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LARGE POPULATION STOCHASTIC DYNAMIC GAMES:

CLOSED-LOOP MCKEAN-VLASOV SYSTEMS AND THE NASH

CERTAINTY EQUIVALENCE PRINCIPLE∗

MINYI HUANG† , ROLAND P. MALHAMÉ‡, AND PETER E. CAINES§

Abstract. We consider stochastic dynamic games in large population conditions where multi-

class agents are weakly coupled via their individual dynamics and costs. We approach this large

population game problem by the so-called Nash Certainty Equivalence (NCE) Principle which leads

to a decentralized control synthesis. The McKean-Vlasov NCE method presented in this paper has

a close connection with the statistical physics of large particle systems: both identify a consistency

relationship between the individual agent (or particle) at the microscopic level and the mass of indi-

viduals (or particles) at the macroscopic level. The overall game is decomposed into (i) an optimal

control problem whose Hamilton-Jacobi-Bellman (HJB) equation determines the optimal control for

each individual and which involves a measure corresponding to the mass effect, and (ii) a family

of McKean-Vlasov (M-V) equations which also depend upon this measure. We designate the NCE

Principle as the property that the resulting scheme is consistent (or soluble), i.e. the prescribed

control laws produce sample paths which produce the mass effect measure. By construction, the

overall closed-loop behaviour is such that each agent’s behaviour is optimal with respect to all other

agents in the game theoretic Nash sense.

Key words: Stochastic dynamic games, large populations, multi-class agents, interacting parti-

cle systems, statistical physics, decentralized control, Hamilton-Jacobi-Bellman equation, McKean-

Vlasov equation, Nash equilibria

1. Introduction. The modelling and analysis of dynamic systems with many in-

teracting agents has gained research attention from a wide range of disciplines. In this

paper, the investigation of large weakly coupled systems has its motivation coming

from many complex phenomena arising in engineering and socioeconomic settings,

among others, for instance, dynamic economic models involving competing agents

[18, 14, 35, 25], biological models on animal competition and conflicts [36, 38], wire-

less power control [23, 24], road traffic engineering [46, 22], and shared data buffer

modelling [3]. Also, large-scale weakly coupled stochastic dynamic systems appear in
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mathematical biology and have received justification by field observations [41]. Usu-

ally, a key common feature to these systems is that while each agent only receives a

negligible influence from any other given individual, the effect of the overall population

is significant to each agent.

In this paper, we study the optimization of large-scale nonlinear stochastic sys-

tems wherein many agents are each coupled with others via the individual dynamics

and costs. This kind of weak coupling in both dynamics and costs is used to model

the mutual impact of agents during competitive decision-making. In particular, the

dynamic coupling specifies the impact of the environment on an individual’s decision-

making, and the underlying model takes the form of weakly coupled diffusions subject

to individual controls. We aim to develop a methodology for multi-agent optimization

with local information. In contrast to the extensive literature on dynamic games (see,

e.g., [6, 42, 16, 31, 45]), we are particularly interested in large populations. We note

that games with a large or infinite population have long been a major research area

in game theory [33, 1, 2, 40, 43, 19], but traditionally most work has been based upon

static models. And moreover, in our modelling each agent only has local information

about its own state and dynamics in addition to the statistical property about the

population parameter variation. This leads to a situation of decision with incomplete

information [20, 21, 4, 39]. In general, for analysis of such games, Harsanyi’s ap-

proach via Bayesian players [20] is important, though it involves great complexity in

specifying the types of different players. However, in large population conditions, it is

possible to develop efficient decision-making without paying excessive attention to the

fine details of the system structure since each individual agent’s effect is extremely

weak with respect to the overall population’s behaviour which becomes more relevant

to a given agent’s optimization as the population increases. Such an intuitive fact

will provide the main motivation in developing our methodology which has a close

connection with large particle systems and statistical physics [5, 44, 34, 32, 11].

