
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2008 International Press
Vol. 8, No. 3, pp. 277-302, 2008 005

AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM USING

DUAL DECOMPOSITION TECHNIQUES∗

PUNYASLOK PURKAYASTHA† AND JOHN S. BARAS†

Abstract. We consider the routing problem in wireline, packet-switched communication net-

works. We cast our optimal routing problem in a multicommodity network flow optimization frame-

work. Our cost function is related to the congestion in the network, and is a function of the flows on

the links of the network. The optimization is over the set of flows in the links corresponding to the

various destinations of the incoming traffic. We separately address the single commodity and the

multicommodity versions of the routing problem. We consider the dual problems, and using dual

decomposition techniques, we provide primal-dual algorithms that converge to the optimal solutions

of the problems. Our algorithms, which are subgradient algorithms to solve the corresponding dual

problems, can be implemented in a distributed manner by the nodes of the network. For online, adap-

tive implementations of our algorithms, the nodes in the network need to utilize ‘locally available

information’ like estimates of queue lengths on outgoing links. We show convergence to the optimal

routing solutions for synchronous versions of the algorithms, with perfect (noiseless) estimates of

the queueing delays. Every node of the network controls the flows on the outgoing links using the

distributed algorithms. For both the single commodity and multicommodity cases, we show that our

algorithm converges to a loop-free optimal solution. Our optimal solutions also have the attractive

property of being multipath routing solutions.

1. Introduction. We consider in this paper the routing problem in wireline,

packet-switched communication networks. Such a network can be represented by a

directed graph G = (N ,L), where N denotes the set of nodes and L the set of directed

links of the network. For such a network we are given a set of origin-destination (OD)

node pairs, with a certain incoming traffic rate (in packets per sec) associated with

each OD pair. The arriving packets at the origin node have to be transported by

the network to the corresponding destination node of the OD pair. The routing

objective is to establish a packet traffic flow pattern so that packets are directed to

their respective destinations while, at the same time, minimizing congestion in the

network. A typical framework for accomplishing the same involves setting up an

optimization problem, with the cost being related to the network-wide congestion

and the constraints being the natural flow conservation relations in the network. For

large-scale networks which are of interest to us, it is desired that the routing solution

be implementable in a decentralized manner by the nodes of the network.

∗Dedicated to Roger Brockett on the occasion of his 70th birthday.
†The authors are with the Institute for Systems Research and the Department of Electrical and

Computer Engineering, University of Maryland College Park, USA. Research supported by the U.S.

Army Research Laboratory under the CTA C & N Consortium Coop. Agreement DAAD19-01-2-

0011, the National Aeronautics and Space Administration under Coop. Agreement NCC8235, and

by the U.S. Army Research Office under MURI01 Grant No. DAAD19-01-1-0465 and under Grant

No. DAAD19-02-1-0319.

277



278 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

An early important work on optimal routing for packet-switched communication

networks was Gallager [20]. The cost considered was the sum of all the average link

delays in the network, and a distributed algorithm was proposed to solve the problem.

The algorithm preserved loop-freedom after each iteration, and converged to an opti-

mal routing solution. Bertsekas, Gafni, and Gallager [4] proposed a means to improve

the speed of convergence by using additional information of the second derivatives of

link delays. Both the algorithms mentioned above require that related routing infor-

mation like marginal delays be passed throughout the network before embarking on

the next iteration. Another cost function that has been considered in the literature is a

sum of the integrals of queueing delays; see Kelly [22] and Borkar and Kumar [8]. The

solution to this problem can be characterized by the so-called Wardrop equilibrium

[31] - between a source-destination pair, the delays along routes being actively used

are all equal, and smaller than the delays of the inactive routes. Another formulation

of the optimal routing problem, called the path flow formulation (see Bertsekas [1] and

Bertsekas and Gallager [3]), has been in vogue. Tsitsiklis and Bertsekas [29] consid-

ered this formulation, and used a gradient projection algorithm to solve the optimal

routing problem in a virtual circuit network setting. They also proved convergence

of a distributed, asynchronous implementation of the algorithm. This formulation

was considered by Elwalid, Jin, Low, and Widjaja [18] to accomplish routing in IP

datagram networks using the Multi-Protocol Label Switching (MPLS) architecture.

The routing functionality is shifted to the edges of the network (a feature of the path

flow formulation; this is also known as ‘source routing’), and requires measurements of

marginal delays on all paths linking a source and a destination. Because the number of

such paths could scale exponentially as the network size grows, it is not clear that the

solution would scale computationally. Multipath routing and flow control based on

utility maximization have also been considered, notably in Kar, Sarkar, and Tassiulas

[21] and in Wang, Palaniswami, and Low [30]. Kar, Sarkar and Tassiulas propose an

algorithm which uses congestion indicators to effect control of flow rates on individual

links, but do not explicitly consider congestion indicators based on queueing delays

as we do (their congestion indicators are based on flows on links). Their algorithm

avoids the scalability issue mentioned above. On the other hand, Wang, Palaniswami,

and Low consider a path flow formulation of the multipath routing and flow control

problem, which as we have mentioned above has scalability problems. However, they

do consider the effect of queueing delays, extracting related information by measuring

the round trip times. Recently, dual decomposition techniques have been used by

Eryilmaz and Srikant [19], Lin and Shroff [24], Neely, Modiano, and Rohrs [25], and

Chen, Low, Chiang, and Doyle [15], to design distributed primal-dual algorithms for

optimal routing and scheduling in wireless networks. Such techniques consider the

dual to the primal optimization problem and exploit separable structures in the costs

and/or constraints to come up with a decomposition which automatically points the



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 279

way towards distributed implementations. The seminal work of Kelly, Maulloo, and

Tan [23] showed how congestion control can be viewed in this way. The approach

(called Network Utility Maximization (NUM)) has gained currency and has been

applied to a variety of problems in wireline and wireless communication networks,

cutting across all layers of the protocol stack (see [16]).

We cast our optimal routing problem in a multicommodity network flow opti-

mization framework. Our cost function is related to the congestion in the network,

and is a function of the flows on the links of the network. The optimization is over

the set of flows in the links corresponding to the various destinations of the incoming

traffic. We separately address the single commodity and the multicommodity versions

of the routing problem. Our approach is to consider the dual optimization problems,

and using dual decomposition techniques we provide primal-dual algorithms that con-

verge to the optimal solutions of the problems. Our algorithms, which are subgradient

algorithms to solve the corresponding dual problems, can be implemented in a dis-

tributed manner by the nodes of the network. For online, adaptive implementations

of our algorithms, the nodes in the network need to utilize ‘locally available infor-

mation’ like estimates of queue lengths on outgoing links. We show convergence to

the optimal routing solutions for synchronous versions of the algorithms, with per-

fect (noiseless) estimates of the queueing delays (these essentially are the convergence

results of the corresponding subgradient algorithms). Our optimal routing solution

is not an end-to-end solution (our formulation is not a path-based formulation) like

many of the above-cited works [29], [18], [30]. Consequently, our algorithms would

avoid the scalability issues related to such an approach. Every node of the network

controls the total as well as the commodity flows on the outgoing links using the

distributed algorithms. Our optimal solutions also have the attractive property of be-

ing multipath routing solutions. Furthermore, by using a parameter (β) we can tune

the optimal flow pattern in the network, so that more flow can be directed towards

the links with higher capacities by increasing the parameter (we observe this in our

numerical computations).

The Lagrange multipliers (dual variables) can be interpreted as potentials on the

nodes for the single commodity case, and as potential differences across the links for

the multicommodity case.. Then, with every link of the network there is associated

a characteristic curve (see Bertsekas [1] and Rockafellar [27]), which describes the

relationship between the potential difference across the link and the link flow, the

potential difference being thought of as ‘driving the flow through the link’. Using the

relationships between the potential differences and the flows, we then provide simple

proofs showing that our algorithm converges to a loop-free optimal solution, which is

a desirable property. Our techniques are related to those employed in the literature

on NUM methods.

