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PARAMETER ESTIMATES FOR LINEAR PARTIAL DIFFERENTIAL

EQUATIONS WITH FRACTIONAL BOUNDARY NOISE∗

BOHDAN MASLOWSKI† AND JAN POSPÍŠIL‡

Abstract. Parameter-dependent linear evolution equations with a fractional noise in the bound-

ary conditions are studied. Ergodic-type theorems for stationary and non-stationary solutions are

verified and used to prove the strong consistency of a suitably defined family of estimators.

Key words: parameter identification, ergodicity, stochastic partial differential equations, frac-

tional Brownian motion, fractional Ornstein-Uhlenbeck process

1. Introduction. Evolution equations perturbed by a fractional Gaussian noise

have been studied in recent years by several authors, e.g. Duncan, Maslowski and

Pasik-Duncan [4], [5] and [6]; Grecksch and Anh [7] Maslowski and Nualart [11], and

others. In these papers (with the exception of a section in [4]) equations perturbed

by distributed noise are considered. In the present paper we deal with a parabolic

problem (typically, the heat equation) perturbed by a boundary noise, that is, the

boundary conditions (for example, of the Dirichlet or Neumann type) involve the

fractional noise, the generalized derivative of a fractional Brownian motion. More

specifically, consider the problem

∂y

∂t
(t, ξ) = α∆y(t, ξ), (t, ξ) ∈ R+ ×O,

where O is a bounded domain in the Euclidean space with a smooth boundary and

α > 0 is an unknown parameter. We consider the initial condition y(0, ξ) = x0(ξ)

and boundary conditions, for example,

y(t, ξ) = ηH(t, ξ), (t, ξ) ∈ R+ × ∂O,

where ηH denotes formally the derivative of a space-dependent process that is frac-

tional Brownian motion in time, with the Hurst parameter H ∈ (0, 1).

Boundary (and pointwise) noise problems have been considered (for a fixed value

of the parameter) in numerous papers in case when H = 1/2, i.e. the noise is white

in time (cf. [2], Section 13 and the references therein). For the ”fractional” case when
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H > 1/2, the basic theory may be found in [4], Section 5, where results on existence,

uniqueness and pathwise regularity of solutions are proven.

The problem of estimating parameters in stochastic equations with fractional

noises has been studied also only recently. Estimation for some finite-dimensional

stochastic equations based on discrete observations was presented by Prakasa Rao in

[18]. He also investigated the asymptotic properties of the maximum likelihood esti-

mator and the Bayes estimator of the drift parameter in stochastic equations driven

by fractional Brownian motion, see [19] and [20]. In infinite-dimensional case (for

stochastic PDEs) the problem has been studied in [12] (for linear equations). For

stochastic parabolic equation with a scalar multiplicative fractional Brownian motion

was also mentioned in [5]. Of course, the problem has been rather extensively stud-

ied in the important particular case of white noise (H = 1/2). There exist several

methods mainly of statistical origin. Let us mention at least the so called maximum

likelihood estimates method. Huebner and Rozovskii used it in [9] to estimate param-

eters from a continuous observation of a solution to stochastic parabolic equations

driven by Wiener process. Khasminskii and Milstein studied in [10] the estimation of

the linearised drift for nonlinear SDEs.

This paper is in principle a continuation of an earlier authors’ paper [12] where

similar problems have been studied for equations perturbed by distributed fractional

noise. In order to treat the problem rigorously, at first a mathematically correct

model is introduced (following [4]) and some results on existence and ergodicity of

strictly stationary solutions are given for the equation with a fixed parameter value.

The abstract model that is considered is rather general and as particular cases it may

cover a wide range of linear stochastic PDEs (of parabolic type) as well as the finite-

dimensional equations. For the parameter dependent equation at first the dependence

of the equilibrium measure on the parameter must be specified. This is important for

our definition of estimators. In this respect the results are different from equations

with distributed noise ([12]) because in the abstract model (or the infinite-dimensional

formulation of the boundary noise problem) the parameter α automatically appears

also in the noise term.

Section 2 of the paper contains some preliminaries, basic definitions and notation

are given and the infinite dimensional formulation of the problem is presented. Section

3 is devoted to ergodic results: Existence and ergodicity of a stationary solution is

stated (the proofs of these results are completely analogous to the case considered in

[12] and are only sketched) and a theorem on ergodic behaviour of solutions with an

arbitrary initial datum is proved (this result is however different from those considered

in [12] due to the different form of the equation). In Section 4, a class of parameter

estimator is proposed and the strong consistency is proved. Finally, in the last section
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the specific problems are considered: The heat equation as above with boundary noise

of either Dirichlet and Neumann type. Conditions of the general theory from the

preceding sections are verified in these cases.

2. Preliminaries. Let KH(t, s) for 0 ≤ s ≤ t ≤ T be the kernel function

KH(t, s) = cH(t− s)H− 1
2 + cH

(
1

2
−H

)∫ t

s

(u − s)H− 3
2

(

1 −
( s

u

) 1
2
−H
)

du

where

cH =

[

2HΓ
(
H + 1

2

)
Γ
(

3
2 −H

)

Γ (2 − 2H)

] 1
2

,

where Γ(·) is the gamma function and H ∈ (0, 1).

Following [1] and [3], we will define a stochastic integral of a deterministic V -

valued function with respect to a scalar fractional Brownian motion (βH(t), t ∈ R).