Based upon the interaction between the individual and mass, we develop state

aggregation for the underlying dynamic models which extracts the overall effect a

given agent receives from the population. Our general methodology based upon state

aggregation and upon individual-mass interaction was first developed for a population

with linear individual dynamics or mild nonlinearity [23, 25, 28, 29, 27, 26, 30], com-

bined with quadratic individual costs, which usually led to explicit calculations for

the individual strategies. The aim of this paper is to extend this general approach to

fully nonlinear models. Our analysis is facilitated by considering a controlled McKean-

Vlasov (M-V) equation associated with the large population limit. The key step is

to construct a mutually consistent pair of (i) the mass effect and (ii) the individual

strategies such that the latter not only each constitute an optimal response to the mass
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effect but also collectively produce that mass effect. By the NCE Methodology we

mean the overall game decomposition into a (non-standard) optimal control problem

whose HJB equation involves a mass effect measure and a closed-loop McKean-Vlasov

equation; these two parts are related to each other by the optimal control law derived

from the former. In this setting, we designate the NCE Principle as the property that

the resulting scheme is consistent in the sense that the prescribed control laws pro-

duce sample paths which produce the mass effect with respect to which the optimal

control is derived via the HJB equation. It is a property of this overall closed-loop

behaviour that each agent’s optimal behaviour with respect to all other agents holds

in the game theoretic Nash sense.

So it turns out that the application of the NCE methodology amounts to deter-

mining a certain mass effect such that in the first step we solve a stochastic optimal

control problem which generates the individual strategies, and such that in the second

step, the closed-loop M-V equation will generate the same mass effect which has been

used in the first place. In carrying out these two steps, we introduce the so-called best

response map and measure-flow inducing map. The solution to the overall problem,

and hence the demonstration of the NCE Principle, or Property, relies on finding a

fixed point to the composite action of the two maps in the appropriate metrized space

of measures. The fixed point analysis is facilitated by introducing the so-called Vaser-

shtein metric for probability measures on the space of continuous functions [13, 44].

The rest of the paper is organized as follows. In Section 2 we introduce the

stochastic dynamic game model involving a set of interacting diffusions, and the well-

known McKean-Vlasov equation for interacting particles. In Section 3 we describe

the NCE principle which yields the HJB equation together with individual strategies,

and the closed-loop M-V equation. Section 4 introduces some important assumptions

for the system dynamics. Sections 5 and 6 analyze the decoupled HJB equation

and M-V equation, respectively. In Section 7 we present an existence result for the

consistent pair under suitable regularity and gain conditions. Section 8 is devoted to

an asymptotic equilibrium analysis.

For the sake of exposition, we make a few conventions about notation. For a

system involving many scalar state components (e.g., zi, yi, etc.), we use the integer-

valued subscript as the label for a certain agent. When the system involves only a

single agent or particle (e.g., xt, wt), we may use the real-valued subscript to indicate

time. Throughout the paper, | · | denotes the Euclidean norm of a vector. The integer

n is reserved to denote the population size of the game. We use C,C1, C2, etc. to

denote a generic constant independent of the population size, and they may vary from

place to place.
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2. The Weakly Coupled Systems. We first formulate the large population

stochastic dynamic game, which is then followed by the introduction of the interacting

particle (IP) system. The motivation for such an organization is that, while the

former will be the focus of our analysis in this paper, the modelling and optimization

approach in the nonlinear stochastic dynamic game problem has a close connection

with the modelling approach in the latter, especially with respect to the individual-

mass interaction aspect and the microscopic analysis based upon single agents or

particles.

2.1. The Stochastic Dynamic Game. We consider an n dimensional non-

linear stochastic system where the evolution of each state component is described

by

(1) dzi = (1/n)
n

∑

j=1

fai
(zi, ui, zj)dt+ σdwi, 1 ≤ i ≤ n, t ≥ 0,

where {wi, 1 ≤ i ≤ n} denotes n independent standard scalar Wiener processes. The

initial states zi(0) are mutually independent, and also independent of {wi, 1 ≤ i ≤ n}.

In addition, E|zi(0)|2 < ∞. Each state component shall be referred to as the state

of the corresponding agent (also to be called player). The control input ui takes its

values in a compact set U = [α, β]. The function fai
is from R × U × R to R. For

simplicity of analysis we take the diffusion coefficient to be the same constant σ > 0

for the n agents. Unless otherwise stated, throughout the paper zi is described by the

dynamics (1).