The methods, results and approach presented here make substantial contact with,



280 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

and indeed are inspired from, several ideas and results of Roger Brockett through the

years. Indeed our costs are expressed as path integrals and our methods lead to

gradient and subgradient optimization interpretation in a very concrete way. These

ideas are related to the work of Brockett in [9, 13, 10]. Brockett often developed

“electrical network” intuition for several diverse and seemingly unrelated problems –

see for instance [13, 10, 14, 6, 11]. Our approach and solutions have very much such

an “electrical network” intuition, see in particular the comments at the end of the first

part of section 3 and the monographs of Dennis [17] and Rockafellar [27]. Network

flow optimization is indeed a generalization of the assignment problem (see [1]). In

this context our methods and approach result in gradient and subgradient algorithms

(even distributed ones) to solve these network flow optimization problems. In this

context our results are related to the work of Brocket and his research collaborators

in [14, 6, 11]. As we state at the end of the first part of section 3 our methods amount

to solving flow optimization problems via analog computation, an idea that Brockett

developed even for discrete optimization problems [7]. The fact that the form of

our costs was inspired by our earlier work on the convergence of the so called “Ant

Routing Algorithm” [26], indicates the close interrelationships between the routing

costs and the stability analysis of routing algorithms, in a spirit related to the early

work of Brockett in [9]. Finally, recently Brockett has turned his attention to queuing

networks – see [12] and more recent work. Indeed at a recent workshop he suggested

to one of us (Baras) that our work on trust in communication networks and on the

related problem area of collaboration among nodes in networks, could be given an

“electrical network” interpretation and thus be treated via optimization methods and

gradient-subgradient algorithms – a suggestion we are pursuing.

Our paper is organized as follows. In the next section, we discuss the formulation

of our optimal routing problem in detail. In Section 3 we investigate the special case of

the single commodity problem, and in Section 4 we consider the general problem with

multiple commodities (corresponding to different destinations of the incoming traffic).

For both cases a few examples that illustrate the computations are also provided.

2. General Formulation of the Routing Problem. We now describe in brief

our formulation. Let r
(k)
i ≥ 0 denote the rate of input traffic entering the network

at node i and destined for node k 1. The flow on link (i, j) corresponding to packets

bound for destination k is denoted by f
(k)
ij . The total flow on link (i, j) is denoted

by Fij and is given by Fij =
∑

k∈N f
(k)
ij . All packet flows having the same node as

destination are said to belong to one commodity, irrespective of where they originate.

Let Cij denote the total capacity of link (i, j). At node i, for every outgoing link (i, j),

there is an associated queue which is assumed to be of infinite size. Let Dij(Fij) denote

1The arrival process is usually modeled as a stationary stochastic process, and r
(k)
i then refers

to the time averaged rate of the process.



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 281

the average packet delay in the queue when the total traffic flow through (i, j) is Fij ,

with Fij satisfying the constraint 0 ≤ Fij < Cij . (Quantities Fij , r
(k)
i , f

(k)
ij and Cij

are all expressed in the same units of packets/sec.)

Let f denote the (column) vector of commodity link flows f
(k)
ij , (i, j) ∈ L, k ∈ N ,

in the network. We consider the following optimal routing problem:

Problem (A) : Minimize the (separable) cost function

G(f) =
∑

(i,j)∈L

Gij(Fij) =
∑

(i,j)∈L

∫ Fij

0

u[Dij(u)]
β
du,

subject to

∑

j:(i,j)∈L

f
(k)
ij = r

(k)
i +

∑

j:(j,i)∈L

f
(k)
ji , ∀i, k 6= i,(1)

f
(k)
ij ≥ 0, ∀(i, j) ∈ L, k 6= i,(2)

f
(i)
ij = 0, ∀(i, j) ∈ L,(3)

Fij =
∑

k∈N

f
(k)
ij , ∀(i, j) ∈ L,(4)

with 0 ≤ Fij < Cij , ∀(i, j) ∈ L.

In an earlier work on convergence of Ant-Based Routing Algorithms [26], we

showed, for a simple network involving N parallel links between a source-destination

pair of nodes, that the equilibrium routing flows were such that they solved an opti-

mization problem with a similar cost function and with similar capacity constraints as

above. The scheme also yielded a multipath routing solution. It was natural to look

for a generalization for the network case that has similar attractive properties. We

shall see, using dual decomposition techniques, that the solution to our (optimiza-

tion) Problem (A) is also a multipath routing solution, which can be implemented

in a distributed manner by the nodes in the network. Our cost function is related

to the network-wide congestion as measured by the link delays, and is small if the

link delays are small. (Other cost functions have been used in the literature: in Gal-

lager [20] and Bertsekas, Gallager and Gafni [4] it is of the form (in our notation)

D(f) =
∑

(i,j)∈L Dij(Fij); and in the Wardrop routing formulation (see Kelly [22]) it

is of the form W (f) =
∑

(i,j)∈L

∫ Fij

0 Dij(u)du.) The parameter β in our cost can be

used to change the overall optimal flow pattern in the network. Roughly speaking, a

low value of β results in the flows being more ‘uniformly distributed’ on the paths,

whereas a high value of β tends to make the flows more concentrated on links lying

on higher capacity paths.

Constraints (1) above are the per-commodity flow balance equations at the net-

work nodes (flow out of the node = flow into the node), and constraints (3) express

the fact that once a packet reaches its intended destination it is not routed back into

the network. The optimization is over the set of link flow vectors f .



282 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

3. The Single Commodity Problem: Formulation and Analysis. We con-

sider in this section the single commodity problem, which involves routing of flows

to a common destination node, which we label as d. We restate the problem for this

special case in the following manner:

Problem (B) : Minimize G(F) =
∑

(i,j)∈L

Gij(Fij) =
∑

(i,j)∈L

∫ Fij

0

u[Dij(u)]
β
du,

subject to

∑

j:(i,j)∈L

Fij = ri +
∑

j:(j,i)∈L

Fji, ∀i ∈ N ,(5)

Fdj = 0, for (d, j) ∈ L,(6)

with 0 ≤ Fij < Cij , ∀(i, j) ∈ L.

ri is the incoming rate for traffic arriving at node i, and destined for d. The opti-

mization is over the set of link flow vectors F, whose components are the individual

link flows Fij , (i, j) ∈ L. As usual, equations (5) give the flow balance equations at

every node and equations (6) refer to the fact that once a packet reaches d, it is not

re-routed back into the network.

We use a dual decomposition technique of Bertsekas [1] to develop a distributed

primal-dual algorithm that solves the above-stated optimal routing problem. We carry

out our analysis under the following fairly natural assumptions. These assumptions

are also used, almost verbatim, for the multicommodity version of the problem in

Section 4.

Assumptions:

(A1) Dij(u) is a nondecreasing, continuously differentiable, positive real-valued

function of u, defined over the interval [0, Cij).

(A2) limu↑Cij
Dij(u) = +∞.

(A3) There exists at least one feasible solution of the primal Problem (B).

Assumption (A1) is a reasonable one, because when the flow u through a link

increases, the average queueing delay (which is a function of the flow u) increases too.

Assumption (A2) is satisfied for most queueing delay models of interest. Assumption

(A3) implies that there exists a link flow pattern in the network such that the incoming

traffic can be accommodated without the flow exceeding the capacity in any link.

We start the analysis by attaching prices (Lagrange multipliers) pi ∈ R, to the

flow balance equations (5) and form the Lagrangian function L(F,p)

L(F,p) =
∑

(i,j)∈L

Gij(Fij) +
∑

i∈N

pi

(

∑

j:(j,i)∈L

Fji + ri −
∑

j:(i,j)∈L

Fij

)

,



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 283

a function of the (column) price vector p and the link flow vector F. We can rearrange

the Lagrangian to obtain the following convenient form

(7) L(F,p) =
∑

(i,j)∈L

(

Gij(Fij) − (pi − pj)Fij

)

+
∑

i∈N

piri.

Using the Lagrangian, the dual function Q(p) can be found by

Q(p) = inf L(F,p),

where the infimum is taken over all vectors F, such that the components Fij satisfy

0 ≤ Fij < Cij .

From the form (7) for the Lagrangian function, we can immediately see that

Q(p) =
∑

(i,j)∈L

inf
{Fij :0≤Fij<Cij}

(

Gij(Fij) − (pi − pj)Fij

)

+
∑

i∈N

piri,

=
∑

(i,j)∈L

Qij(pi − pj) +
∑

i∈N

piri,(8)

where Qij(pi − pj) = inf{Fij :0≤Fij<Cij}

(

Gij(Fij) − (pi − pj)Fij

)

. We can extend the

definition of the function Gij to the whole of R, by simply setting it to be +∞ outside

[0, Cij). Then the function −Qij(pi − pj) = sup{Fij∈R}

(

(pi − pj)Fij − Gij(Fij)
)

is

just the conjugate or the Legendre transform [1, 27] of the function Gij .

The dual optimization problem, to Problem (B), is

Problem (BD): Maximize Q(p)

subject to no constraints on p (i.e., p ∈ R
|N |).