Let K∗
H : E → L2([0, T ], V ) be the linear operator given by

K∗
Hϕ(t) := ϕ(t)KH(T, t) +

∫ T

t

(ϕ(s) − ϕ(t))
∂KH

∂s
(s, t) ds

for ϕ ∈ E where E is the linear space of V -valued step functions on [0, T ], that is,

ϕ(t) =

n−1∑

i=1

xi1[ti,ti+1)(t)

where xi ∈ V , i ∈ {1, . . . , n− 1} and 0 = t1 < · · · < tn = T .

Setting

(1)

∫ T

0

ϕdβH :=

n∑

i=1

xi

(
βH(ti+1) − βH(ti)

)

it follows directly that

(2) E

∣
∣
∣
∣
∣

∫ T

0

ϕdβH

∣
∣
∣
∣
∣

2

V

= |K∗
Hϕ|

2
L2([0,T ],V ) .

Let (H, | · |H, 〈·, ·, 〉H) be the Hilbert space obtained by the completion of the pre-

Hilbert space E with respect to the inner product

〈ϕ, ψ〉H := 〈K∗
Hϕ,K

∗
Hψ〉L2([0,T ],V )

for ϕ, ψ ∈ E . The stochastic integral (1) is extended to H by the isometry (2). Thus

H is the space of integrable functions and it is useful to obtain some more specific

information.
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If H ∈
(

1
2 , 1
)
, then it is easily verified that H ⊃ H̃ where H̃ is the Banach space

of Borel measurable functions with the norm | · |H̃ given by

|ϕ|2
H̃

:=

∫ T

0

∫ T

0

|ϕ(u)|V |ϕ(v)|V φ(u − v) du dv

where φ(u) = H(2H − 1)|u|2H−2. It may be verified that H̃ ⊃ L1/H([0, T ], V ) and

consequently H̃ ⊃ L2([0, T ], V ). If ϕ ∈ H̃ and H > 1
2 , then

E

∣
∣
∣
∣
∣

∫ T

0

ϕdβH

∣
∣
∣
∣
∣

2

V

=

∫ T

0

∫ T

0

〈ϕ(u), ϕ(v)〉V φ(u − v) du dv.

If H ∈
(
0, 1

2

)
, the space of integrable functions is smaller than L2([0, T ], V ). It

is known that H ⊃ H1([0, T ], V ) (e.g. [8] Lemma 5.20) and H ⊃ Cβ([0, T ], V ) for

each β > 1
2 −H . If H ∈

(
0, 1

2

)
, then the linear operator K∗

H can be described by the

composition

(3) K∗
Hϕ(t) = cHt

1
2
−HD

1
2
−H

T−

(

uH− 1
2
ϕ
)

,

where

(
Dα

T−ψ
)
(t) =

1

Γ(1 − α)

(

ψ(t)

(T − t)α
+ α

∫ T

t

ψ(s) − ψ(t)

(s− t)α+1
ds

)

.

is a fractional derivative and (uH−1/2ϕ)(s) = sH−1/2ϕ(s).

We will define a standard cylindrical fractional Brownian motion in a Hilbert

space U by the formal series

(4) BH(t) :=

∞∑

n=1

βH
n (t)en,

where (en, n ∈ N) is a complete orthonormal basis in U and (βH
n (t), n ∈ N, t ∈ R)

is a sequence of independent, real-valued standard fractional Brownian motions each

with the same Hurst parameter H ∈ (0, 1). It is well known that the infinite series

(4) does not converge in L2(Ω, U) so BH(t) is not a well defined U -valued random

variable. However, it is easy to verify (see [4]) that for any Hilbert space U1 such

that U →֒ U1 and the embedding is a Hilbert-Schmidt operator, the series (4) defines

a U1-valued random variable and (BH(t), t ∈ R) is a U1-valued fractional Brownian

motion of Q-covariance type.

Next, the stochastic integral
∫ T

0
GdβH for an operator-valued function G : [0, T ]

→ L(U, V ) is defined.

Definition 2.1. Let G : [0, T ] → L(U, V ), (en, n ∈ N) be a complete orthonormal

basis in U , G(·)en ∈ H for n ∈ N, and BH be a standard cylindrical fractional
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Brownian motion in U . Let βH
n (t) :=

〈
BH(t), en

〉
for n ∈ N. Define

∫ T

0

GdBH :=

∞∑

n=1

∫ T

0

Gen dβ
H
n

provided the infinite series converges in L2(Ω, V ).

In what follows, it is assumed that (S(t), t ≥ 0) is an analytic (and strongly

continuous) semigroup on V with infinitesimal generator A. In such case, there is a

β̂ ∈ R such that the operator β̂I − A is uniformly positive on V . For each δ ≥ 0,

let us define (Vδ, | · |δ) a Hilbert space, where Vδ = Dom
(

(β̂I −A)δ
)

with the graph

norm topology such that

|x|δ =
∣
∣
∣(β̂I −A)δx

∣
∣
∣
V
.

The shift β̂ is fixed. The space Vδ does not depend on β̂ because the norms are

equivalent for different values of β̂ satisfying the positivity condition.

