(y))2 dµ,

and α = n(g(Y ) − g(y))2. Since α ≤ n, we have 0 ≤ Fn(y) ≤ n.

3.2. A Pointwise Convergence Theorem.

Theorem 1. Let f be admissible and 0 < y < 1. If g′(y) exists, we have

limn→∞ Fn(y) = (g′(y))2y(1−y), where Fn is given by (4). Therefore, the convergence
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is almost everywhere (a.e.).

Proof. The proof is easiest when g′ is continuous in an interval around y, so we

assume this first. Then, for any ǫ > 0, there exists a δ > 0 such that if |y′ − y| ≤ δ

then |(g′(y′))2 − (g′(y))2| ≤ ǫ
2y(1−y) . For this δ, let Bδ = {ω ∈ Ω | |Y − y| > δ}.

Since
∫

Ω
Ŷ dµ = y(1− y), we have Fn(y)− (g′(y))2y(1− y) = I1 + I2 + I3, where

I1 =

∫

Ω−Bδ

[α − (g′(y))2Ŷ ] dµ; I2 =

∫

Bδ

α dµ; I3 = −
∫

Bδ

(g′(y))2Ŷ dµ.

We will estimate these three integrals separately.

For I1, by the mean value theorem (MVT), there exists some ξ = ξ(y, Y ) which

lies between y and Y , such that g(Y )−g(y) = g′(ξ)(Y −y). Thus, α = (g′(ξ))2Ŷ . Note

that n(Y −y)2 = Ŷ , and on Ω−Bδ, |ξ−y| ≤ δ, we have |(g′(ξ))2−(g′(y))2| ≤ ǫ
2y(1−y) .

It follows that

|I1| ≤
∫

Ω−Bδ

∣

∣(g′(ξ))2 − (g′(y))2
∣

∣ Ŷ dµ

≤ ǫ

2y(1 − y)

∫

Ω−Bδ

Ŷ dµ

≤ ǫ

2y(1 − y)

∫

Ω

Ŷ dµ

=
ǫ

2
.

By the Chernoff bound [3], µ(Bδ) < 2e−2δ2n, so |I2| ≤ n
∫

Bδ

dµ = nµ(Bδ) <

2ne−2δ2n, and since Ŷ ≤ n, we have |I3| ≤ (g′(y))2n
∫

Bδ

dµ ≤ 2n(g′(y))2e−2δ2n.

Combining these three estimates, we get

|Fn(y) − (g′(y))2y(1 − y)| = |I1 + I2 + I3| ≤
ǫ

2
+ 2ne−2δ2n(1 + (g′(y))2) < ǫ,

for sufficiently large n. Since ǫ was arbitrary, we get Theorem 1.

We indicate briefly how to modify this proof to work at any y 6= 0, 1 where g′(y)

exists. Only I1 needs to be reconsidered. Suppose first that g′(y) > 0. Then there is

a δ > 0 such that for Y within δ of y (but not equal to y), we have

g(Y ) − g(y)

Y − y
= g′(y)(1 + η),

with |η| ≤ ǫ/(6g′(y)2y(1 − y)), and |η| ≤ 1. Then (even allowing Y = y),

α = n(g(Y ) − g(y))2 = ng′(y)2(Y − y)2(1 + η)2.

Plug this into I1, and expand (1 + η)2. The main terms will cancel, and we can

estimate η2 by |η|, we find

|I1| ≤
∫

Ω

ǫ

2y(1 − y)
Ŷ =

ǫ

2
.
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We handle g′ = 0 similarly, but with

g(Y ) − g(y)

Y − y
= η,

where η2 ≤ ǫ/(2y(1 − y)). The case g′ < 0 is forbidden by monotonicity.

3.3. Convergence for the Optimal Transformation. Our information trans-

mission problem is concerned with minimizing the limit of
∫ 1

0

∫

Ω

n(g(Y ) − x)2 dµ dx,

for an unknown function y = f(x), where g = f−1. Assuming the relevant integrals

exist, we can write this entirely in terms of its inverse function g,
∫ 1

0

g′(y)

∫

Ω

n(g(Y ) − g(y))2 dµ dy.

In this section, we evaluate the limit of this for the optimal f . A corresponding

theorem for general f was stated in [2], and proved in [1]. This result, however,

assumed g′(y) to be continuous on [0, 1], and in particular bounded on this interval.

While adequate for the class of functions realizable in the on-line setting for the

ECN bit in a network, this assumption is not satisfied by our optimal function f . In

particular, our particular g′(y) is unbounded near 0 and 1, making the resulting proof

much more difficult. A proof for the general case is provided in Section 6.

In the remainder of this section, we let f(x) = (1 − cosπx)/2. We note that f is

smooth and strictly increasing. Its inverse function g(y) is continuously differentiable

except at 0 and 1. Explicitly,

(5) (g′(y))2 =
1

π2y(1 − y)
;

this has a pole of order 1 at y = 0 and y = 1. Let F̃n(y) = g′(y)Fn(y).

Theorem 2. For f(x) = (1 − cosπx)/2, we have

lim
n→∞

∫ 1

0

F̃n(y) dy =

∫ 1

0

lim
n→∞

F̃n(y) dy =

∫ 1

0

(g′(y))3y(1 − y) dy.