The dual function is a concave function and the dual optimization problem is

a convex optimization problem. According to our Assumption (A3) and from the

fact that Gij(Fij) is differentiable for every Fij in [0, Cij), with the derivative being

G′
ij(Fij) = Fij [Dij(Fij)]

β
, there exists a regular 2 primal feasible solution to our

primal problem, Problem (B). Then, by Proposition 9.3 of Bertsekas [1], if F∗ is an

optimal solution of the primal problem, there exists an optimal solution p∗ of the

dual problem that satisfies the following Complementary Slackness (CS) conditions

together with F∗

(9) Gij(F
∗
ij)− (p∗i − p∗j )F

∗
ij = inf

{Fij :0≤Fij<Cij}

(

Gij(Fij)− (p∗i − p∗j )Fij

)

, ∀(i, j) ∈ L.

Also, by Proposition 9.4 of Bertsekas [1], the optimal primal and dual costs are equal

- that is, the duality gap is zero 3. Consider the minimization problem in the CS-

condition (9) (for each link (i, j))

2A flow vector is called regular if for every link (i, j), the left derivative G−
ij(Fij) < ∞, and the

right derivative G+
ij(Fij) > −∞ [1].

3This fact is nontrivial and a proof requires the techniques of monotropic programming [27], [1].



284 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

Minimize Gij(Fij) − (pi − pj)Fij =
∫ Fij

0
u[Dij(u)]

β
du − (pi − pj)Fij

subject to 0 ≤ Fij < Cij .

The second derivative of Gij is G′′
ij(Fij) = [Dij(Fij)]

β
+ βFij [Dij(Fij)]

β−1
D′

ij(Fij).

Under our Assumption (A1), Gij(Fij) is twice continuously differentiable and strictly

convex on the interval [0, Cij), so that the minimization problems above are all convex

optimization problems on convex sets. We can show that for any price vector p (in

particular, for an optimal dual vector p∗), there exists a unique Fij ∈ [0, Cij) (for

every (i, j)) which attains the minimum in the above optimization problem (Lemma

3, Appendix).

Conditions equivalent to (9) that an optimal primal-dual pair (F∗,p∗) must satisfy

are given by (for each (i, j) ∈ L)

F ∗
ij [Dij(F

∗
ij)]

β ≥ p∗i − p∗j , if F ∗
ij = 0,(10)

F ∗
ij [Dij(F

∗
ij)]

β = p∗i − p∗j , if F ∗
ij > 0.(11)

We also make the following observation. Suppose p∗i − p∗j ≤ 0; then because for

any Fij > 0, Gij(Fij) − (p∗i − p∗j )Fij =
∫ Fij

0
u[Dij(u)]βdu − (p∗i − p∗j )Fij > Gij(0) −

(p∗i − p∗j ).0 = 0, F ∗
ij = 0 must then be the unique global minimum. Now, consider the

contrapositive of (10) : if p∗i − p∗j > 0 then F ∗
ij > 0. Thus, if p∗i − p∗j > 0 then F ∗

ij is

positive, and is given by the solution to the nonlinear equation

F ∗
ij [Dij(F

∗
ij)]

β = p∗i − p∗j .

Because Dij is a nondecreasing and continuously differentiable function, the above

equation has a unique solution for F ∗
ij .

To summarize, an optimal primal-dual pair (F∗,p∗) is such that the following

relationships are satisfied for each link (i, j),

F ∗
ij = 0, if p∗i − p∗j ≤ 0,(12)

F ∗
ij [Dij(F

∗
ij)]

β
= p∗i − p∗j , if p∗i − p∗j > 0,(13)

and in this case F ∗
ij > 0. In analogy with electrical networks, the relations above

can be interpreted as providing the ‘terminal characteristics’ of the ‘branch’ (i, j).

The Lagrange multipliers p∗i can be thought of as ‘potentials’ on the nodes, and the

flows F ∗
ij as ‘currents’ on the links. The branch can be thought of as consisting of

an ideal diode in series with a nonlinear current-dependent resistance. The difference

of the ‘potentials’ or ‘voltage’ p∗i − p∗j , when positive, drives the ‘current’ or flow F ∗
ij

through a nonlinear flow-dependent resistance according to the law defined by (13).

This analogy with electrical circuit theory helps in developing intuition. It was known

(for the case of a quadratic cost function) to Maxwell, and was exploited by Dennis

[17], who suggested that flow optimization problems with separable convex costs can

be solved by setting up an electrical network with arcs having terminal characteristics



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 285

that can be derived in the same way as for our case. Once the network reaches

equilibrium (starting from some initial condition), the currents and potentials can be

simply ‘read off’ and are the optimal solutions to the primal and dual optimization

problems, respectively. This amounts to solving the flow optimization problem using

analog computation.

3.1. Distributed Solution of the Dual Optimization Problem. We now

focus on solving the dual problem using a distributed primal-dual algorithm. We first

make a quick remark on the differentiability properties of the dual function Q(p). It

can be verified that, for each (i, j) and (j, i), the partial derivatives
∂Qij(pi−pj)

∂pi
and

∂Qji(pj−pi)
∂pi

exist for all pi ∈ R. Then, at any point p, the partial derivatives ∂Q(p)
∂pi

all exist and can be easily seen to be given by

(14)
∂Q(p)

∂pi

=
∑

j:(i,j)∈L

∂Qij(pi − pj)

∂pi

+
∑

j:(j,i)∈L

∂Qji(pj − pi)

∂pi

+ ri, i ∈ N .

The gradient vector ∇Q(p) can thus be evaluated at each point p.

The dual optimization problem can now be solved by the following simple gradient

algorithm starting from an arbitrary initial price vector p0

(15) pn+1 = pn + αn∇Q(pn), n ≥ 0,

where {αn} is a suitably chosen step-size sequence that ensures convergence of the

gradient algorithm to an optimal dual vector p∗. We now try to simplify the expression

(14), and get it into a form that is suitable for computational purposes.

We had shown earlier that the minimum in the equation

Qij(pi − pj) = inf
{Fij : 0≤Fij<Cij}

(

Gij(Fij) − (pi − pj)Fij

)

is uniquely attained for each scalar pi − pj by the flow Fij which satisfies relations

(12) and (13). Let us denote such a flow using the notation Fij(pi − pj), emphasizing

its functional dependence on the price difference pi − pj . Then

Qij(pi − pj) = Gij(Fij(pi − pj)) − (pi − pj)Fij(pi − pj).

Notice that
∂Qij(pi−pj)

∂pi
= −Fij(pi − pj), and that

∂Qji(pj−pi)
∂pi

= Fji(pj − pi), so that

(16)
∂Q(p)

∂pi

=
∑

j:(j,i)∈L

Fji(pj − pi) −
∑

j:(i,j)∈L

Fij(pi − pj) + ri, i ∈ N .

The right hand side in the above equation can be interpreted to be the surplus flow at

node i. The gradient algorithm (15) can now be written down in terms of iterations

on the individual components of the price vector p as follows

(17) pn+1
i = pn

i + αn

(

∑

j:(j,i)∈L

Fji(p
n
j − pn

i ) −
∑

j:(i,j)∈L

Fij(p
n
i − pn

j ) + ri

)

,



286 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

where for each (i, j),

Fij(p
n
i − pn

j ) = 0, if pn
i − pn

j ≤ 0,(18)

Fij(p
n
i − pn

j ) > 0, if pn
i − pn

j > 0,(19)

and can be determined by solving the equation Fij [Dij(Fij)]
β = pn

i −pn
j . The relations

(17), (18), and (19), can be used as a basis for a distributed algorithm that converges

to a solution of the dual optimization problem. We now describe a general, online

version of such an algorithm. The algorithm can be initialized with an arbitrary

price vector p0. (Each node can choose a real number as the initial value of its price

variable.) Let’s suppose that at the start of a typical iteration, the dual vector is p,

with each node i having available information of its own price pi as well as the prices

pj of its neighbor nodes j such that (i, j) ∈ L. Each node i makes an estimate of

the average queueing delay on each of its outgoing links (i, j). This estimate can be

made by taking measurements of the packet delays over a time window and taking

an average, or by using a ‘running’ estimator like an exponential averaging estimator.

The flows Fij(pi − pj) are then determined by using relations (18) and (19), and

node i adjusts the flows on its outgoing links to these values. Each node i then

broadcasts the updated flow values to its neighbors j. In this way, every node i has

information regarding the flows Fij(pi − pj) and Fji(pj − pi) on the links (i, j) and

(j, i), respectively. Node i can then use (17) to update its own dual variable pi, and

broadcasts to all the neighbor nodes this updated value. A fresh iteration can now

commence with these updated dual variables. The general algorithm, as described, is

adaptive and the updates of the dual variables and the flow variables in general take

place asynchronously. As in [26], the outgoing flow on a link depends on the inverse

of the estimated queueing delay on that link.