The nonlinear functions f(·) are indexed by a ∈ A where a is called the dynamic

parameter and A is an index set. Note that we indicate no explicit dependence of f(·)

on a, and for different values of a, fa is allowed to take different forms. For the ith

agent, its dynamic parameter takes the specific value ai ∈ A. The dynamic parameter

may vary from agent to agent; this property is used to describe the heterogeneity of

the population. In the special case when A is a singleton, we get a population of

uniform agents.

In the analysis below we assume a finite set A = {θ1, · · · , θK} for modelling

multi-class agents, where K is the number of agent classes. We further assume that

the distribution for the initial state depends upon the class of the agent. Hence we

may denote µai

0 for the initial distribution of zi, and there are a total of K classes of

initial distributions, listed by µθ1

0 , · · · , µ
θK

0 .

The cost function for the ith agent is given in the form:

Ji(ui) , E

∫ T

0

[

(1/n)
n

∑

j=1

L(zi, ui, zj)
]

dt,(2)
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where T ∈ (0,∞) is the terminal time, L is a nonlinear function from R × U × R to

R+ = [0,∞).

To emphasize the control objective in relation to its own state and control pro-

cesses, it is possible to consider a more general form for the cost function of the ith

agent:

J ′
i(ui) , E

∫ T

0

Θ
(

zi, ui, (1/n)

n
∑

j=1

L(zi, ui, zj)
)

dt,(3)

where Θ is a function from R × U × R to R+. However, in this paper we will only

consider the optimization based upon the cost (2), and under suitable conditions, our

analysis may be easily adapted to deal with the cost structure (3).

For the system configuration z = (z1, · · · , zn), define the empirical distribution

εz = (1/n)
∑n

i=1 δzi
where δ• is the Dirac measure. Then the coupling terms in the

individual dynamics and costs are functionals of εz which is insensitive to the ordering

of the entries in z. This feature is important and will be exploited in developing the

aggregation technique for control synthesis.

For the above system, the objective is to seek individual control strategies and

appropriately characterize their optimality, and a standard approach is to analyze

Nash (equilibrium) strategies. However, this approach requires that each agent has

full information on the states and dynamic parameters of all agents, which results in

very high control complexity under large-population conditions. This motivates us to

search for lower complexity control strategies.

In specifying the structure of the individual dynamics and costs, we assume that

neither fai
nor L explicitly depend upon the control of other agents. However, each zi

is under an indirect influence of uj, j 6= i via the coupling state variable zj appearing

in fai
(zi, ui, zj). For illustrating this class of models, we consider a concrete example

as follows.

Example 1. We take fai
(zi, ui, zj) = f0

ai
(zi, ui) + f1

ai
(zj) and L(zi, ui, zj) =

L0(zi, ui) +L1(zj). This gives the drift term (1/n)
∑n

j=1 fai
(zi, ui, zj) = f0

ai
(zi, ui) +

(1/n)
∑n

j=1 f
1
ai

(zj) and cost integrand (1/n)
∑n

j=1 L(zi, ui, zj) = L0(zi, ui) + (1/n)
∑n

j=1 L
1(zj), corresponding to (1) and (2), respectively.

The modelling in Example 1 yields a typical situation where each agent’s dynamics

and cost are closely related to its own state and control selection while receiving an

average impact from the population. This reflects an important feature in many

practical situations for decision-making.

2.2. The Interacting Particle System. In an interacting particle (IP) system,

the state evolution of an individual particle is affected by an empirical average of

coupling terms with all other particles. Mathematically, this leads to a set of weakly
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coupled diffusions, each describing the motion of a single particle, where an averaging

across the population produces the coupling term in the individual dynamics. We

introduce the following dynamics [12] in the form of N coupled stochastic differential

equations (SDE):

dxi = (1/N)

N
∑

k=1

b(xi, xk)dt+ σdwi, 1 ≤ i ≤ N, t ≥ 0,(4)

where b(·, ·) is a function from R
2 to R, N is the number of particles and all xi’s

are assumed to have i.i.d. initial conditions at t = 0. Here we assume xi is a scalar

although the modelling is also applicable to the case of vector particle states. The

noises {wi, 1 ≤ i ≤ N} are N independent Wiener processes independent of the initial

conditions xi(0), 1 ≤ i ≤ N . Let εx = (1/N)
∑N

i=1 δxi
denote the empirical measure

of the particle configuration (x1, x2, · · · , xN ). Then the drift term in (4) may be

expressed as a function of xi and εx.