Proof. Observe that there is a symmetry between the first and the second half

of the interval, by the map y 7→ 1 − y, and therefore we will only need to evaluate

limn→∞
∫ 1/2

0 F̃n(y) dy.

Let δn = 8 log n
n . Then

∫ 1/2

0

F̃n(y) dy =

∫ δn

0

F̃n(y) dy +

∫ 1/2

0

F ∗
n(y) dy,(6)

where F ∗
n (y) = F̃n(y)1[δn,1/2], and 1 denotes the indicator function. Our strategy

will be to prove that the first term has the limit 0, and use Lebesgue’s dominated

convergence theorem to evaluate the limit of the second.
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Let y < δn. As Fn(y) is itself an integral, we may (as with Gaul) divide it into

three parts:

(7) Fn(y) =

∫

Y ≤y

α dµ +

∫

y<Y ≤1/2

α dµ +

∫

Y >1/2

α dµ.

We will show that the contributions of each part in the integral
∫ δn

0 F̃n(y) dy goes to

0.

If Y ≤ y, by the monotonicity of g we get (g(Y ) − g(y))2 ≤ (g(y))2 = x2. It

is easy to check by elementary calculus that 1 − cos t ≥ t2/4 for 0 ≤ t ≤ π/3. then

y = f(x) = (1 − cosπx)/2 ≥ π2

8 x2, for 0 ≤ x ≤ 1/3. It follows that, for 0 ≤ y ≤ 1/4,

∫

Y ≤y

α dµ ≤ nx2

∫

Ω

dµ = nx2 ≤ 8ny

π2
.

So, there is a c > 0 such that for Y ≤ y and sufficiently large n,

(8)

∫ δn

0

g′(y)

∫

Y ≤y

α dµ dy ≤ cn

∫ δn

0

√
y dy =

2c

3
nδ3/2

n −→ 0.

For y < Y ≤ 1/2, by MVT, there exists some ξ = ξ(y, Y ) such that g(Y )−g(y) =

g′(ξ)(Y − y), satisfying y ≤ ξ ≤ Y ≤ 1/2. By the explicit formula for g′ we have

(g′(ξ))2 ≤ 2
π2y . Thus

∫

y<Y ≤1/2

α dµ ≤ 2

π2y

∫

Ω

Ŷ dµ ≤ 2

π2
.

Then

(9)

∫ δn

0

g′(y)

∫

y<Y ≤1/2

α dµ dy ≤ 2g(δn)

π2
−→ 0.

Finally we treat Y > 1/2. From the Chernoff bound, we have
∫

Y >1/2

α dµ ≤ nµ(Y > 1/2) < ne−n/8.

Therefore

(10)

∫ δn

0

g′(y)

∫

Y >1/2

α dµ dy < ne−n/8

∫ δn

0

g′(y) dy = ne−n/8g(δn) −→ 0.

Combining (8)–(10) with (7), we get limn→∞
∫ δn

0
F̃n(y) dy = 0.

We now consider the second integral in (6). Our first goal is to bound Fn(y)

independently of n on δn ≤ y ≤ 1/2.

Let B denote the event that [Y < y/2 or Y > 3/4]. Inspired by King Solomon,

we now divide Fn into two:

Fn(y) =

∫

B

α dµ +

∫

Bc

α dµ.
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By the Chernoff bound [3], and y ≥ δn,

µ(B) < e−yn/8 + e−n/8 < 2/n.

It follows that

(11)

∫

B

α dµ ≤ nµ(B) < 2.

On Bc, by the mean value theorem (MVT), there exists some ξ = ξ(y, Y ) which

lies between y and Y , such that g(Y )− g(y) = g′(ξ)(Y − y). Therefore α = (g′(ξ))2Ŷ .

Since Ȳ ∈ Bc, we have y/2 ≤ Y ≤ 3/4. Combining this with y ≤ 1/2, we get

y/2 ≤ ξ ≤ 3/4. Using this in (5), we see that (g′(ξ))2 ≤ 8
π2y . Then

(12)

∫

Bc

α dµ ≤ 8

π2y

∫

Bc

Ŷ dµ ≤ 8

π2y

∫

Ω

Ŷ dµ =
8(1 − y)

π2
≤ 8

π2
.

From (11) and (12) we see that for y ≥ δn, Fn(y) ≤ 8
π2 +2 < 3. This implies that

|F ∗
n | ≤ 3g′(y),

and since g′ is integrable on [0, 1/2] (near 0, g′ is of order 1/
√

y) we can apply domi-

nated convergence to get

lim
n→∞

∫ 1/2

0

F ∗
n(y) dy =

∫ 1/2

0

lim
n→∞

F̃n(y) dy =

∫ 1/2

0

(g′(y))3y(1 − y) dy.

4. Deriving the Optimal Transformation. We consider the following opti-

mization problem. Let

Iy =

∫ 1

0

y(1 − y)

(y′)2
dx.

We seek a smooth increasing function y, satisfying the boundary conditions y(0) = 0

and y(1) = 1, that minimizes Iy. (Note that we are now letting y stand for a function,

instead of a value.)

We use the calculus of variations to get a guess for y. Form the Euler-Lagrange

equation

∂L

∂y
− d

dx

∂L

∂y′ = 0,

with L(y, y′) = y(1 − y)/(y′)2. Then, y(x) = (1 − cosπx)/2 is a solution matching

the boundary conditions, for which Iy = 1/π2. (Integrability is to be expected here,

since L did not involve x explicitly. See [5].)