Although we have described a general, asynchronous, distributed algorithm for

the dual problem, we shall discuss convergence only for the special case of the syn-

chronous version as given by equations (17), (18), and (19), with ‘perfect’ (‘noiseless’)

measurements of the delays. We can view the gradient algorithm (15) as a special

case of a subgradient algorithm, and employ the results of convergence analysis (see,

for example, Shor [28]) for the latter algorithm. For simplicity, we confine ourselves

to a discussion of the constant step-size case - αn = α, for some small, positive α.

The central result is that, if the gradient vector ∇Q(p) has a bounded norm (that is,

||∇Q(p)|| ≤ G, for some constant G, and for all p), then for a small positive number

h,

(20) Q(p∗) − lim
n→∞

Qn < h,

where Qn is the ‘best’ value found till the n-th iteration, i.e., Qn = max(Q(p0), Q(p1),

. . . , Q(pn)). The number h is a function of the step-size α, and decreases with it. In



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 287

r
1

r
2

1

2

 3

4

C
13

C

C

C

C
21 32

34

Destination
24

Fig. 1. The network topology and the traffic inputs : A single commodity example

our case, for any p, the partial derivatives

∣

∣

∣

∂Q(p)

∂pi

∣

∣

∣
=
∣

∣

∣

∑

j:(j,i)∈L

Fji(pj − pi) −
∑

j:(i,j)∈L

Fij(pi − pj) + ri

∣

∣

∣

≤
∑

j:(j,i)∈L

Cji +
∑

j:(i,j)∈L

Cij + ri

are bounded, and so, the gradient vector ∇Q(p) is also (uniformly) upper bounded.

The convergence result therefore holds in our case (with a constant step-size).

3.2. Loop Freedom of the Algorithm. Loop freedom is a desirable feature

for any routing algorithm because communication resources are wasted if packets are

routed in loops through the network. We now show, for the single commodity case

under discussion, that the primal-dual algorithm converges to a set of optimal link

flows, F ∗
ij , (i, j) ∈ L, which are loop free.

Lemma 1. An optimal link flow vector F∗ is loop free.

Proof. Suppose that an optimal link flow vector F∗ is such that it forms a loop in

the network. Then for some sequence of links (i1, i2), (i2, i3), . . . , (in, i1) that form a

cycle, there is a positive flow on each of the links : F ∗
i1i2

> 0, F ∗
i2i3

> 0, . . . , F ∗
ini1

> 0.

This implies, by relation (11), that

p∗i1 − p∗i2 > 0, p∗i2 − p∗i3 > 0, . . . , p∗in
− p∗i1 > 0,

which is impossible. (None of the nodes i1, i2, . . . , in above can be the destination

node d, because of the condition (equation (6)) that flows are not re-routed back to

the network once they reach the destination.)

3.3. An Example. We consider a simple example network in this subsection.

We illustrate the computations and show how the allocation of flows to the links by

the routing algorithm changes as the link capacities are changed, and that the optimal

flow allocations avoid forming loops in the network.



288 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

Table 1

Optimal flows and ‘potentials’ (C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 4)

Optimal link flows Optimal node potentials
F ∗

13 = 6.89 p∗1 = 3.19

F ∗
21 = 0.89 p∗2 = 3.48

F ∗
24 = 3.11 p∗3 = 0.97

F ∗
34 = 6.89 p∗4 = 0.00

F ∗
32 = 0.00

The network that we consider is shown in Figure 1. There are incoming traffic

flows at nodes 1 and 2, and the destination node is 4. The incoming traffic rates

at nodes 1 and 2 are r1 = 6 and r2 = 4. Cij denotes the capacities of the links

(i, j). In what follows, we assume that β = 1 and that the delay functions are of

the form Dij(Fij) = 1
Cij−Fij

. (This is the commonly made M/M/1 approximation,

also referred to as “Kleinrock’s independence assumption” [3].) This delay function

satisfies our assumptions (A1) and (A2). We now set up the gradient algorithm.

For this case, the relations (18) and (19) reduce to

Fij(p
n
i − pn

j ) = 0, if pn
i − pn

j ≤ 0,

Fij(p
n
i − pn

j ) =
(pn

i − pn
j )Cij

1 + pn
i − pn

j

, if pn
i − pn

j > 0.

We set up the gradient algorithm with a small constant step-size, i.e., αn = α, for

some small positive α, and start with an arbitrary initial dual vector p0. Each dual

vector component is updated using the equation

pn+1
i = pn

i + α
(

∑

j:(j,i)∈L

Fji(p
n
j − pn

i ) −
∑

j:(i,j)∈L

Fij(p
n
i − pn

j ) + ri

)

,

where Fij(p
n
i − pn

j ) and Fji(p
n
j − pn

i ) are computed using the above equations.

The capacities of the links are C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 4,

and α is set equal to 0.05. The optimal flows and potentials with this setting are

tabulated in Table 1.

Keeping the capacities of the other links fixed, we can increase the capacity C24

until the entire flow that arrives at node 2 goes through the link (2, 4) and no fraction

traverses (2, 1). This happens when C24 is increased to 8. The optimal flows and

potentials that result are tabulated in Table 2.

If we now further increase the capacity C24, because the flow coming in at node 3

now sees an additional available path that goes through node 2 to node 4 and which

has high capacity, a fraction of the flow arriving at 3 goes through this path. The

optimal flows and potentials when C24 is set at 16 are tabulated in Table 3.

The optimal flow allocations on links thus vary as the capacities vary relative to

each other. In fact the routing algorithm can be seen as accomplishing a form of re-



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 289

Table 2

Optimal flows and ‘potentials’ (C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 8)

Optimal link flows Optimal node potentials
F ∗

13 = 6.00 p∗1 = 2.25

F ∗
21 = 0.00 p∗2 = 1.00

F ∗
24 = 4.00 p∗3 = 0.75

F ∗
34 = 6.00 p∗4 = 0.00

F ∗
32 = 0.00

Table 3

Optimal flows and ‘potentials’ (C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 16)

Optimal link flows Optimal node potentials
F ∗

13 = 6.00 p∗1 = 2.11

F ∗
21 = 0.00 p∗2 = 0.41

F ∗
24 = 4.67 p∗3 = 0.61

F ∗
34 = 5.33 p∗4 = 0.00

F ∗
32 = 0.67

source allocation (the resources being the link capacities) that helps relieve congestion

in the network. Also the optimal flow allocations are always loop free.

3.4. Effect of the parameter β. The positive constant β in the cost function

(
∑

(i,j)∈L

∫ Fij

0
u[Dij(u)]βdu) modulates the optimal outgoing flows on the links as

can be seen from equations (12) and (13). Specifically, as β increases, more flow is

diverted towards the outgoing links that lie on paths having higher link capacities.

In this subsection, we show this for the special case of a network with one source and

one destination, with N parallel paths (of capacities Ci, i = 1, . . . , N) joining them

(Figure 2). The source has an incoming flow of r units which must be split between

the N paths. The optimal routing problem is to find the optimal flows F ∗
i that

minimize the cost
∑N

i=1

∫ Fi

0
u[Di(u)]

β
du, subject to the constraint r =

∑N

i=1 Fi. For

this subsection, we denote the delay along the i-th path by Di(Fi) = D(Fi, Ci), the

notation emphasizing the fact that the queueing delay function D (for instance, the

M/M/1 delay function) is the same for all the paths. We assume that this function

has the following properties: it is positive, and it is a strictly increasing function of Fi

when Ci is held fixed, and a strictly decreasing function of Ci when Fi is held fixed.

It is easy to see that the optimal flows F ∗
i , i = 1, . . . , N, satisfy the following

equations

F ∗
1 .D(F ∗

1 , C1)
β

= · · · = F ∗
N .D(F ∗

N , CN )
β
,

F ∗
1 + · · · + F ∗

N = r,

as well as the inequalities (queue stability conditions) 0 ≤ F ∗
i < Ci, i = 1, . . . , N .



290 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

Source  S Destination D

Capacity C

Capacity CN

1

.

.

.

F

F

1

N

r

Fig. 2. The N parallel paths network

We denote this (unique) solution by F ∗(β) = (F ∗
1 (β), . . . , F ∗

N (β)), emphasizing its

dependence on β.

Suppose now that C1 > C2 = · · · = CN . Then using the relations

F ∗
1 (β)[D(F ∗

1 (β), C1)]
β = · · · = F ∗

N (β)[D(F ∗
N (β), CN )]β ,

one can check that

F ∗
1 (β) > F ∗

2 (β) = · · · = F ∗
N (β)

and consequently that

(21) D(F ∗
1 (β), C1) < D(F ∗

2 (β), C2)(= · · · = D(F ∗
N (β), CN )).