Consider the linear equation described by a formal stochastic differential

(5)
dX(t) = AX(t) dt+ (β̂I −A)D dBH(t),

X(0) = x0,

where (BH(t), t ≥ 0) is a standard cylindrical fractional Brownian motion with Hurst

parameter H ∈ (0, 1) in U and U is a separable Hilbert space, D ∈ L(U, Vε) for a

given ε > 0 and x0 ∈ V is a random variable.

A solution (Xx0(t), t ≥ 0) to (5) is defined in the mild form, i.e.

Xx0(t) = S(t)x0 + Z(t), t ≥ 0,

where (Z(t), t ≥ 0) is the convolution integral

(6) Z(t) =

∫ t

0

(β̂I −A)S(t− u)DdBH(u).

Proposition 2.1. Let H ∈ (0, 1). Let (S(t), t ≥ 0) be an analytic strongly

continuous semigroup such that

(A1) |(β̂I −A)S(t)D|L2(U,V ) ≤ ct−γ , t ∈ (0, T ],

for some T > 0, c > 0 and γ ∈ [0, H). Then (Z(t), t ∈ [0, T ]) is a well-defined Vδ-

valued process in Cβ([0, T ], Vδ), a.s.-P for β+δ+γ < H, β ≥ 0, δ ≥ 0. If the semigroup

(S(t), t ≥ 0) is also exponentially stable, i.e. there exist constants M > 0 and ρ > 0

such that for all t ≥ 0

(A2) |S(t)|L(V ) ≤Me−ρt,
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then there is a Gaussian centered limiting measure µ∞ = N (0, Q∞) for (X(t), t ≥ 0)

such that

lim
t→∞

µx0

t = µ∞

for each initial condition x0 ∈ V where µx0

t is the probability law of Xx0(t) and the

limit is understood in the sense of weak convergence of measures.

Proof. If H > 1/2, the proof follows from [4], Proposition 3.4 and Corollary 3.5.

For H < 1/2, the proof is completely analogous to the proof of Corollary 1.12 and

Proposition 1.13 in [6].

Corollary 2.2. Moreover, if we assume that D ∈ L2(U, Vε), then the condition

(A1) is satisfied with γ = 1 − ε.

Proof. The proof follows from the analyticity of the semigroup (S(t), t ≥ 0),

because

|(β̂I −A)S(t)D|L2(U,V ) ≤ |(β̂I −A)1−εS(t)|L(V ) · |(β̂I −A)εD|L2(U,V )

≤ ctε−1, t ∈ (0, T ].

Remark 2.1. The covariance Q∞ has for H > 1/2 the following form:

Q∞ =

∫ ∞

0

∫ ∞

0

(β̂I −A)S(u)D[(β̂I −A)S(v)D]∗φ(u− v) du dv,

where φ is given by

φ(u) = H(2H − 1)|u|2H−2.

The form for H < 1/2 can be specified in terms of K∗
H and a precise statement can

be found in [6].

3. Ergodic results. Recall that a measurable V -valued process (X(t), t ≥ 0) is

said to be strictly stationary, if for all k ∈ N and for all arbitrary positive numbers

t1, t2, . . . , tk, the probability distribution of the V k-valued random variable (X(t1 +

r), X(t2 + r), . . . , X(tk + r)) does not depend on r ≥ 0, i.e.

(7) Law(X(t1 + r), X(t2 + r), . . . , X(tk + r)) = Law(X(t1), X(t2), . . . , X(tk))

for all t1, t2, . . . , tk, r ≥ 0, where Law(·) denotes the probability distribution.

Theorem 3.1. If (A1) and (A2) are satisfied, then there exists a strictly sta-

tionary solution to (5), i.e. there exists x̃, a random variable on (Ω,F ,P), such that

(X x̃(t), t ≥ 0) is a strictly stationary process with Law(X x̃(t)) = µ∞, t ≥ 0. In

particular Law(x̃) = µ∞.
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Proof. The proof follows the lines of an analogous Theorem 3.1 in [12] (where the

case of distributed noise is treated). We will only illustrate the main idea.

For t ≥ 0 let

Y (t) :=

∫ 0

−t

(β̂I − A)S(−u)DdBH(u).

It is clear that Y (t) is a V -valued random variable on (Ω,F ,P) with probability law

µ0
t = N (0, Qt). It must be shown that the limit

x̃ = lim
t→∞

Y (t)

exists in L2(Ω, V ) and that

X x̃(t) = S(t)x̃+ Z(t),

where Z(t) is given by (6), is a stationary solution of (5).

Let m,n ∈ N. It has to be shown that for an arbitrary increasing sequence of

times (tn), tn → ∞, the sequence (Ytn
) is a Cauchy sequence in L2(Ω, V ). For all

n ≥ m we have

E|Y (tn) − Y (tm)|2V = E

∣
∣
∣
∣

∫ −tm

−tn

(β̂I −A)S(−u)DdBH(u)

∣
∣
∣
∣

2

V

.

Denoting by B̃H(u) = BH(−u) an inverse process that is also a standard cylindrical

fractional Brownian motion with stationary increments we have

E|Y (tn) − Y (tm)|2V = E

∣
∣
∣
∣

∫ tn

tm

(β̂I −A)S(u)D dB̃H(u)

∣
∣
∣
∣

2

V

.