More work is needed to prove this is optimal. Recall that y is admissible if it is

in C[0, 1], strictly increasing, with y(0) = 0, and y(1) = 1.
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Theorem 3. For any admissible function y, we have

∫ 1

0

y(1 − y)

(y′)2
dx ≥ 1

π2
,

with equality iff y = (1 − cosπx)/2. The case where the integral is infinite is not

excluded.

Proof. Define a new admissible function θ by y(x) = (1 − cosπθ(x))/2. Since θ

increases, θ′ exists a.e., and at any point x of differentiability, y′(x) = π
2 sin πθ(x) ·

θ′(x), by the mean value theorem. Also y(x) 6= 0, 1 except for x = 0, 1, so we have

(using sin2 + cos2 = 1) (y′)2

y(1−y) = π2θ′, a.e.

We may assume that θ′ is positive a.e. and Iy < +∞, as otherwise the theorem

is true. Then, by Jensen’s inequality,

∫ 1

0

y(1 − y)

(y′)2
dx =

1

π2

∫ 1

0

1

(θ′)2
dx ≥ 1

π2
(

∫ 1

0
θ′(x)dx

)2 .

(To apply this, we need θ′ ∈ L1[0, 1], which is true. See [14, Ex. 13, p. 157].)

We have
∫ 1

0
θ′ ≤ θ(1)−θ(0) = 1, with equality iff θ is absolutely continuous (AC).

(Combine [13, Thm. 2, p. 96] and [14, Thm. 7.18].) This gives the inequality of the

theorem.

We may assume that θ is AC (otherwise, the inequality is strict). If θ′ is not

constant a.e., then the Jensen inequality is strict and we are done. On the other

hand, if the inequality becomes equality, we have to have θ′(x) = c a.e. Then,

θ(x) =
∫ x

0
c = cx, so c = 1 and θ = x (everywhere!), giving the theorem.

Remarks: It is possible that the integral is infinite; this happens, for example, if

y = x3. Also, without the monotonicity condition, the minimum need not exist.

Consider, for example, yn = sin2((n + 1)πx). Then we have 0 ≤ yn ≤ 1, with

yn(0) = 0 and yn(1) = 1. However,
∫ 1

0 yn(1 − yn)(y′
n)−2dx = 1/(4π2(n + 1)2) → 0.

Theorem 4. Let f be any admissible function. If f 6= (1 − cosπx)/2, there is a

constant δf > 0 with the following property. For sufficiently large n,

∫ 1

0

E[n(g(Ȳ ) − y)2]dx ≥ 1

π2
+ δf .

Proof. By Fatou’s lemma [14] and Theorem 1,

lim inf
n→∞

∫ 1

0

E[n(g(Ȳ ) − y)2]dx ≥
∫ 1

0

lim
n→∞

E[n(g(Ȳ ) − y)2]dx =

∫ 1

0

g′(y)2y(1 − y)dx.

But this is strictly greater than the corresponding integral for f = (1 − cosπx)/2,

which is 1/π2.
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5. Convergence for General Transformations. In this section we investigate

the convergence properties of
∫ 1

0 F̃n(y) dy, as n → ∞. We will show that under very

general conditions on f , limn→∞
∫ 1

0
F̃n(y) dy exists, and

lim
n→∞

∫ 1

0

F̃n(y) dy =

∫ 1

0

lim
n→∞

F̃n(y) dy =

∫ 1

0

(g′(y))3y(1 − y) dy.

We will now discuss and enumerate a number of conditions. First we require

(g′(y))3y(1 − y) ∈ L1[0, 1], i.e., Lebesgue integrable. If g′ has no singularity in [0, 1],

then this condition is trivially satisfied, since f ∈ C1[0, 1]. We now require that g′

has at most finitely many singularities in [0, 1],

0 < y1 < . . . < yk < 1

where 0 and/or 1 may or may not be a singularity point. If there is any singularity

point yi (other than 0 or 1), we make two requirements at yi: An asymptotic require-

ment and a monotonicity requirement. First, due to integrability of (g′)3 near yi, we

require

g′(y) = o

(

(|y − yi| · log
1

|y − yi|
)−1/3

)

,(13)

as y → yi. Second, we require that within some small interval of yi, g′(y) mono-

tonically increases to ∞. This second requirement can be replaced by the weaker

condition that within some small interval of yi,

g′(y) ≤ d(y)1/3(14)

for some integrable function d, which monotonically increases to ∞, as y → yi. Both

requirements (13) and (14) can be simultaneously satisfied by one simpler but slightly

more stringent condition:

g′(y) = o





(

|y − yi| ·
(

log
1

|y − yi|

)1+ǫ
)−1/3



 ,

for some constant ǫ > 0, as y → yi.

If 0 is a singularity of g′, then due to integrability of (g′(y))3y near 0, we require

g′(y) = o
(

y− 2−ǫ

3

)

,(15)

for some ǫ > 0, as y → 0. Similarly if 1 is a singularity of g′, we require

g′(y) = o
(

(1 − y)−
2−ǫ

3

)

,(16)

for some ǫ > 0, as y → 1.