In this subsection, lets assume that β is a nonnegative real number (instead of

being a positive integer). To arrive at a contradiction, lets suppose, for some small

positive δβ that F ∗
1 (β + δβ) < F ∗

1 (β); then we also have F ∗
2 (β + δβ) > F ∗

2 (β). This

implies that

(22)
F ∗

1 (β + δβ)

F ∗
2 (β + δβ)

<
F ∗

1 (β)

F ∗
2 (β)

.

Using the relationships with the delays, we then have

[D(F ∗
2 (β + δβ), C2)

D(F ∗
1 (β + δβ), C1)

]
β+δβ

<
[D(F ∗

2 (β), C2)

D(F ∗
1 (β), C1)

]
β

,

[D(F ∗
2 (β + δβ), C2)

D(F ∗
2 (β), C2)

.
D(F ∗

1 (β), C1)

D(F ∗
1 (β + δβ), C1)

]
β+δβ

<
[D(F ∗

1 (β), C1)

D(F ∗
2 (β), C2)

]
δβ

.

Using the hypothesis and the monotonicity property of the delay function with

respect to the flow, it is easy to see that the left hand side of the above inequality is

greater than one, which implies that

D(F ∗
1 (β), C1) > D(F ∗

2 (β), C2),



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 291

which contradicts the relation (21).

We now show that in fact
dF∗

1
(β)

dβ
> 0, when C1 > Ci, i = 2, . . . , N . Then we have

F ∗
1 (β) > F ∗

i (β), i = 2, . . . , N,

and consequently that

(23) D(F ∗
1 (β), C1) < D(F ∗

i (β), Ci), i = 2, . . . , N.

From the equation F ∗
1 (β) + F ∗

2 (β) + · · · + F ∗
N (β) = r, we have

(24)
dF ∗

1 (β)

dβ
= −

(dF ∗
2 (β)

dβ
+ · · · + dF ∗

N (β)

dβ

)

.

Differentiating with respect to β the equation

F ∗
1 (β)[D(F ∗

1 (β), C1)]
β

= F ∗
2 (β)[D(F ∗

2 (β), C2)]
β
,

we have

dF ∗
1 (β)

dβ

(

[D(F ∗
1 (β), C1)]

β + β .F ∗
1 (β) .[D(F ∗

1 (β), C1)]
β .

dD(F∗

1
,C1)

dF∗
1

D(F ∗
1 (β), C1)

)

+ F ∗
1 (β) .[D(F ∗

1 (β), C1)]
β . log D(F ∗

1 (β), C1)

=
dF ∗

2 (β)

dβ

(

[D(F ∗
2 (β), C2)]

β
+ β .F ∗

2 (β) .[D(F ∗
2 (β), C2)]

β
.

dD(F∗

2
,C2)

dF∗
2

D(F ∗
2 (β), C2)

)

+ F ∗
2 (β) .[D(F ∗

2 (β), C2)]
β . log D(F ∗

2 (β), C2).(25)

Differentiating each of the equations

F ∗
1 (β)[D(F ∗

1 (β), C1)]
β

= F ∗
i (β)[D(F ∗

i (β), Ci)]
β
, i = 3, . . . , N,

we obtain N − 2 similar equations as equation (25) above. Adding all the equations

we obtain the following relation

(N − 1)
dF ∗

1 (β)

dβ

(

[D(F ∗
1 (β), C1)]

β
+ β .F ∗

1 (β) .[D(F ∗
1 (β), C1)]

β
.

dD(F∗

1
,C1)

dF∗

1

D(F ∗
1 (β), C1)

)

+ (N − 1)F ∗
1 (β) .[D(F ∗

1 (β), C1)]
β

. log D(F ∗
1 (β), C1)

=

N
∑

i=2

(

dF ∗
i (β)

dβ

(

[D(F ∗
i (β), Ci)]

β
+ β .F ∗

i (β) .[D(F ∗
i (β), Ci)]

β
.

dD(F∗

i ,Ci)
dF∗

i

D(F ∗
i (β), Ci)

)

+ F ∗
i (β) .[D(F ∗

i (β), Ci)]
β . log D(F ∗

i (β), Ci)

)

.(26)

Now let

Γ = min
i=2,...,N

(

[D(F ∗
i (β), Ci)]

β
+ β .F ∗

i (β) .[D(F ∗
i (β), Ci)]

β
.

dD(F∗

i ,Ci)
dF∗

i

D(F ∗
i (β), Ci)

)

.



292 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

Γ is positive, because each of the terms in the minimum above is positive under our

assumptions. Consequently, we can write

(N − 1)
dF ∗

1 (β)

dβ

(

[D(F ∗
1 (β), C1)]

β
+ β .F ∗

1 (β) .[D(F ∗
1 (β), C1)]

β
.

dD(F∗

1
,C1)

dF∗
1

D(F ∗
1 (β), C1)

)

+ (N − 1)F ∗
1 (β) .[D(F ∗

1 (β), C1)]
β

. log D(F ∗
1 (β), C1)(27)

≥ Γ

(

dF ∗
2 (β)

dβ
+ · · · + dF ∗

N (β)

dβ

)

+

N
∑

i=2

F ∗
i (β) .[D(F ∗

i (β), Ci)]
β

. log D(F ∗
i (β), Ci).

Using equation (24) and transposing terms we obtain

dF ∗
1 (β)

dβ

(

(N − 1)[D(F ∗
1 (β), C1)]

β
+ β .(N − 1) .F ∗

1 (β) .

[D(F ∗
1 (β), C1)]

β .

dD(F∗

1
,C1)

dF∗
1

D(F ∗
1 (β), C1)

+ Γ

)

≥
N
∑

i=2

F ∗
i (β) .[D(F ∗

i (β), Ci)]
β

. log
D(F ∗

i (β), Ci)

D(F ∗
1 (β), C1)

.(28)

We observe now that the coefficient of
dF∗

1
(β)

dβ
on the left hand side of the inequality

is positive. Also, using the fact that F ∗
1 (β)[D(F ∗

1 (β), C1)]
β

= · · · = F ∗
N (β)[D(F ∗

N (β),

CN )]β the expression on the right hand side can be written as

F ∗
1 (β) .[D(F ∗

1 (β), C1)]
β .

N
∑

i=2

log
D(F ∗

i (β), Ci)

D(F ∗
1 (β), C1)

,

and then using the relation (23), we have the desired result,
dF∗

1
(β)

dβ
> 0.

Thus, we can conclude that as β ≥ 0 increases, more and more flow is diverted

towards the outgoing links with more capacity, which shows that β can be seen as a

tuning parameter that can be used to change the overall optimal flow pattern in the

network. Increasing β tends to make the flows more concentrated on links lying on

higher capacity paths, and decreasing β tends to make the flows more ‘spread out’ or

‘uniformly distributed’ on the paths (for instance, when β = 0, for the N parallel paths

example, the outgoing flows on all the paths are equal: F ∗
1 (0) = · · · = F ∗

N (0) = r
N

).

In our numerical studies on more general networks we have observed this property of

our routing solution.

4. Analysis of the Optimal Routing Problem: The Multicommodity

Case. Our approach takes as a starting point a decomposition technique that can be

found, for example, in Rockafellar [27]. This technique decomposes a multicommodity

flow optimization problem into a set of per link simple nonlinear convex flow problems

and a set of per commodity linear network flow problems. We propose a primal-dual



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 293

approach to solve our optimal routing problem, Problem (A), utilizing this decom-

position, aiming in particular to provide a solution that can be implemented in a

completely distributed manner by the nodes themselves.

We carry out our analysis under the same assumptions (A1), (A2) and (A3) of

Section 3, with a slight modification of Assumption (A3), whereby we now require

that the primal Problem (A) has at least one feasible solution (we still refer to this

assumption as Assumption (A3)).

We start by attaching Lagrange multipliers zij ∈ R to each of the constraints (4),

and construct the Lagrangian function

L(f , z) =
∑

(i,j)∈L

Gij(Fij) +
∑

(i,j)∈L

zij

(

−Fij +
∑

k∈N

f
(k)
ij

)

,

where z is the (column) vector of dual variables zij , (i, j) ∈ L. The above equation

can be rewritten in the following convenient form

(29) L(f , z) =
∑

(i,j)∈L

(

Gij(Fij) − zijFij

)

+
∑

k

∑

(i,j)∈L

zijf
(k)
ij .

The dual function Q(z), which is a concave function, can then be written down as

(30) Q(z) = min L(f , z),

where the minimization is over all vectors f satisfying the constraints (1), (2), and (3),

and the capacity constraints 0 ≤ Fij < Cij , (i, j) ∈ L. The form (29) of the Lagrangian

function simplifies the computation of Q(z), and we can obtain the following form for

Q(z)

(31) Q(z) = QN (z) +
∑

k∈N

Q
(k)
L (z).