Using the estimate (A1) and following the rest of the proof of the Theorem 3.1 in

[12], we can show that the right hand side goes to zero as m → ∞ and thus (Y (tn))

is a Cauchy sequence in L2(Ω, V ). It is easy to see that the limit x̃ = lim
t→∞

Y (t) is an

initial value yielding the strictly stationary solution.

Theorem 3.2. Let (A1) and (A2) be satisfied and let (X x̃(t), t ≥ 0) be a strictly

stationary solution to (5). Let ̺ : V → R be a measurable functional such that

E|̺(x̃)| <∞. Then

lim
T→∞

1

T
E

[
∫ T

0

̺(X x̃(t)) dt

]

=

∫

V

̺(y)µ∞(dy).
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Proof. The proof is obvious, because by Fubini Theorem ̺(X x̃(t)) ∈ L1(Ω×[0, T ])

and

lim
T→∞

1

T
E

[
∫ T

0

̺(X x̃(t)) dt

]

= lim
T→∞

1

T

∫ T

0

E[̺(X x̃(t))] dt

= lim
T→∞

1

T

∫ T

0

E[̺(x̃)] dt

= E[̺(x̃)]

=

∫

V

̺(y)µ∞(dy).

If the initial condition is arbitrary, the following result may be useful:

Theorem 3.3. Let (A1) and (A2) be satisfied and let (Xx0(t), t ≥ 0) be a solution

to (5) with initial condition X(0) = x0 ∈ V , a random variable. Let ̺ : V → R

be a functional satisfying the following local Lipschitz condition: let there exist real

constants K > 0 and m ≥ 1 such that

(8) |̺(x) − ̺(y)| ≤ K|x− y|V (1 + |x|mV + |y|mV )

for all x, y ∈ V . Assume also that

E|x0|
2m
V <∞.

Then

(9) lim
T→∞

1

T
E

∫ T

0

̺(Xx0(t)) dt =

∫

V

̺(y)µ∞(dy).

Proof. The desired convergence can be rewritten as

lim
T→∞

∣
∣
∣
∣
∣

1

T
E

∫ T

0

̺(Xx0(t)) dt −

∫

V

̺(y)µ∞(dy)

∣
∣
∣
∣
∣
= 0.

Let (X x̃(t), t ≥ 0) be a strictly stationary solution to (5). Then obviously

∣
∣
∣
∣

1

T
E

∫ T

0

̺(Xx0(t)) dt−
1

T
E

∫ T

0

̺(X x̃(t)) dt

∣
∣
∣
∣

≤
1

T
E

∫ T

0

∣
∣̺(Xx0(t)) − ̺(X x̃(t))

∣
∣ dt.(10)

We will show that the right hand side of (10) goes to zero as T → ∞. Using the local
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Lipschitz assumption (8) we get

1

T
E

∫ T

0

∣
∣̺(Xx0(t)) − ̺(X x̃(t))

∣
∣ dt

≤
K

T
E

∫ T

0

|Xx0(t) −X x̃(t)|V (1 + |Xx0(t)|mV + |X x̃(t)|mV ) dt

=
K

T

∫ T

0

E|S(t)(x0 − x̃)|V (1 + |Xx0(t)|mV + |X x̃(t)|mV ) dt

≤
K

T

∫ T

0

|S(t)|L(V )E|(x0 − x̃)|V (1 + |Xx0(t)|mV + |X x̃(t)|mV ) dt,

in virtue of the exponential stability bound (A2)

≤
KM

T

∫ T

0

e−ρt
E|x0 − x̃|V (1 + |Xx0(t)|mV + |X x̃(t)|mV ) dt

and by the Hölder inequality

≤
KM

T

∫ T

0

e−ρt
(
E|x0 − x̃|2V

)1/2 (
E(1 + |Xx0(t)|mV + |X x̃(t)|mV )2

)1/2
dt.

To show that the last term on the right hand side goes to 0 as T → ∞, we have to

show that

1. supt∈R+
E|X x̃(t)|2m < ∞. But this is equivalent to E|x̃|2m < ∞, which

is satisfied, because x̃ is Gaussian with the probability distribution µ∞ =

N (0, Q∞) and all Gaussian measures have all their moments finite.

2. supt∈R+
E|Xx0(t)|2m <∞. Let Z(t) =

∫ t

0 (β̂I −A)S(t− u)DdBH(u). Then

sup
t∈R+

E|Xx0(t)|2m = sup
t∈R+

E|S(t)x0 + Z(t)|2m

≤ cm

(

sup
t∈R+

E|S(t)x0|
2m + sup

t∈R+

E|Z(t)|2m

)

.

By the exponential stability bound (A2) for the first term and the fact that

Z(t) is Gaussian with probability distribution N (0, Qt)

≤ cm sup
t∈R+

Me−2mρt
E|x0|

2m + cm sup
t∈R+

(TrQt)
m

≤ c1E|x0|
2m

+ cm sup
t∈R+

(∫ t

0

∫ t

0

|S(u)Φ|L2(U,V )|S(v)Φ|L2(U,V )φ(u − v) du dv

)m

and following the steps in the proof of Theorem 3.1 for m = 0 and n = t we

deduce that the last term on the right hand side is bounded.
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We showed that the right hand side of (10) goes to zero as T → ∞, which yields (9)

using the Theorem 3.2 and completes the proof. Note that ρ satisfied the integrability

condition from Theorem 3.2 because by (8) it has at most polynomial growth and x̃

is a Gaussian random variable.