For this class of particle models, one can achieve a remarkable degree of economy

in the description of population dynamics, by expressing the aggregate coupling term

in terms of an expectation over a typical individual’s probability distribution function

which evolves with time. This is based upon the following intuition: as the number

of particles grows to infinity, the particles become essentially indistinguishable while

each individual being negligible, and furthermore, there is a decoupling effect such

that a single particle’s statistical properties can effectively approximate the empirical

distribution produced by all particles [10]. More specifically, as N tends to infinity,

the individual dynamics may be written in the limiting form:

dxt = b[xt, µt]dt+ σdwt, t ≥ 0,(5)

which is the celebrated McKean-Vlasov (M-V) equation. Here b[x, µt] =
∫

b(x, y)µt

(dy) for some probability distribution µt on R. This equation, as well as its variants,

has been extensively studied in physics, stochastic analysis, and partial differential

equations [12, 44, 37, 7, 8]. The noise wt may be determined in different ways. For

instance, if one intends to approximate x1 in (4) by xt, one may set wt = w1 as

the driving Brownian motion in (5) and x0 = x1(0). Note that by introducing the

density function pt(x), associated with µt for xt, one may recast (5) in the form of a

Fokker-Planck equation whose coefficients depend upon the density pt(x) itself.

Definition 2. A pair (xt, µt), t ≥ 0, is said to be a consistent pair if xt is

a solution to the SDE (5) and µt is its distribution at time t, i.e., P (xt ≤ α) =
∫ α

−∞
µt(dy) for all α ∈ R and t ≥ 0.

It is obvious that µ0 in Definition 2 is determined as the distribution of x0. For a

detailed analysis on the existence and uniqueness of a solution to (5) and asymptotic
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properties, see [7, 8]. For a weak convergence relationship between solutions of (4)

and (5), and large deviation analysis for µt, see [44, 12] and references therein.

3. The Nash Certainty Equivalence Principle via Population Limit. For

the above n-agent dynamic game, as n → ∞, we will use the M-V equation (5), as

well as the notion of a consistent state-distribution pair, as a motivating scheme to

develop reduction methods for the mass coupling term in the individual dynamics (1).

Specifically, we attempt to use a probability distribution µi
t on R, to approximate the

empirical distribution of the sub-configuration (zk1
, · · · zkl

) of (z1, · · · , zn) at time t,

which corresponds to the l states sharing a dynamic parameter a = θi. Roughly

speaking, the parameter a is used as a classifier for a family of empirical distributions

each being induced by the same class of agents. The rationale for using the K distri-

butions µi
t, 1 ≤ i ≤ K, to approximate the overall population effect is that as n→ ∞,

if the population is well randomized so as to give a sufficient number of agents in each

class appearing in the game, then it is possible to approximate the mass effect by the

superposition of these K distributions, provided that all agents have sufficiently weak

coupling and generate their effect on any given agent additively in a certain manner.

However, it should be clear that this is only a heuristic argument, and its justification

via the exact characterization of the individual-mass interaction needs to be based

upon rigorous mathematical analysis, which will be the main focus of what follows.

For the sequence {ai, i ≥ 1} where ai ∈ A, we define the empirical distribution

associated with the first n agents

Fn({θk}) = (1/n)

n
∑

i=1

1(ai=θk),

which gives a discrete distribution function on A for each given n. We introduce the

assumption below as a characterization of the population statistics.

(H0) There exists a distribution function F on A = {θ1, · · · , θK}, denoted as

π = (π1, · · · , πK) (i.e., F ({θk}) = πk), such that limn→∞ Fn({θk}) = F ({θk}) for

each θk ∈ A.

Before tackling the large population game, we first consider its limiting form via

specifying the behaviour of a single agent, as in the M-V equation. To facilitate the

exposition, we call a K-tuple (µ1
t , · · · , µ

K
t ) of K probability measures on R, defined

for all t ∈ [0, T ], a probability measure flow on [0, T ]. Also, we may simply call it a

measure flow.