QN (z) involves the solution of a set (one per link) of simple one-dimensional nonlinear

optimization problems and is given by

(32) QN (z) =
∑

(i,j)∈L

min
0≤Fij<Cij

(

Gij(Fij) − zijFij

)

,

and for each commodity k, Q
(k)
L (z) involves the solution of a linear network flow

optimization problem with the costs associated with links (i, j) being the Lagrange

multipliers zij ,

(33) Q
(k)
L (z) = min

f
(k)

ij
≥0, (i,j)∈L,

∑

j
f
(k)

ij
= r

(k)

i
+
∑

j
f
(k)

ji
, i∈N

∑

(i,j)∈L

zijf
(k)
ij ,

the constraints being the commodity flow balance equations. An interesting inter-

pretation of the above decomposition in terms of marginal costs and the notion of

Wardrop equilibrium is provided in Rockafellar [27].

Once the dual function is available, the dual optimization problem can be cast as



294 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

Problem (AD): Maximize Q(z)

subject to no constraint on z (i.e., z ∈ R
|L|).

Under our assumptions (A1) and (A3), a regular primal feasible (see [27]) solution

to the optimization problem, Problem (A), exists. (This is because the function

Gij(Fij) is differentiable, and the derivative G′
ij(Fij) = Fij [Dij(Fij)]

β
is finite for Fij

in [0, Cij).) Then it can be shown [27] that strong duality holds - the optimal primal

and dual costs are equal 4. Suppose further that z∗ is an optimal solution to the

dual optimization problem, and f∗ is an optimal solution to the primal optimization

problem. Then (f∗, z∗) solves the set of commodity linear optimization problems

(33) (with the zij being set to z∗ij). Also, for each (i, j) ∈ L, the optimal total flow

F ∗
ij =

∑

k f
(k)∗
ij , and satisfies along with z∗ij the relation (equation (32))

(34) Gij(F
∗
ij) − z∗ijF

∗
ij = min

0≤Fij<Cij

(

Gij(Fij) − z∗ijFij

)

.

Now, for a given dual vector z, let F(z) and f(z) be a pair of vectors that attain

the minimum in (32) and (33), respectively. The components of F(z) are the flows

Fij(z), and the components of f(z) are the flows f
(k)
ij (z). We discuss in the following

subsection how to compute F(z) and f(z) in a completely distributed manner, given

a dual vector z. We shall use this in Section 4.2 to develop a distributed primal-dual

algorithm that solves the dual optimization problem. Because of strong duality and

the discussion in the preceding paragraph, we shall have also obtained alongside the

optimal flows f∗.

4.1. Flow Vector Computations. For a given dual vector z, we first turn our

attention towards the problem of obtaining F(z). It is clear from the form of the

expression in the right hand side of (32) that the computation can be arranged in a

distributed manner, with each node i computing the flows Fij(z) on its outgoing links

(i, j) by solving the problem

Minimize Gij(Fij) − zijFij =
∫ Fij

0 u[Dij(u)]
β
du − zijFij ,

subject to 0 ≤ Fij < Cij .

Under assumption (A1) this problem is a minimization problem of a strictly convex

function over a convex set (arguments as in Section 3). Also, Lemma 3 of the Appendix

shows that for every z, there exists a unique minimum Fij(z) for the problem. An

equivalent (necessary and sufficient) set of conditions that Fij(z) must satisfy are :

Fij(z)[Dij(Fij(z))]
β ≥ zij , if Fij(z) = 0,(35)

Fij(z)[Dij(Fij(z))]
β

= zij , if Fij(z) > 0.(36)

4The proof of this fact can be accomplished also by using the techniques of monotropic program-

ming [27].



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 295

The relations (35) and (36) imply that

Fij(z) = 0, if zij ≤ 0,(37)

Fij(z)[Dij(Fij(z))]
β

= zij , if zij > 0,(38)

and in this case Fij(z) > 0 (arguments are similar to those in Section 3).

The relations (35) and (36) hold also for an optimal total flow and dual vector

pair (F(z∗), z∗). At every node i the optimal total flows on its outgoing links could

be positive or zero, depending on the capacities of the links. We can thus, in general,

have a multipath routing solution to our optimal routing problem. The outgoing total

flow Fij(z
∗), when positive, depends on the inverse of the average link delay.

For a given vector z, we now focus on solving the commodity linear flow optimiza-

tion problems (33). For each commodity k, solving the optimization problem gives

the flows f
(k)
ij (z), (i, j) ∈ L. We use the ǫ-relaxation method (Bertsekas and Tsitsiklis

[5], Bertsekas and Eckstein [2]), because it can be implemented in a purely distributed

manner by the nodes in the network. The method is an algorithmic procedure to solve

the dual to the primal linear flow optimization problem and is based on the notion

of ǫ-complementary slackness. ǫ-complementary slackness involves a modification of

the usual complementary slackness relations of the linear optimization problem by a

small amount ǫ. At every iteration, the algorithm changes the dual prices and the

incoming and outgoing link flows at every node i, while maintaining ǫ-complementary

slackness and improving the value of the dual cost at the same time. We briefly pro-

vide an overview in the following paragraphs (for details see, for example, Bertsekas

and Tsitsiklis [5]).

Consider the linear network flow problem for commodity k : Minimize the cost
∑

(i,j)∈L zijf
(k)
ij , subject to the flow balance constraints

∑

j f
(k)
ij = r

(k)
i +

∑

j f
(k)
ji ,

for each node i, and the constraints f
(k)
ij ≥ 0, for each link (i, j). We also add

the constraint f
(k)
ij ≤ Cij (which must be satisfied at optimality), which enables us to

apply the method without making any modifications. The dual problem is formulated

by first attaching Lagrange multipliers (prices) pi ∈ R to the balance equations at

each node i, and forming the Lagrangian M =
∑

(i,j)∈L

(

zijf
(k)
ij − (pi − pj)f

(k)
ij

)

+
∑

i∈N r
(k)
i pi. For a price vector p and given ǫ > 0, a set of flows and prices satisfies

the ǫ-complementary slackness conditions if the flows satisfy the capacity constraints,

and if the following are satisfied

f
(k)
ij < Cij =⇒ pi − pj ≤ zij + ǫ,

f
(k)
ij > 0 =⇒ pi − pj ≥ zij − ǫ.

The ǫ-relaxation method uses a fixed ǫ, and tries to solve the dual optimization prob-

lem using distributed computation. The procedure starts by considering an arbitrary

initial price vector p0, and then finds a set of flows on the links such that the flow-price

pair satisfies the ǫ-complementary slackness conditions. At each iteration, the flow



296 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

surplus at nodes i, gi =
∑

j f
(k)
ji + r

(k)
i −

∑

j f
(k)
ij , are computed. A node i with posi-

tive surplus is chosen. (If all nodes have zero surplus, then the algorithm terminates,

because the ǫ-complementary slackness conditions are satisfied and the flow balance

conditions, too, are satisfied. The corresponding flow vector f is optimal.) The sur-

plus gi is driven to zero at the iterative step, and another flow-price pair satisfying

ǫ-complementary slackness is produced. At the same time the dual function (Q(p))

value is increased, by changing the i-th price coordinate pi. At the iteration, except

possibly for price pi at node i, the prices of the other nodes are left unchanged. It

can be shown (even for zij and Cij that are not necessarily integers, which is the case

of interest to us; see [5]) that, if ǫ is chosen small enough, the algorithm converges to

an optimal flow-price pair.

Besides the ǫ-relaxation method, there exist other distributed algorithms, like

the auction algorithm [1], that solve linear flow optimization problems. Any such

algorithm can be used to solve the linear flow optimization problems at hand.

4.2. Distributed Solution of the Dual Optimization Problem. We now

focus on solving the dual problem using a distributed primal-dual algorithm. To that

end, we first note that the dual function Q(z) is a non-differentiable function of z.

This suggests that we can use a subgradient based iterative algorithm to compute an

optimal dual vector z∗. We shall see that the computations can be made completely

distributed.

We first compute a subgradient for the concave function Q(z) at a point z (in

R
|L|). Recall that a vector δ(z) is a subgradient of a concave function Q at z if

(39) Q(w) ≤ Q(z) + δ(z)
T
(w − z), ∀w ∈ R

|L|.

Recall that for a given vector z, F(z) and f(z) denote a pair of vectors of total flows

and commodity flows that attain the minimum in (32) and in (33), respectively. For

vectors z,w, we have

Q(w) − Q(z) =
∑

(i,j)∈L

(

Gij(Fij(w)) − wijFij(w)
)

+
∑

k

∑

(i,j)∈L

wijf
(k)
ij (w)

−
∑

(i,j)∈L

(

Gij(Fij(z)) − zijFij(z)
)

−
∑

k

∑

(i,j)∈L

zijf
(k)
ij (z).