By choosing a smaller ǫ if necessary, we assume the local asymptotic and mono-

tonicity requirements at each yi, 1 ≤ i ≤ k, are all valid within [yi − ǫ, yi + ǫ] − {yi}.
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In particular g′ is less than the RHS in (13) and (14). If 0 is also a singularity of g′,

then g′(y) < 1/y
2−ǫ

3 within (0, ǫ). And similarly at 1.

Theorem 5. With the above conditions (13), (14), (15) and (16)

lim
n→∞

∫ 1

0

F̃n(y) dy =

∫ 1

0

lim
n→∞

F̃n(y) dy =

∫ 1

0

(g′(y))3y(1 − y) dy.

We will first give an outline of the proof. Denote by δn =
√

log n
n , and δ′n = 8 log n

n .

We will assume n is sufficiently large such that δn, δ′n < ǫ/4. For now assume both

0 and 1 are singularities of g′. We will define a sequence of intervals which partition

[0, 1]:

[0, 1] = I0∪J0∪K0∪J−
1 ∪I1∪J+

1 ∪K1∪J−
2 ∪I2∪J+

2 ∪. . .∪J−
k ∪Ik∪J+

k ∪Kk∪Jk+1∪Ik+1,

where I0 = [0, δ′n), J0 = [δ′n, ǫ
2 ), K0 = [ ǫ

2 , y1− ǫ
2 ]; for 1 ≤ i ≤ k, J−

i = (yi− ǫ
2 , yi−2δn],

Ii = (yi − 2δn, yi +2δn), J+
i = [yi +2δn, yi + ǫ

2 ); for 1 ≤ i < k, Ki = [yi + ǫ
2 , yi+1 − ǫ

2 ];

and finally, Kk = [yk + ǫ
2 , 1 − ǫ

2 ], Jk+1 = (1 − ǫ
2 , 1 − δ′n], Ik+1 = (1 − δ′n, 1].

If 0 is not a singularity of g′, (but there is at least one singularity,) then I0 and

J0 will disappear, and K0 = [0, z − ǫ
2 ], where z is the smallest singularity. If 1 is

not a singularity of g′, (but there is at least one singularity,) then Jk+1 and Ik+1 will

disappear, and Kk = [z′ + ǫ
2 , 1], where z′ is the largest singularity. (If there are no

singularity at all, then k = 0, and all intervals disappear, except K0 = [0, 1].)

We will establish the following:

1. For all 0 ≤ i ≤ k + 1,

lim
n→∞

∫

Ii

F̃n(y) dy = 0.(17)

2. For every 0 ≤ i ≤ k,

lim
n→∞

∫

Ki

F̃n(y) dy =

∫

Ki

lim
n→∞

F̃n(y) dy.(18)

This will be shown by Lebesgue’s dominated convergence theorem.

3. For every 1 ≤ i ≤ k,

lim
n→∞

∫

J+

i

F̃n(y) dy =

∫ yi+
ǫ

2

yi

lim
n→∞

F̃n(y) dy.(19)

This will be shown by the property of uniform integrability.

4. For every 1 ≤ i ≤ k,

lim
n→∞

∫

J−

i

F̃n(y) dy =

∫ yi

yi− ǫ

2

lim
n→∞

F̃n(y) dy.(20)

This is symmetric to (20).
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5.

lim
n→∞

∫

J0

F̃n(y) dy =

∫ ǫ

2

0

lim
n→∞

F̃n(y) dy.(21)

6.

lim
n→∞

∫

Jk+1

F̃n(y) dy =

∫ 1

1− ǫ

2

lim
n→∞

F̃n(y) dy.(22)

This is symmetric to (21).

Theorem 5 follows from these claims, which we will establish as a series of Propo-

sitions.

Proposition 1. The limit in (17) for i = 0 holds, namely,

lim
n→∞

∫ δ′

n

0

F̃n(y) dy = 0.(23)

Proof. We break Fn(y) =
∫

Ω α dµ into 3 parts

Fn(y) =

∫

Y ≤y

α dµ +

∫

y<Y ≤ǫ

α dµ +

∫

ǫ<Y

α dµ.

For Y > ǫ, as y ≤ δ′n < ǫ/2, and y is the expectation of Y , Y − y > ǫ/2, we can

apply Chernoff bound

µ(Y > ǫ) < e−ǫ2n/2.

It follows that
∫

ǫ<Y α dµ < ne−ǫ2n/2, using the trivial bound α ≤ n. Then

∫ δ′

n

0

g′(y)

∫

ǫ<Y

α dµ dy ≤ ne−ǫ2n/2

∫ δ′

n

0

g′(y) dy

= ne−ǫ2n/2

∫ g(δ′

n
)

0

dx

≤ ne−ǫ2n/2 −→ 0,

as n −→ ∞.

For y < Y ≤ ǫ, by the mean value theorem (MVT), there exists some ξ = ξ(y, Y )

which lies between y and Y , such that g(Y )−g(y) = g′(ξ)(Y −y). Since y ≤ ξ ≤ Y ≤ ǫ,

the upper bound (15) holds, we get

(g(Y ) − g(y))2 ≤ 1

ξ
4−2ǫ

3

(Y − y)2 ≤ 1

y
4−2ǫ

3

(Y − y)2.

Thus, α ≤ 1

y
4−2ǫ

3

Ŷ . It follows that
∫

y<Y ≤ǫ
α dµ ≤ 1

y
4−2ǫ

3

∫

Ω
Ŷ dµ = 1−y

y
1−2ǫ

3

≤ 1

y
1−2ǫ

3

.