We write the dynamics of a representative agent with the scalar state variable xt:

dxt = fa[xt, ut, µ
1
t , · · · , µ

K
t ]dt+ σdwt,(6)

where the distribution of x0 will be specified, depending upon the value of a, as the

common initial distribution of that class of agents, and the drift coefficient is defined
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as

fa[x, u, µ1
t , · · · , µ

K
t ] =

K
∑

i=1

πi

∫

R

fa(x, u, y)µi
t(dy),(7)

which results from the superposition of the average effects, each determined by in-

tegrating with respect to a certain µi
t, of multi-class agents. We note that the state

variable xt, control variable ut and noise wt are associated with a specific value of

a; however, for notational brevity, we do not include a matching index a for xt, ut

and wt. In fact, if we write equation (6) for K agents in distinct classes, we will

get a system of K equations which have their own independent initial conditions and

Brownian motions and are coupled by µi
t, 1 ≤ i ≤ n. These equations are mutually

independent if each individual control is adapted to the σ-algebra generated by the

Brownian motion in the same equation.

And corresponding to (2), we define the cost function:

J(u, µ1, · · · , µK) , E

∫ T

0

L[xt, ut, µ
1
t , · · · , µ

K
t ]dt,(8)

where

L[x, u, µ1
t , · · · , µ

K
t ] =

K
∑

i=1

πi

∫

R

L(x, u, y)µi
t(dy).

Within the context of the limiting game problem, we give the interpretation for

the controlled system dynamics (6) as follows. The control ut should be sought such

that (i) it is optimal for the minimization of J(u, µ1, · · · , µK) when the measure flow

(µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T , is treated as an exogenous signal, and (ii) the distribution

of xt in the closed-loop system coincides with µi
t, i.e., P (xt ≤ α) =

∫ α

−∞
µi

t(dy) for

all α ∈ R and t ≥ 0, when the dynamic parameter is set as a = θi. This forms the

basis for our subsequent control synthesis and this control design scheme is called

the Nash Certainty Equivalence (NCE) Methodology. Equation (6) may be looked

at as a controlled McKean-Vlasov equation for multi-class agents with the control

performance measured by (8). Notice that in step (i), ut is formally regarded as not

affecting (µ1
t , · · · , µ

K
t ) during the strategy selection. The reason for so doing is that

in relation to the game with a large but finite population, µi
t is used to model the

collective effect of the ith class of agents whose states are under their own controls

and as such, it is expected to become asymptotically insensitive to the control of the

individual agent in question. This consequently leads to a decoupled stochastic control

problem involving an isolated agent, which is indicated by its dynamic parameter to

be in one of the K classes of agents. Subsequently, in the closed-loop equation we get

µi
t as the distribution of xt associated with the parameter a = θi.
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3.1. The NCE Methodology and the NCE Equation. Since the mea-

sure flow (µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T , is treated as an exogenous signal in the NCE

methodology, the control for the agent described by (6) and (8) is determined by

a standard optimal control problem. We formally proceed to write the following

equations for which the existence analysis will be developed subsequently. Assuming

the measure flow (µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T , is given first, we use Va(t, x), (t, x) ∈

[0, T ] × R to denote the value function of agents with parameter a, i.e., Va(t, x) =

infu(·)∈U

∫ T

t
L[xs, us, µ

1
s, · · · , µ

K
s ]ds subject to the dynamics (6). The admissible con-

trol set U consists of all controls such that ut ∈ U and is adapted to the σ-algebra

σ(x0, ws, s ≤ t) with the associated Brownian wt in this agent’s dynamics. We write

the HJB equation

−
∂Va

∂t
= inf

u∈U

{

fa[x, u, µ
1
t , · · · , µ

K
t ]
∂Va

∂x
+ L[x, u, µ1

t , · · · , µ
K
t ]

}

+
σ2

2

∂2Va

∂x2
,(9)

where the initial time-state pair is (t, x) ∈ [0, T ) × R and the terminal condition is

Va(T, x) = 0.