Because

∑

(i,j)∈L

(

Gij(Fij(w)) − wijFij(w)
)

+
∑

k

∑

(i,j)∈L

wijf
(k)
ij (w)

≤
∑

(i,j)∈L

(

Gij(Fij(z)) − wijFij(z)
)

+
∑

k

∑

(i,j)∈L

wijf
(k)
ij (z),



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 297

we have

Q(w) − Q(z) ≤
∑

(i,j)∈L

(

Gij(Fij(z)) − wijFij(z)
)

+
∑

k

∑

(i,j)∈L

wijf
(k)
ij (z)

−
∑

(i,j)∈L

(

Gij(Fij(z)) − zijFij(z)
)

−
∑

k

∑

(i,j)∈L

zijf
(k)
ij (z).

and so

Q(w) − Q(z) ≤
∑

(i,j)∈L

(

wij − zij

)(

∑

k

f
(k)
ij (z) − Fij(z)

)

,

which shows that a subgradient of Q at z is the |L|-vector δ(z) with components
∑

k f
(k)
ij (z) − Fij(z).

Consequently, in order to solve the dual optimization problem, we can set up the

following subgradient iterative procedure, starting with an arbitrary initial vector of

Lagrange multipliers z0,

(40) zn+1 = zn + γn δ(zn), n ≥ 0,

where {γn} is a suitably chosen step-size sequence that ensures convergence of the

above subgradient iterations to an optimal dual vector z∗. The vector δ(zn), with

components
∑

k f
(k)
ij (zn) − Fij(z

n), is a subgradient of Q at zn. In terms of the

individual components, the subgradient algorithm (40) can be written as (for each

(i, j) ∈ L)

(41) zn+1
ij = zn

ij + γn

(

∑

k

f
(k)
ij (zn) − Fij(z

n)
)

.

The equation (41) above shows that the subgradient iterative procedure can be

implemented in a distributed manner at the various nodes of the network. At each

node i, to update the dual variables zij for the outgoing links (i, j), the quantities

that are required are the optimal commodity flows f
(k)
ij (z) and total flows Fij(z). In

Section 4.1 we showed how the above quantities can be computed in a completely

distributed manner by every node, given z. Fij(z
n) can be computed (exactly as in

Section 3.1) using estimates of average queueing delays on the outgoing links and

using (37) and (38). Computation of the flows Fij(z
n) and fij(z

n) require message

exchange with neighbor nodes, and local information-like estimates of the outgoing

links’ queue lengths. The updated dual variables zij are broadcast to the neighbor

nodes, which utilize this information in the execution of their iterations. In general,

the updates of the dual variables and the flows take place asynchronously, so that the

algorithm is asynchronous and adaptive.

We now briefly discuss the convergence behavior of the subgradient algorithm

(40). As for the single commodity case, we restrict our attention to the synchronous



298 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

version of the algorithm as given by equation (40), and we consider only the constant

step size case here - γn = γ, for all n and some small, positive γ. If the subgradi-

ent vector is bounded in norm, then the subgradient algorithm converges arbitrarily

closely to the optimal point. As in Section 3.1, the sense in which convergence takes

place is the following : for a small positive number h, we have

Q(z∗) − lim
n→∞

Qn < h,

where Qn is the ‘best’ value found till the n-th iteration, i.e., Qn = max(Q(z0), . . .,

Q(zn)). In our case, because the commodity flows f
(k)
ij (z) and total flows Fij(z)

are always bounded (because of the capacity constraints), the subgradients δ(z) are

bounded in norm, and the subgradient algorithm converges. Shor [28] contains other

attractive (albeit more involved) step-size rules, including diminishing step-size rules,

which have more attractive convergence properties. This is an avenue for future ex-

ploration. Upon convergence, the algorithm yields simultaneously, the optimal dual

vector z∗, as well as the optimal flow vectors F(z∗) and f(z∗).

4.3. Loop Freedom of the Algorithm. In this subsection we show that an

optimal flow vector f(z∗) is loop free.

Lemma 2. An optimal flow vector f(z∗) is loop free.

Proof. Suppose that an optimal flow vector f(z∗) is not loop free. Then for

some commodity k, and for some sequence of links (i1, i2), (i2, i3), . . . , (in, i1) that

form a cycle, there is a positive flow on each of the links : f
(k)
i1i2

(z∗) > 0, f
(k)
i2i3

(z∗) >

0, . . . , f
(k)
ini1

(z∗) > 0. Consequently, for the total flows we have Fi1i2(z
∗) > 0, Fi2i3(z

∗)

> 0, . . . , Fini1(z
∗) > 0. This implies, by relation (36), that

z∗i1i2
> 0, z∗i2i3

> 0, . . . , z∗ini1
> 0.

On the other hand, the optimal flows f
(k)
ij (z∗), (i, j) ∈ L, constitute a solution

to the linear programming problem: Minimize the cost
∑

(i,j)∈L z∗ijf
(k)
ij , subject to

the constraints
∑

j f
(k)
ij = r

(k)
i +

∑

j f
(k)
ji , i ∈ N , and the constraints 0 ≤ f

(k)
ij <

Cij , (i, j) ∈ L. Attach Lagrange multipliers pi ∈ R to the balance equations at each

node i, and form the Lagrangian N =
∑

(i,j)∈L

(

z∗ijf
(k)
ij −(pi−pj)f

(k)
ij

)

+
∑

i∈N r
(k)
i pi.

An optimal primal-dual vector pair (f(z∗),p∗) satisfies the following Complementary

Slackness conditions (the derivation is similar to the derivation for equations (35) and

(36))

z∗ij ≥ p∗i − p∗j , if f
(k)
ij (z∗) = 0

and z∗ij = p∗i − p∗j , if f
(k)
ij (z∗) > 0.

From the foregoing it is clear that we must have

p∗i1 − p∗i2 > 0, p∗i2 − p∗i3 > 0, . . . , p∗in
− p∗i1 > 0,



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 299

1

2

3

4

5

6

7

8 

r
1

r
1

r 2

r

r

r

2

2

3

(6)

(6)

(8)

(8)

(7)

(7)

8

10

8

10

8

16

18

22

12

14

20

Fig. 3. The network topology and the traffic inputs : A Multicommodity Example

which is a contradiction.

4.4. An Illustrative Example. We consider an example network in this section

and illustrate the computations. The network consists of eight nodes interconnected

by multiple directed links. Figure 3 shows the network topology. The numbers beside

the links are the capacities of the links. There are multiple sources and multiple sinks

of traffic. The rates of input traffic at the sources are given by r
(6)
1 = 6, r

(8)
1 =

8, r
(6)
2 = 8, r

(8)
2 = 6, r

(7)
2 = 10, r

(7)
3 = 10. There are three commodities in the

network corresponding to the three destinations for the traffic flows in the network.

The capacities are such that the network is able to accommodate the incoming traffic

to the network.

As in the single commodity example we assume that the delay functions Dij(Fij)

are explicitly given by the formula Dij(Fij) = 1
Cij−Fij

. We carry out the numerical

computations for the case when β = 1.

We set up the subgradient iterative algorithm (41) starting from an arbitrary

initial vector z0

zn+1
ij = zn

ij + γn

(

∑

k

f
(k)
ij (zn) − Fij(z

n)
)

, (i, j) ∈ L,

where the flow vectors F(zn) and f(zn) are computed as outlined in Section 4.1. As

we had noted in that section, computing F(zn) translates to satisfying the relations



300 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

(37) and (38), which in our example are the equations

Fij(z
n) = 0, if zn

ij ≤ 0,

Fij(z
n)

Cij − Fij(zn)
= zn

ij , if zn
ij > 0.

The latter equation gives Fij(z
n) =

zn
ijCij

1+zn
ij

, a simple expression, showing that the flow

is proportional to the capacity.

We use a constant step-size algorithm (γn = γ, for all n) with the step-size

γ = 0.01. (This choice of small γ slows down the convergence of the algorithm. As

pointed out in Section 4.2, other choices of step-size sequences can potentially improve

the speed of convergence.) The ǫ chosen for the ǫ-relaxation method is 0.01.

The subgradient algorithm converges and the optimal flows (upon convergence)

are tabulated in Table 4. As in Section 3 we note that the optimal routing solution

allocates a higher fraction of total incoming flows at every node to outgoing links that

lie on paths consisting of higher capacity links.