Now we focus our attention on the pathwise ergodic behaviour. At first we recall

the famous Birkhoff’s theorem for strictly stationary processes.

Theorem 3.4 (Birkhoff’s theorem). Let (X x̃(t), t ≥ 0) be a V -valued strictly

stationary process on (Ω,F ,P). Then for all measurable functionals ̺ : V → R such

that E|̺(x̃)| <∞ there exists a measurable functional ξ : Ω → R such that

(11) lim
T→∞

1

T

∫ T

0

̺(X x̃
t ) dt = ξ, a.s.-P.

Proof. See e.g [21].

Recall that a V -valued strictly stationary process (X(t), t ≥ 0) is said to be

ergodic, if ξ in (11) does not depend on ω ∈ Ω, i.e. ξ is deterministic, and ξ = E[̺(x̃)].

Theorem 3.5 (Ergodic theorem for a strictly stationary solution). Let (X x̃(t),

t ≥ 0) be a V -valued strictly stationary solution to (5). Let ̺ : V → R be a measurable

functional such that E|̺(x̃)| <∞. Then

lim
T→∞

1

T

∫ T

0

̺(X x̃(t)) dt =

∫

V

̺(y)µ∞(dy), a.s.-P.

Proof. Let z ∈ V be arbitrary and let (Y (t), t ≥ 0) be a R-valued process defined

by

Y (t) :=
〈
X x̃(t), z

〉

V
.

Then Y (0) = 〈x̃, z〉V . The process (Y (t), t ≥ 0) is a R-valued strictly stationary

centered Gaussian process. Let R(t) := E[Y (0)Y (t)] be the correlation function of

the process Y (t). Then (cf. [21]) the process Y (t) is ergodic if lim
t→∞

R(t) = 0. We

have

R(t) = E[Y (0)Y (t)]

= E[〈x̃, z〉V
〈
X x̃(t), z

〉

V
]

= E

[

〈x̃, z〉V

〈

S(t)(x̃) +

∫ t

0

(β̂I −A)S(t− r)D dBH(r), z

〉

V

]

= E [〈x̃, z〉V 〈S(t)(x̃), z〉V ]
︸ ︷︷ ︸

I

+E

[

〈x̃, z〉V

〈∫ t

0

(β̂I −A)S(t− r)D dBH(r), z

〉

V

]

︸ ︷︷ ︸

II

.

We will estimate both terms separately.
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The first term

E|I| = E |〈x̃, z〉V 〈S(t)(x̃), z〉V |

≤ E|S(t)x̃|V |z|2V |x̃|V

and using the exponential stability (A2)

≤Me−ρt|z|2V E|x̃|2V ,

which goes to 0 as t → ∞, because E|x̃|2V < ∞. The second term is for H = 1/2

equal to zero, because x̃ and the convolution integral
∫ t

0
(β̂I − A)S(t − r)D dBH(r)

are stochastically independent and therefore

E[II] = E

[

〈x̃, z〉V

〈∫ t

0

(β̂I −A)S(t− r)D dBH(r), z

〉

V

]

= E [〈x̃, z〉V ] E

[〈∫ t

0

(β̂I −A)S(t− r)D dBH(r), z

〉

V

]

= 0.

For H 6= 1/2 we obtain that E[II] goes to zero as t → ∞ by following Lemmas 4.4

and 4.5 from [12]. Thus the process Y (t) =
〈
X x̃(t), z

〉

V
is ergodic for each z ∈ V .

Take (hn, n ∈ N) any orthonormal basis in V . Then

E 〈x̃, hn〉V = lim
T→∞

1

T

∫ T

0

〈
X x̃(t), hn

〉

V
dt = 0

on Ωn ⊂ Ω, P(Ωn) = 1. On the other hand, by Theorem 3.4

lim
T→∞

1

T

∫ T

0

X x̃(t) dt = ξ

on Ω0 ⊂ Ω, P(Ω0) = 1. Taking Ω′ =
∞⋂

n=0
Ωn, we have P(Ω′) = 1 and

0 = lim
T→∞

1

T

∫ T

0

〈
X x̃(t), hn

〉

V
dt

= lim
T→∞

〈

1

T

∫ T

0

X x̃(t) dt, hn

〉

V

=

〈

lim
T→∞

1

T

∫ T

0

X x̃(t) dt, hn

〉

V

= 〈ξ, en〉V

on Ω′. Hence 〈ξ, hn〉V = 0 for each n on Ω′, i.e. ξ = 0, a.s.-P, and it follows that

X x̃(t) is ergodic.
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We will now apply the previous results to the solution of (5) with arbitrary initial

condition.

Definition 3.1. A V -valued Gaussian process (BH
Q (t), t ∈ R) on (Ω,F ,P)

is called a fractional Brownian motion of Q-covariance type with Hurst parameter

H ∈ (0, 1) (or, more simply, a fractional Q-Brownian motion with Hurst parameter

H) if

1. EBH
Q (t) = 0 for all t ∈ R,

2. Cov(BH
Q (t), BH

Q (s)) =
1

2
(|t|2H + |s|2H − |t− s|2H)Q, for all s, t ∈ R,

3. (BH
Q (t), t ∈ R) has V -valued, continuous sample paths a.s.-P.