We denote the resulting optimal control law by

ut = ϕa(t, x|µ1
· , · · · , µ

K
· ),(10)

where (t, x) ∈ [0, T ] × R. It should be noted that the notation in (10) indicates that

the value of ϕa at time t depends upon the measure flow (µ1
t , · · · , µ

K
t ) on the whole

interval [0, T ].

Substituting (10) into (6), we write the closed-loop dynamics

dxt = fa[xt, ϕa(t, x|µ1
· , · · · , µ

K
· ), µ1

t , · · · , µ
K
t ]dt+ σdwt, 0 ≤ t ≤ T.(11)

Now, the NCE methodology amounts to finding a solution (xt, ut) for each of the

K classes of agents and a measure flow (µ1
t , . . . , µ

K
t ) such that (9)-(11) hold, where

the distribution of xt in equation (11) is equal to µi
t for t ∈ [0, T ] when a = θi ∈ A.

Within the framework of the NCE methodology it is required that ϕa is derived

from the HJB equation, and in this setting equation (11) may be regarded as a gener-

alized McKean-Vlasov equation where the right hand side has a functional dependence

on the distributions of multi-class particles.

For a better appreciation of the interaction between the individual and the mass,

we generate K copies of (11) by taking K distinct values of a combined with different

initial conditions and driving Brownian motions. This leads to the following coupled

M-V equation system:














dx1 = f1[x1, ϕ1(t, x1|µ
1
· , · · · , µ

K
· ), µ1

t , · · · , µ
K
t ]dt+ σdw1,

...

dxK = fK [xK , ϕK(t, xK |µ1
· , · · · , µ

K
· ), µ1

t , · · · , µ
K
t ]dt+ σdwK ,

(12)
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where we write fa (ϕa, resp.) as fi (ϕi, resp.) when a = θi. The K components have

independent initial conditions and µk
t |t=0 = µθk

0 , 1 ≤ k ≤ K, where (µθ1

0 , · · · , µ
θK

0 )

has been specified in Section 2.1. The independent Brownian motions here may be

different from those in (1). The subsequent analysis is concerned with the existence

of a consistent pair (x1, · · · , xK) and (µ1, · · · , µK) solving the equation system (12)

coupled by the measure flow where ϕi is derived from the associated HJB equation

with a corresponding parameter a = θi.

4. Main Assumptions and Restriction on Measure Flows. Our strategy

to approach the limiting game problem is to first detach the HJB equation (9) from

the closed-loop M-V equation (11). In the analysis below, the measure flows such as

(µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T , do not necessarily satisfy (9)-(11) simultaneously.

We introduce the following assumptions:

(H1) U is a compact interval.

(H2) For each a ∈ A, fa(x, u, y) and L(x, u, y) are continuous and bounded on

R × U × R, and Lipschitz continuous in (x, y), i.e., there exist constants Bi > 0 such

that

|fa(x, u, y) − fa(x′, u, y′)| ≤ B1|x− x′| +B2|y − y′|,

|L(x, u, y) − L(x′, u, y′)| ≤ B3|x− x′| +B4|y − y′|,

for all u ∈ U and x, x′, y, y′ ∈ R. In addition, there exists a modulus of continu-

ity m(·) : (0,∞) → R+ (satisfying m(0+) = 0) such that supx,y,u6=u′ |ψ(x, u, y) −

ψ(x, u′, y)| ≤ m(|u− u′|), where ψ stands for fa or L.

(H3) For both fa(x, u, y) and L(x, u, y), their first and second order derivatives

(w.r.t. x) are all uniformly continuous and bounded on R × U × R, and Lipschitz

continuous in y.

(H4) For each a ∈ A, fa(x, u, y) is Lipschitz continuous in u ∈ U , i.e., there exists

B5 > 0 such that |fa(x, u, y) − fa(x, u
′, y)| ≤ K5|u− u′| for any u, u′ ∈ U .

(H5) For any q ∈ R, a ∈ A and any probability distribution ν(dy) on R, the set

Sa(x, q) = arg min
u∈U

{

∫

y∈R

[qfa(x, u, y) + L(x, u, y)]ν(dy)
}

is a singleton and the resulting u, as a function of (x, q), is Lipschitz continuous in

(x, q) ∈ R
2, uniformly with respect to the choice of ν(dy).