The optimal routing solution splits the total incoming flow at each node among

the outgoing links. The solution also describes how the total flow on each link is split

among the commodity flows. We also note that our routing solution is a multipath

routing solution. It is well-known [3] that multipath routing solutions improve the

overall network performance by avoiding routing oscillations (shortest-path routing

solutions, for instance, are known to lead to routing oscillations), and by providing

better throughput for incoming connections, while at the same time reducing the

average network delay.

Our routing solution is not an end-to-end routing solution, as for example [18].

The control is not effected from the end hosts, but every node i in the network controls

both the total as well as the commodity flows on its outgoing links (i, j), using the

distributed algorithm.

Appendix A. Lemma 3. Under our Assumptions (A1) and (A2), there exists

a unique solution to the following minimization problem (for any given wij),

Minimize Gij(Fij) − wijFij =
∫ Fij

0
u[Dij(u)]

β
du − wijFij ,

subject to 0 ≤ Fij < Cij .

Proof. For any given wij , Hij(Fij) = Gij(Fij) − wijFij increases to +∞ as

Fij ↑ Cij (Assumption (A2)). Consequently, there exists an M ∈ [0, Cij), such that

Hij(Fij) > Hij(0) whenever Fij > M . The function Hij(Fij) restricted to the domain

[0, M ] attains the (global) minimum at the same point as the function considered

on the set [0, Cij). The set [0, M ] is compact; applying Weierstrass theorem to the

continuous function Hij(Fij) on this set gives us the required existence of a minimum.

Uniqueness follows from the fact that Hij(Fij) is strictly convex on [0, Cij).



AN OPTIMAL DISTRIBUTED ROUTING ALGORITHM 301

Table 4

Optimal flows in links

Link (i, j) Optimal total flowF ∗
ij Optimal commodity flows

(1, 2) 5.77 f
(6)∗
12 = 0, f

(8)∗
12 = 5.77

(1, 3) 8.23 f
(6)∗
13 = 6.00, f (8)∗

13 = 2.23

(2, 4) 14.31 f
(6)∗
24 = 5.86, f (7)∗

24 = 8.19, f (8)∗
24 = 0

(2, 5) 15.77 f
(6)∗
25 = 2.14, f (7)∗

25 = 1.82, f (8)∗
25 = 11.77

(3, 5) 18.23 f
(6)∗
35 = 6.00, f (7)∗

35 = 10.00, f (8)∗
35 = 2.23

(4, 6) 5.86 f
(6)∗
46 = 5.86

(4, 7) 8.19 f
(7)∗
47 = 8.19

(4, 8) 0 f
(8)∗
48 = 0

(5, 6) 8.23 f
(6)∗
56 = 8.14

(5, 7) 11.84 f
(7)∗
57 = 11.82

(5, 8) 14.00 f
(8)∗
58 = 14.00

REFERENCES

[1] D. P. Bertsekas, Network Optimization: Continuous and Discrete Models, Athena Scientific,

Belmont, MA, 1998.

[2] D. P. Bertsekas and J. Eckstein, Dual Coordinate Step Methods for Linear Network Flow

Problems, Math. Programming, Series B, 42(1988), pp. 203-243.

[3] D. P. Bertsekas and R. G. Gallager, Data Networks, Second Edition, Prentice Hall, En-

glewood Cliffs, NJ, 1992.

[4] D. P. Bertsekas, E. Gafni, and R.G. Gallager, Second Derivative Algorithms for Minimum

Delay Distributed Routing in Networks, IEEE Trans. on Communications, 32(1984), pp.

911 − 919.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation : Numerical

Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[6] A. M. Bloch, R. W. Brockett, and T. S. Ratiu, Completely Integrable Gradient Flows,

Communications in Mathematical Physics, 147(1992), pp. 57 −−74.

[7] A. M. Bloch, R. W. Brockett, and P. Crouch, Double Bracket Flows and Geodisc Equa-

tions on Symmetric Spaces, Communications on Mathematical Physics, pp. 1 − 16, 1997.

[8] V. S. Borkar and P. R. Kumar, Dynamic Cesaro-Wardrop Equilibration in Networks, IEEE

Trans. on Automatic Control, 48:3(2003), pp. 382-396.

[9] R. W. Brockett, Path Integrals, Liapunov Functions, and Quadratic Minimization, Proc. of

the 4th Allerton Conference, Urbana, IL, University of Illinois, pp. 685 − 697, 1966.

[10] R. W. Brockett, Finite Dimensional Linear Systems, New York: John Wiley and Sons, 1970.

[11] R. W. Brockett, Differential Geometry and the Design of Gradient Algorithms, in: Differ-

ential Geometry, Robert Green and S.T. Yau, eds., Proceedings of Symposia in Pure Math,

American Math. Soc., pp. 69 − 92, 1992.

[12] R. W. Brockett, Stochastic Analysis for Fluid Queuing Systems, Proc. of the 1999 CDC

Conference, Phoenix AZ, pp. 3077 − 3082, 1999.

[13] R. W. Brockett and R. A. Skoog, A New Perturbation Theory for the Synthesis of Nonlinear

Networks, Mathematical Aspects of Electrical Network Analysis, SIAM-AMS Proc., Vol.

III, pp. 17 − 33, 1970.

[14] R. W. Brockett and W. S. Wong, A Gradient Flow for the Assignment Problem, Progress



302 PUNYASLOK PURKAYASTHA AND JOHN S. BARAS

in System and Control Theory, G. Conte and B. Wyman, eds., pp. 170−−177, Birkhauser,

1991.

[15] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, Cross-Layer Congestion Control, Routing

and Scheduling Design in Ad hoc Wireless Networks, Proc. IEEE INFOCOM, pp. 1− 13,

2006.

[16] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, Layering as Optimization

Decomposition : A Mathematical Theory of Network Architectures, Proc. of the IEEE,

95:1(2007), pp. 255 − 312.

[17] J. B. Dennis, Mathematical Programming and Electrical Networks, Technology Press of M.I.T,

Cambridge, MA, 1959.

[18] A. Elwalid, C. Jin, S. Low, and I. Widjaja MATE: MPLS Adaptive Traffic Engineering,

Computer Networks, 40:6(2002), pp. 695 − 709.

[19] A. Eryilmaz and R. Srikant, Joint Congestion Control, Routing, and MAC for Stability

and Fairness in Wireless Networks, IEEE J. on Sel. Areas of Comm. , 24:8(2006), pp.

1514-1524.

[20] R. G. Gallager, A Minimum Delay Routing Algorithm Using Distributed Computation, IEEE

Trans. on Communications, 23(1977), pp. 73-85.

[21] K. Kar, S. Sarkar, and L. Tassiulas, Optimization Based Rate Control for Multipath Ses-

sions, Proc. 17-th Intl. Teletraffic Congress, December, 2001.

[22] F. P. Kelly, Network Routing, Phil. Trans. R. Soc. Lond. A: Physical Sciences and Engineering

(Complex Stochastic Systems), Vol. 337, No. 1647, pp. 343 − 367, 1991.

[23] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, Rate Control in Communication Networks

: Shadow Prices, Proportional Fairness and Stability, J. of Oper. Res. Soc., 49(1998), pp.

237 − 252.

[24] X. Lin and N. B. Shroff, Joint Rate Control and Scheduling in Multihop Wireless Networks,

Proc. IEEE Conf. on Dec. and Cont., 2(2004), pp. 1484-1489.

[25] M. J. Neely, E. Modiano, and C. E. Rohrs, Dynamic Power Allocation and Routing for

Time Varying Wireless Networks, IEEE J. on Sel. Areas of Comm., Special Issue on

Wireless Ad-Hoc Networks, 23:1(2005), pp. 89-103.

[26] P. Purkayastha and J. S. Baras, Convergence of Ant Routing Algorithms via Stochastic

Approximation and Optimization, Proc. IEEE Conf. on Dec. and Cont., pp. 340 − 345,

December 2007.

[27] R. T. Rockafellar, Network Flows and Monotropic Optimization, Athena Scientific, Belmont,

MA, 1998.

[28] N. Z. Shor, Minimization Methods for Non-Differentiable Functions, Springer Series in Com-

putational Mathematics, Springer-Verlag, Berlin, Heidelberg, 1985.

[29] J. N. Tsitsiklis and D. P. Bertsekas, Distributed Asynchronous Optimal Routing in Data

Networks, IEEE Trans. on Aut. Cont., 31:4(1986), pp. 325-332.

[30] W.-H. Wang, M. Palaniswami, and S. H. Low, Optimal Flow Control and Routing in multi-

path networks, Perf. Evaluation Jl., Vol. 52, No. 2 − 3, pp. 119 − 132, Elsevier, 2003.

[31] J. G. Wardrop, Some Theoretical Aspects of Road Traffic Research, Proc. Inst. Civil Engineers,

Vol. 1, pp. 325 − 378, 1952.