Thus, by (15) again,

∫ δ′

n

0

g′(y)

∫

y<Y ≤ǫ

α dµ dy ≤
∫ δ′

n

0

dy

y1−ǫ
−→ 0.
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For Y ≤ y, first we use the monotonicity of g to get (g(Y ) − g(y))2 ≤ (g(y))2.

Then α ≤ n(g(y))2, and
∫

Y ≤y α dµ ≤ n(g(y))2.

∫ δ′

n

0

g′(y)

∫

Y ≤y

α dµ dy ≤
∫ δ′

n

0

n(g(y))2g′(y) dy =

∫ g(δ′

n
)

0

nx2 dx =
n(g(δ′n))3

3
.

By y ≤ δ′n < ǫ, (15) holds, and g(y) =
∫ y

0 g′(t)dt ≤
∫ y

0 1/t
2−ǫ

3 dt = 3y
1+ǫ

3 /(1 + ǫ).

Therefore (g(δ′n))3 ≤ 27(δ′n)1+ǫ. It follows that n(g(δ′n))3 −→ 0.

Combining 3 parts, the Proposition follows.

Proposition 2. The limit in (17) for i = k + 1 holds, namely,

lim
n→∞

∫ 1

1−δ′

n

F̃n(y) dy = 0.(24)

Proof. This is symmetric to Proposition 1, by y 7→ 1 − y.

Proposition 3. The limit in (17) for 1 ≤ i ≤ k holds, namely, if 0 < z < 1 is a

singularity of g′, then

lim
n→∞

∫ z+2δn

z−2δn

F̃n(y) dy = 0.(25)

Proof. We break Fn(y) into two parts
∫

Ω α dµ =
∫

|Y −y|≤δn
+
∫

|Y −y|>δn
. By the

Chernoff bound,

µ(|Y − y| > δn) < 2e−2δ2
n

n = 2/n2.

Thus
∫

|Y −y|>δn

α dµ ≤ 2/n.

It follows that

∫ z+2δn

z−2δn

g′(y)

∫

|Y −y|>δn

α dµ dy ≤ 2

n

∫ g(z+2δn)

g(z−2δn)

1 dx ≤ 2

n
−→ 0.

For the other part
∫

|Y −y|≤δn

α dµ we need a lemma.

Lemma 1. Let

∆n = sup
y,y′∈(z−3δn,z+3δn)

|g(y) − g(y′)|.

Then

∆n = o

(

1

n1/3

)

,

as n −→ ∞.
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Proof. (of Lemma 1): By (13), ∀ǫ′ > 0, ∃N , such that ∀n ≥ N , and ∀t, such that

0 < |t − z| < 3δn,

g′(t) <
ǫ′

(|t − z| log 1
|t−z| )

1/3
.

Suppose y, y′ ∈ (z − 3δn, z + 3δn), y′ ≤ y, by monotonicity of g,

g(y) − g(y′) ≤ g(z + 3δn) − g(z − 3δn)

=

∫ z+3δn

z−3δn

g′(t)dt

< ǫ′
∫ z+3δn

z−3δn

dt

(|t − z| log 1
|t−z| )

1/3

= 2ǫ′
∫ 3δn

0

dt

(t log 1
t )

1/3
.

Consider

d

dt

[

t2/3(log
1

t
)−1/3

]

=
2

3

1

(t log 1
t )

1/3

[

1 +
1

2 log 1
t

]

≥ 2

3

1

(t log 1
t )

1/3
.

This gives us

2ǫ′
∫ 3δn

0

dt

(t log 1
t )

1/3
≤ 3ǫ′

[

t2/3(log
1

t
)−1/3

]

t=3δn

≤ cǫ′

n1/3
,

for some universal constant c.

It follows that

∆n = sup
y,y′∈(z−3δn,z+3δn)

|g(y) − g(y′)| ≤ cǫ′

n1/3
,

for all sufficiently large n. The Lemma is proved.

Using the Lemma, we estimate
∫

|Y −y|≤δn
α dµ as follows. For y ∈ (z−2δn, z+2δn),

Y ∈ (z − 3δn, z + 3δn). Thus,

α = n(g(Y ) − g(y))2 ≤ n∆2
n,

and,
∫

|Y −y|≤δn
α dµ ≤ n∆2

n. Then

∫ z+2δn

z−2δn

g′(y)

∫

|Y −y|≤δn

α dµ dy ≤ n∆2
n(g(z + 2δn) − g(z − 2δn)) ≤ n∆3

n.

By the Lemma,

lim
n→∞

∫ z+2δn

z−2δn

g′(y)

∫

|Y −y|≤δn

α dµ dy = 0.

Combining the two parts, we get

lim
n→∞

∫ z+2δn

z−2δn

F̃n(y) dy = 0.
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This proves Proposition 3.

Next we consider the intervals K0, . . . , Kk. Note that, unlike the other intervals,

these intervals Ki are not dependent on n.