Let (BH(t), t ∈ R) be a standard cylindrical fractional Brownian motion in U .

Let Φ ∈ L2(U, V ) and set Q = ΦΦ∗. Then there exists (see e.g. [15], Proposition

1.1.1) a Q-covariance fractional Brownian motion (BH
Q (t), t ∈ R) such that for all

z ∈ V

〈
BH

Q (t), z
〉

V
=
〈
BH(t),Φ∗z

〉
, a.s.-P.

Moreover, the convolution integral
∫ t

0 S(t− r)Φ dBH(r) solves the equation

(12)
dX(t) = AX(t) dt+ dBH

Q (t),

X(0) = 0.

We recall some a.s.-P growth estimates and a representation of the solution to

equation (12) that have been proved in [13].

Lemma 3.6. Let Φ ∈ L2(U, V ). Then

∫ t

0

S(t− r) dBH
Q (r) = A

∫ t

0

S(t− r)BH
Q (r) dr +BH

Q (t), a.s.-P,

for t ≥ 0. Moreover, for any ω ∈ Ω, ε > 0 there exists a constant k(ω, ε) such that

|BH
Q (t)|V ≤ εt2 + k(ω, ε)

for t ∈ R.

Proof. Follows from [13] Lemmas 2.4 and 2.6.

Theorem 3.7. Let (A1) and (A2) be satisfied and let (Xx0(t), t ≥ 0) be a solution

to (5) with D ∈ L2(U, V ). Let ϕ : R → R be a real function satisfying the following

local Lipschitz condition: let there exist real constants K > 0 and m ≥ 1 such that

(13) |ϕ(x) − ϕ(y)| ≤ K|x− y|(1 + |x|m + |y|m)

for all x, y ∈ R. Let z ∈ Dom
(
(A∗)2

)
be arbitrary. Then

(14) lim
T→∞

1

T

∫ T

0

ϕ(〈Xx0(t), z〉) dt =

∫

V

ϕ(y)µ∞(dy), a.s.-P.



PARAMETER ESTIMATES FOR LINEAR PDES 13

Proof. Let (X x̃(t), t ≥ 0) be a strictly stationary solution to (5). Then obviously

∣
∣
∣
∣

1

T

∫ T

0

ϕ
(
〈Xx0(t), z〉V

)
dt −

1

T

∫ T

0

ϕ
(〈
X x̃(t), z

〉

V

)
dt

∣
∣
∣
∣

≤
1

T

∫ T

0

∣
∣
∣ϕ
(
〈Xx0(t), z〉V

)
− ϕ

(〈
X x̃(t), z

〉

V

)
∣
∣
∣ dt.

We will show that the right hand side goes to zero as T → ∞. Using the local

Lipschitz assumption (13) we get

1

T

∫ T

0

∣
∣
∣ϕ
(
〈Xx0(t), z〉V

)
− ϕ

(〈
X x̃(t), z

〉

V

)
∣
∣
∣ dt

≤
K

T

∫ T

0

∣
∣
〈
Xx0(t) −X x̃(t), z

〉

V

∣
∣

(

1 + | 〈Xx0(t), z〉V |m + |
〈
X x̃(t), z

〉

V
|m
)

dt

≤
K

T

∫ T

0

|〈S(t)(x0 − x̃), z〉V |

·
(

1 + | 〈S(t)x0 + Z(t), z〉V |m + | 〈S(t)x̃+ Z(t), z〉V |m
)

dt

≤
K

T

∫ T

0

|S(t)|L(V )|x0 − x̃|V |z|V

·
(

1 + c1|S(t)|mL(V ) (|x0|
m
V + |x̃|mV ) + c2| 〈Z(t), z〉V |m

)

dt

and in virtue of the exponential stability bound (A2)

≤
KM

T
|x0 − x̃|V |z|V

·

∫ T

0

e−ρt
(

1 + c1Me−ρmt (|x0|
m
V + |x̃|mV ) + c2| 〈Z(t), z〉V |m

)

dt

≤
c3
T

∫ T

0

e−ρt
(

1 + c4e
−ρmt + c2| 〈Z(t), z〉V |m

)

dt.(15)

We need the last term on the right hand side to go to 0 as T → ∞. Applying Lemma

3.6 with Φ = D we have

|〈Z(t), z〉V | =

∣
∣
∣
∣

〈

(β̂I −A)

∫ t

0

S(t− r)D dBH(r), z

〉

V

∣
∣
∣
∣

=

∣
∣
∣
∣

〈∫ t

0

S(t− r)D dBH(r), (β̂I −A)∗z

〉

V

∣
∣
∣
∣

≤

∣
∣
∣
∣

〈∫ t

0

S(t− r)BH
Q (r) dr,A∗(β̂I −A∗)z

〉

V

+
〈

BH
Q (t), (β̂I −A∗)z

〉

V

∣
∣
∣
∣

≤ |A∗(β̂I −A∗)z|V

·

∫ t

0

|S(t− r)|L(V ) |B
H
Q (r)|V dr + |BH

Q (t)|V |(β̂I −A∗)z|V



14 BOHDAN MASLOWSKI AND JAN POSPÍŠIL

and by the exponential stability (A2) and the bound from Lemma 3.6

≤M |A∗(β̂I −A∗)z|V

·

∫ t

0

e−ρ(t−r)(εr2 + k(ω, ε)) dr + (εt2 + k(ω, ε))|(β̂I −A∗)z|V

≤ c̃(ω)(1 + t2).