Proposition 4. The limit in (18) for 0 ≤ i ≤ k holds, namely, if 0 ≤ z < z′ ≤ 1

are two successive singularities of g′, then

lim
n→∞

∫ z′− ǫ

2

z+ ǫ

2

F̃n(y) dy =

∫ z′− ǫ

2

z+ ǫ

2

lim
n→∞

F̃n(y) dy.(26)

If either 0 or 1 (or both) are not singularities of g′, then a suitable modification

should be made to the cases of K0 and Kk. It should be clear that the following proof

works the same way.

Proof. We denote by K = [z + ǫ
2 , z′ − ǫ

2 ]. On K̂ = [z + ǫ
4 , z′ − ǫ

4 ], g′ is uniformly

continuous, therefore there exists N , such that ∀n ≥ N and ∀y, y′ ∈ K̂, if |y−y′| ≤ δn,

then |(g′(y))2 − (g′(y′))2| < 1.

If y ∈ K, and |y − y′| ≤ δn, then since δn < ǫ/4, both y, y′ ∈ K̂, we have

∫

|Y −y|≤δn

α dµ =

∫

|Y −y|≤δn

n(g′(ξ))2(Y − y)2 dµ

≤
∫

|Y −y|≤δn

((g′(y))2 + 1)Ŷ dµ

≤ ((g′(y))2 + 1)

∫

Ω

Ŷ dµ

= ((g′(y))2 + 1)y(1 − y),

where ξ = ξ(y, Y ) lies between y and Y by MVT.

For |Y − y| > δn, we can again use Chernoff bound,

∫

|Y −y|>δn

α dµ ≤ nµ(|Y − y| > δn) ≤ 1.

Being the sum of these two integrals, it follows that Fn(y) is dominated by [(g′(y))2 +

1]y(1−y)+1. Then F̃n(y) is dominated by the integrable function [(g′(y))3+g′(y)]y(1−
y) + g′(y). We note that 0 ≤ g′(y) ≤ max{1, (g′(y))3}.

Now we can apply Lebesgue’s dominated convergence theorem

lim
n→∞

∫

K

F̃n(y) dy =

∫

K

lim
n→∞

F̃n(y) dy.

The Proposition is proved.

Next, we handle the intervals J+
i , for i = 1, . . . , k.

Proposition 5. The limit in (19) for 1 ≤ i ≤ k holds, namely, if z = yi for

some i = 1, . . . , k is a singularity of g′, then

lim
n→∞

∫ z+ ǫ

2

z+2δn

F̃n(y) dy =

∫ z+ ǫ

2

z

lim
n→∞

F̃n(y) dy.(27)



156 ERIC BACH AND JIN-YI CAI

Proof. We will use condition (14) that (g′)3 is dominated by some integrable

function d which is monotonic increasing to ∞ in this range.

For |Y − y| > δn again it is easy by Chernoff bound,
∫

|Y −y|>δn

α dµ ≤ 2/n < 1.

For |Y − y| ≤ δn, we have z < z + δn ≤ Y < z + ǫ. Thus, g′ exists in that range,

and by MVT, there exists ξ between y and Y , such that α = (g′(ξ))2Ŷ ≤ (d(ξ))2/3Ŷ .

Here |ξ − y| ≤ δn. By the monotonicity of d, d(ξ) ≤ d(y − δn). Thus
∫

|Y −y|≤δn

α dµ ≤ (d(y − δn))2/3

∫

Ω

Ŷ dµ ≤ (d(y − δn))2/3.

It follows that Fn(y) =
∫

Ω α dµ < (d(y − δn))2/3 + 1 < 2(d(y − δn))2/3, and

F̃n(y) ≤ 2g′(y)(d(y − δn)2/3 ≤ 2d(y − δn), for any y ∈ [z + 2δn, z + ǫ/2). Let Gn(y) =

F̃n(y) ·1[z+2δn,z+ǫ/2) be defined on [0, 1], where 1 denotes the indicator function, then

for all a > 0,

{y | Gn(y) > a} ⊆ {y ∈ [z + 2δn, z + ǫ/2) | d(y − δn) > a/2}.

So
∫ 1

0

Gn(y) · 1(Gn(y)>a) dy =

∫ 1

0

F̃n(y) · 1[z+2δn,z+ǫ/2) · 1(Gn(y)>a) dy

≤
∫ 1

0

2d(y − δn) · 1[z+2δn,z+ǫ/2) · 1(d(y−δn)>a/2) dy

= 2

∫ 1

0

d(y) · 1[z+δn,z+ǫ/2−δn) · 1(d(y)>a/2) dy

≤ 2

∫ z+ǫ/2

z

d(y) · 1(d(y)>a/2) dy.

This last expression is independent of n. As d is integrable, this quantity goes to 0 as

a → ∞.

Thus, supn E[Gn(y) · 1(Gn(y)>a)] → 0 as a → ∞. This is called uniform integra-

bility of Gn. As limn→∞ Gn(y) exists pointwise, a.e., we can conclude from the theory

of uniform integrability [6, Section 7.10] that

lim
n→∞

∫ 1

0

Gn(y) dy =

∫ 1

0

lim
n→∞

Gn(y) dy.

It is also clear that

lim
n→∞

Gn(y) = lim
n→∞

F̃n(y) · 1(z,z+ǫ/2),

and
∫ 1

0

lim
n→∞

Gn(y) dy =

∫ z+ǫ/2

z

lim
n→∞

F̃n(y) dy.
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Also by definition of Gn,

∫ 1

0

Gn(y) dy =

∫ z+ǫ/2

z+2δn

F̃n(y) dy.