Therefore

(15) ≤
c(ω)

T

∫ T

0

e−ρmt(1 + t2)m dt

which goes to zero as T → ∞, which yields (14) using Theorem 3.5 and thus completes

the proof.

4. Parameter estimates based on ergodicity. In this section we present the

results on parameter estimation in infinite dimensional equations that are based on

the ergodic theorems proved in the previous section.

Consider the linear equation

(16)
dX(t) = αAX(t) dt+ α(β̂I −A)DdBH(t),

X(0) = x0,

where α > 0 is a real constant parameter, A, β̂, BH , D and x0 are as in (5) and,

moreover, D ∈ L2(U, V ).

The operator αA is the infinitesimal generator of the semigroup (Sα(t), t ≥ 0).

Obviously Sα(t) = S(αt) for all t ≥ 0. The semigroup (Sα(t), t ≥ 0) is analytic and

the operator αβ̂I −αA is positive. The semigroup (Sα(t), t ≥ 0) is also exponentially

stable and the limiting measure has the form µα
∞ = N (0, Qα

∞).

For H > 1/2 we have (cf. Remark 2.1)

Qα
∞ =

∫ ∞

0

∫ ∞

0

α(β̂I −A)Sα(u)D[α(β̂I −A)Sα(v)D]∗φ(u− v) du dv

=

∫ ∞

0

∫ ∞

0

(β̂I −A)S(u)D[(β̂I −A)S(v)D]∗φ
(u

α
−
v

α

)

du dv

= α2−2H

∫ ∞

0

∫ ∞

0

(β̂I −A)S(u)D[(β̂I −A)S(v)D]∗φ(u − v) du dv

= α2−2HQ∞,

where Q∞ corresponds to the case α = 1.
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For H < 1/2 and x, y ∈ V we have

〈Qα
∞x, y〉V

= lim
T→∞

〈Qα
Tx, y〉V

= lim
T→∞

∞∑

n=1

E

〈
∫ T

0

α(β̂I −A)Sα(r)Dhn dβ
H
n (r), x

〉

V

·

〈
∫ T

0

α(β̂I −A)Sα(r)Dhn dβ
H
n (r), y

〉

V

= lim
T→∞

α2

∫ T

0

∞∑

n=1

〈

K∗
H((β̂I −A)Sα(·)Dhn)(r), x

〉

V

·
〈

K∗
H(β̂I −A)(Sα(·)Dhn)(r), x

〉

V
dr.

Using the representation (3) and a simple substitution theorem we also arrive at

〈Qα
∞x, y〉V = α2−2H 〈Q∞x, y〉V

for all x, y ∈ V and therefore

Qα
∞ = α2−2HQ∞.

For H = 1/2 this equality is obvious.

Now we define a family of estimators of the parameter α.

Theorem 4.1. Let (A1) and (A2) be satisfied and let (Xx0(t), t ≥ 0) be a V -

valued solution to (16) with D ∈ L2(U, V ). Let z ∈ Dom
(
(A∗)2

)
be arbitrary such

that

〈Q∞z, z〉V > 0.

Define

α̂T :=

(

〈Q∞z, z〉V
1
T

∫ T

0
| 〈Xx0(t), z〉V |2 dt

) 1
2H−2

.

Then

lim
T→∞

α̂T = α, a.s.-P,

i.e., (α̂T ) is a strongly consistent family of estimators.

Proof. Let z ∈ Dom
(
(A∗)2

)
be arbitrary. Let ϕ : R → R, ϕ(y) = |y|2. Then all
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the conditions of Theorem 3.7 are satisfied with m = 1 and

lim
T→∞

1

T

∫ T

0

ϕ
(
〈Xx0(t), z〉V

)
dt = lim

T→∞

1

T

∫ T

0

| 〈Xx0(t), z〉V |2 dt

=

∫

V

| 〈y, z〉V |2 µ∞(dy)

= 〈Qα
∞z, z〉V

= α2−2H 〈Q∞z, z〉V , a.s.-P,

which completes the proof.

Remark 4.1. If the initial condition x0 ∈ V is such that E|x0|2V <∞ and if the

limiting measure µ∞ exists with covariance Q∞ such that TrQ∞ 6= 0, we can define

α̂T :=

(

TrQ∞

1
T E

∫ T

0
|Xx0(t)|2V dt

) 1
2H−2

.

Then we can use the Theorem 3.3 with ̺ : V → R, ̺(y) = |y|2V , y ∈ V and m = 1 to

show that

lim
T→∞

α̂T = α.

Some examples of parameter estimations including numerical simulations can be

found in [16] and [17].