Proposition 5 is proved.

The next Proposition takes care of J−
i , for i = 1, . . . , k.

Proposition 6. The limit in (20) for 1 ≤ i ≤ k holds, namely, if z = yi for

some i = 1, . . . , k is a singularity of g′, then

lim
n→∞

∫ z−2δn

z− ǫ

2

F̃n(y) dy =

∫ z

z− ǫ

2

lim
n→∞

F̃n(y) dy.(28)

Proof. This is symmetric to Proposition 5, by y 7→ 1 − y.

Proposition 7. The limit in (21) holds, namely, if 0 is a singularity of g′, then

lim
n→∞

∫ ǫ/2

δ′

n

F̃n(y) dy =

∫ ǫ/2

0

lim
n→∞

F̃n(y) dy.(29)

Proof. We break Fn(y) =
∫

Ω α dµ into 3 parts,

Fn(y) =

∫

Y <y/2

+

∫

y/2≤Y ≤y+δn

+

∫

y+δn<Y

.

For Y < y/2 and Y > y + δn, we use two versions of Chernoff bounds [3],

µ(Y < y/2) < e−yn/8 < e−δ′

n
n/8 = 1/n,

and

µ(Y > y + δn) < e−2δ2
n

n = 1/n2.

Thus,

∫

Y <y/2

α dµ +

∫

y+δn<Y

α dµ ≤ n(µ(Y < y/2) + µ(Y > y + δn)) < 1 + 1/n < 2.

For y/2 ≤ Y ≤ y + δn, by MVT, there exists ξ between y and Y , such that

α = (g′(ξ))2Ŷ . We have y/2 ≤ ξ ≤ y + δn ≤ ǫ/2 + δn < ǫ, therefore the upper bound

(15) holds at ξ, and we get g′(ξ) ≤ 1/ξ(2−ǫ)/3 ≤ 1/(y/2)(2−ǫ)/3. Thus,

∫

y/2≤Y ≤y+δn

α dµ ≤ 4

y(4−2ǫ)/3

∫

Ω

Ŷ dµ ≤ 4

y(1−2ǫ)/3
.

It follows that, by (15) again,

g′(y)

∫

y/2≤Y ≤y+δn

α dµ ≤ 4

y1−ǫ
,

which is integrable near 0.
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Finally,

F̃n(y) = g′(y)

∫

Ω

α dµ ≤ 2g′(y) +
4

y1−ǫ
,

which is integrable near 0.

Let F ∗
n(y) = F̃n(y) · 1[δ′

n
,ǫ/2) be defined on [0, 1], then F ∗

n(y) is bounded above

by an integrable function on [0, 1], and therefore we can apply Lebesgue’s dominated

convergence theorem.

It follows that

lim
n→∞

∫ 1

0

F ∗
n (y) dy =

∫ 1

0

lim
n→∞

F ∗
n (y) dy

=

∫ 1

0

( lim
n→∞

F̃n(y)) · 1(0,ǫ/2) dy

=

∫ ǫ/2

0

lim
n→∞

F̃n(y) dy.

As clearly
∫ 1

0
F ∗

n(y) dy =
∫ ǫ/2

δ′

n

F̃n(y) dy, this completes the proof of Proposition 7.

Symmetrically, by the map y 7→ 1 − y we can prove

Proposition 8. The limit in (22) holds, namely, if 1 is a singularity of g′, then

lim
n→∞

∫ 1−δ′

n

1−ǫ/2

F̃n(y) dy =

∫ 1

1−ǫ/2

lim
n→∞

F̃n(y) dy.(30)

6. Modeling Prior Information and Non-uniform Penalties. In this sec-

tion we generalize our model to let the the receiver have prior information about the

transmitter’s value x. To convey this information, we use a weight function ϕ (“prior

density” in Bayesian jargon) that we assume differentiable and positive on (0, 1).

Such a weight function also allows us to weight errors differently, depending on

the value of x. For example, to send 0 and receive 0.1 might be much worse than to

send 0.5 and receive 0.6, and the weight function can reflect this.

We are thus led to the more general problem of choosing an admissible y to

minimize

∫ 1

0

w(y)ϕ(x)

(y′)2
dx.

For simplicity and clarity of exposition we will assume y smooth, i.e. y ∈ C1[0, 1].

Again, we begin with a variational approach. If L is the integrand, then

(31)
∂L

∂y
− d

dx

∂L

∂y′ = 3w′ϕ(y′)−2 + 2wϕ′(y′)−3 − 6wϕ(y′)−4y′′.

On the other hand,

(32)
d

dx

(

wϕα(y′)β
)

= w′ϕα(y′)β+1 + αwϕα−1ϕ′(y′)β + βwϕα(y′)β−1y′′.
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The coefficients of (31) and (32) are proportional provided that (3 : 2 : −6) = (1 : α :

β). Therefore, for α = 2/3 and β = −2, we can put the Euler-Lagrange equation in

the form

ϕ1/3(y′)−1 d

dx

(

wϕ2/3(y′)−2
)

= 0.

This implies that

w(y)ϕ(x)2/3 = c(y′)2,

for some constant c. If we take the square root of both sides and then separate

variables, we see that

(33)

∫

ϕ1/3dx = c1

∫

dy
√

w(y)
+ c2.

This relation plus the boundary conditions y(0) = 0, y(1) = 1 will determine y.

When w(y) = y(1 − y) we can integrate the right hand side and solve for y to

obtain

y =
1 − cos(AΦ(x) + B)

2
,

where Φ(x) =
∫ x

0 ϕ(t)1/3dt. The optimal function will not change if we multiply ϕ

by a constant, so let us normalize ϕ so that Φ(1) = 1. Clearly Φ is monotonic, and

Φ(0) = 0. From the boundary conditions, we get A = π and B = 0, so

y =
1 − cos(πΦ(x))

2
.

Optimality now can be proved as before. First, for our choice of y we have
∫ 1

0

y(1 − y)ϕ(x)

(y′)2
dx =

∫ 1

0

ϕ(x)

π2Φ′(x)2
dx =

1

π2

∫ 1

0

ϕ(x)1/3dx =
1

π2
.

Now, suppose y is any other function. Then there is a function θ, increasing from

0 to 1 on [0,1], for which

y =
1 − cos(πθ(Φ(x)))

2
.

Then
∫ 1

0

y(1 − y)ϕ(x)

(y′)2
dx =

1

π2

∫ 1

0

ϕ(x)1/3

[θ′(Φ(x))]2
dx.

Since
∫ 1

0 ϕ1/3 = 1, we can apply Jensen’s inequality to get

∫ 1

0

ϕ(x)1/3

[θ′(Φ(x))]2
dx ≥

[∫ 1

0

θ′(Φ(x))ϕ(x)1/3dx

]−2

= [θ(1) − θ(0)]
−2

= 1.

It follows from the considerations above that any admissible C1 function is optimal

with respect to some weight. Indeed, let the equation of the path be y = (1 −
cos(πθ(x)))/2, where θ increases from 0 to 1. Then we may take ϕ = (θ′)3.
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7. Connections to Classical Mechanics. There is an intimate connection be-

tween the calculus of variations and classical mechanics, through the work of Lagrange,

Jacobi, Hamilton, and many others. (See [11].) Indeed, as remarked by Lanczos [10,

p. 170], the language and methods of mechanics can be used on variational problems

regardless of their origin. In this appendix we will do this. Although we do not find

any new results thereby, we do gain insight into why our variational problems could

be solved explicitly.

Consider first the case where there is no prior information. Think of y as the

trajectory of a particle moving from 0 to 1. We want to minimize the path functional

∫ 1

0

y(1 − y)

(y′)2
dx.

It is clear from this that we want the “velocity” y′ to be small at ends and large in

the middle. Suppose we attack this in the most naive and ham-handed way possible,

by making the numerator and denominator proportional. That is, let

(

dy

dx

)2

= const y(1 − y).

This leads to the same equation as before:

x = c1 + c2

∫

dy
√

y(1 − y)
.

Why were we so lucky? The integrand F of (0) has the form

F = T (y, y′) − V (y),

(V = 0) so F is the Lagrangian of some system. The corresponding Hamiltonian is

H = T (y, y′) + V (y) = F.

Now, ∂H/∂x = 0, since H doesn’t involve x explicitly, so H is constant [11, p. 132].

It is also instructive to derive the main differential equation (33) for the general

case in a more systematic way. The generalized momentum corresponding to y is

(34) z = y′Fy′ = −2wϕ(y′)−2

So the Hamiltonian (for which F is the Lagrangian) is

H = y′Ly′ − L =
3

2
zy′.

Using (34) to get a value for y′, we see that

H(x, y, z) = −az2/3w1/3ϕ1/3.
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Here a is a positive constant whose value is not important. Knowing H , we can form

the Hamilton-Jacobi equation [11, p. 147]:

(35)
∂S

∂x
+ H(x, y,

∂S

∂y
) =

∂S

∂x
− a(

∂S

∂y
)2/3w1/3ϕ1/3 = 0

We try a solution of the form S1(x) + S2(y) and discover that

ϕ−1/3dS1/dx = aw(y)1/2dS2/dy

must hold identically, which is only possible if both sides are constants. This implies

that

S1 =

∫

ϕ(t)1/3dt, S2 =

∫

dy
√

w(y)

Reduction of (35) to quadrature can be predicted from its form [5, p. 95].

8. Open Problems. A natural generalization to our information transmission

problem is to consider a higher dimensional analog of it.

In the problem we have just addressed, there is one real number x ∈ [0, 1] that

A wishes to transmit to B. A natural 2-dimensional version of it is this: We have

a point x on the convex hull ∆ of {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. That is, x = p1e1 +

p2e2 +p3e3, where p1, p2, p3 ≥ 0 and p1 +p2 +p3 = 1. The transmitter A can generate

i.i.d. random variables with three outcomes, perhaps Red, White, and Blue with

probabilities q1, q2 and q3. Of course, (q1, q2, q3) ∈ ∆ as well. Now the transmitter

A and the receiver B must choose beforehand a transformation f which maps ∆ to

itself, with an inverse g. Then, in the same formulation of this paper, what would be

the optimal transformation function f , if one exists?

We don’t have any significant results to report, but we can make two remarks.

First, the Euler-Lagrange equation is a nonlinear PDE with 95 terms. Second, some

of the naive functions from ∆ to ∆ are not optimal. However, Dr. Zhengfeng Ji has

obtained very nice results in that direction [7].
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