5. Example. Now we will apply the above obtained results to the heat equation

formally described as

(17)
∂y

∂t
= α(∆ − δI)y(t, ξ), (t, ξ) ∈ R+ ×O,

where ∆ denotes the Laplace operator, α > 0 is an unknown parameter, δ ≥ 0 is fixed

and O ⊂ Rd is a bounded domain with smooth boundary ∂O. The equation (17) is

considered together with an initial condition

(18) y(0, ξ) = x0(ξ), ξ ∈ O

and boundary condition either of Dirichlet type

(19) y(t, ξ) = ηH(t, ξ), (t, ξ) ∈ R+ × ∂O,

or of Neumann type

(20)
∂y

∂ν
(t, ξ) = ηH(t, ξ), (t, ξ) ∈ R+ × ∂O,

where ν is the normal derivative and ηH stands formally for a Gaussian noise, frac-

tional in time.
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The problem (17),(18),(19) or (17),(18),(20) may be rewritten in the form (16)

with V = L2(O), U = L2(∂O) (if the underlying space dimension d = 1, U = R2),

A = (∆ − δI)|Dom(A) with Dom(A) = H2(O) ∩ H1
0 (O) (in the case of Dirichlet

boundary conditions) or Dom(A) = {ϕ ∈ H2(O); ∂ϕ
∂ν = 0 on ∂O} (for the Neumann

boundary conditions). Furthermore, (BH(t), t ≥ 0) is a cylindrical fractional Brown-

ian motion process on U (if d = 1, BH(t) is just two-dimensional), x0 ∈ V ∈ L2(O)

and D = NQ1/2, where Q1/2 ∈ L(U) is the covariance operator of the noise and N

stands for the Dirichlet or Neumann map obtained in the following way:

Take an arbitrary β̂ ≥ 0 such that β̂I − A is uniformly positive (we may take

β̂ = 0 in the case of Dirichlet boundary condition and any β̂ > 0 for the Neumann

case) and consider the elliptic equation

(β̂I −A)z = 0 in O,

z = h on ∂O,

where h ∈ U . The mapping N is defined as N(h) = z.

The equation (16) is a version of the problem (17),(18),(19) or (17),(18),(20) (cf.

[4]; for H = 1/2, when BH is a standard Wiener process, this interpretation – for a

fixed parameter value – has been used in numerous papers, see the monograph [2],

Chapter 13 and the references therein). As we need justify the special form of the

dependence on the parameter, we will sketch the main argument. Let u(t) be a two

times continuously differentiable function with values in U such that x0 − Nu(0) ∈

Dom(A). Then there exists a strong solution to the equation

z′(t) = αAz(t) + αβ̂Nu(t) −Nu′(t), t > 0,(21)

z(0) = x0 −Nu(0).(22)

Set v(t) = z(t) +Nu(t). Then v(0) = z(0) +Nu(0) and

d

dt
v(t) =

d

dt
(z(t) +Nu(t))

= z′(t) +Nu′(t)

= αAz(t) + αβ̂Nu(t)

= αA (v(t) −Nu(t)) + αβ̂Nu(t)

= αAv(t) + α(β̂I −A)Nu(t)

= αAv(t),

because α(β̂I − A)Nu(t) = 0 for each t > 0. Since z (being a strong solution to

(21),(22)) satisfies the zero boundary condition (in either Dirichlet or Neumann case),

we have

(23) v|R+×∂O = u or
∂v

∂ν

∣
∣
∣
∣
R+×∂O

= u.
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Therefore, v(t) is the solution to the problem

d

dt
v(t) = αAv(t), t > 0,

v(0) = x0,

with inhomogeneous boundary condition (23). Now we will find the mild form of the

solution to v. The mild form of the solution z(t) to (21),(22) is

z(t) = Sα(t)(x0 −Nu(0)) +

∫ t

0

Sα(t− s)(αβ̂Nu(s) −Nu′(s)) ds, t > 0,

where Sα(t) = S(αt), t ≥ 0 and (S(t), t ≥ 0) is the semigroup generated by A. Thus

v(t) = z(t)+Nu(t) = Sα(t)(x0−Nu(0))+

∫ t

0

Sα(t−s)(αβ̂Nu(s)−Nu′(s)) ds+Nu(t),

and since the integration by parts yields

∫ t

0

Sα(t− s)Nu′(s) ds = Nu(t) − Sα(t)Nu(0) + α

∫ t

0

ASα(t− s)Nu(s) ds,

it follows that

(24) v(t) = Sα(t)x0 + α(β̂I −A)

∫ t

0

Sα(t− s)Nu(s) ds, t > 0.

Similarly as in the case of distributed noise, the mild solution of our problem (16) is

motivated by (24) where u is replaced by Q1/2 d
dtB

H(t).

We shall now verify our conditions (A1) and (A2) for this case. By the deter-

ministic theory (see e.g. [14]) it is well known that (Sα(t), t ≥ 0) is analytic and

the condition (A2) (exponential stability) is satisfied in the Dirichlet case with δ ≥ 0

and in the Neumann case with δ > 0. In order to verify the assumption (A1) we

have to check the behaviour of the operator N . It is known that N ∈ L(U, Vε) (with

U = L(∂O) and V = L2(O)) for

ε <
1

4

in the case of Dirichlet boundary conditions and

ε <
3

4

for the Neumann boundary conditions. Assuming that the covariance Q is trace class

(if d = 1 this is automatically satisfied, because U = R2), the condition (A1) is

satisfied by Corollary 2.2 if 1 − ε < H , which yields

H >
3

4
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in the Dirichlet case and

H >
1

4

in the Neumann case.

To summarise, if δ ≥ 0 and H > 3/4 (in the Dirichlet case) or δ > 0 and H > 1/4

(in the Neumann case), then Theorems 3.1, 3.5, 3.7 and 4.1 may be applied to the

problems (17),(18),(19) or (17),(18),(20).
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