The assumptions (H1)-(H2) are mostly standard conditions used in the stochastic

control literature. In (H3), we only need the differentiability condition with respect

to x rather than (x, y) since in the limiting game the y component will be averaged

out to lead to time-varying dynamics involving (t, x).

We need (H4) and (H5) to ensure some regularity of the closed-loop McKean-

Vlasov equation in order to analyze its solvability. It should be noted that when (H4)
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holds, the modulus of continuity condition for fa in (H2) is automatically satisfied.

The first part of (H5) may be satisfied under suitable convexity conditions with respect

to u. We may give a simple example where L contains a quadratic term u2 multiplied

by a positive term g(x) and where fa is affine in u. For illustration, consider the model

fa = f0
a (x, y) + f1

a (x, y)u and L = L0(x, y) + g(x, y)u2, where infx,y f
1
a (x, y) > 0 and

infx,y g(x, y) > 0; by applying (H5) to such a pair (fa, L) for given (x, q) and ν(dy), it

leads to the minimization of a quadratic function in terms of the argument u restricted

to a compaction interval. Obviously this procedure yields a unique minimizer.

If the probability measure flow (µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T , is fixed, fa[x, u, µ1

t , · · · ,

µK
t ] and L[x, u, µ1

t , · · · , µ
K
t ] each become a function of (t, x, u), and accordingly, we

denote

f∗
a (t, x, u) , fa[x, u, µ

1
t , · · · , µ

K
t ], L∗(t, x, u) , L[x, u, µ1

t , · · · , µ
K
t ].(13)

In order to analyze the HJB equation involving f∗ and L∗, we need to impose some

restrictions on the measure flow, which will be useful for examining the individual

equations in (9)-(11). We introduce the following class M[0,T ] of measure flows.

Definition 3. A probability measure flow (µ1
t , · · · , µ

K
t ) on [0, T ] is in M[0,T ], if

there exists β ∈ (0, 1] such that for any bounded and Lipschitz continuous function ψ

on R,

sup
1≤j≤K

∣

∣

∣

∫

R

ψ(y)µj
t′(dy) −

∫

R

ψ(y)µj
t′′ (dy)

∣

∣

∣
≤ B6|t

′ − t′′|β(14)

for all t′, t′′ ∈ [0, T ], where for the given (µ1
t , · · · , µ

K
t ), the constant B6 may be selected

to depend only upon the Lipschitz constant of ψ. The constant β, to be called the

Hölder exponent, depends upon the specific (µ1
t , · · · , µ

K
t ).

The set M[0,T ] is nonempty since we may take all µj
t , 1 ≤ j ≤ K and 0 ≤ t ≤ T ,

to be the Dirac measure at any constant y0. We give some explanation on (14) by

relating it to weak convergence of measures. Let t′ be fixed and take t′′ → t′. If ut′′ is

only known to weakly converge to ut′ , the left hand side is a vanishing term for any

bounded and continuous function ψ, but this in general leads to no explicit vanishing

rate. Thus in defining M[0,T ], the convergence rate is strengthened.

Proposition 4. Let f∗
a , a ∈ A, and L∗ be defined by (13) for which (µ1

t , · · · , µ
K
t )

∈ M[0,T ] is fixed with Hölder exponent β in (14), and in the following we assume (H1)

always holds. We have:

(i) Under (H2), f∗
a and L∗ are continuous and bounded on [0, T ]×R×U , and in

addition f∗
a (t, x, u) and L∗(t, x, u) are Hölder continuous in t with exponent β, i.e.,

sup
u∈U,x∈R

sup
0≤s<t≤T

|ψ(t, x, u) − ψ(s, x, u)|

|t− s|β
≤ c,(15)
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where ψ = f∗
a , L

∗, and c is a finite constant.

(ii) Under (H3), for ψ = f∗
a , L

∗, the partial derivatives ψx and ψxx are continuous

and bounded on [0, T ]× R × U .

(iii) Under (H4), there exists c > 0 such that sup(t,x)∈[0,T ]×R
|f∗

a (t, x, u)− f∗
a (t, x,

u′)| ≤ c|u− u′|, for each a ∈ A, i.e., each f∗
a is Lipschitz continuous in u ∈ U .

(iv) Under (H5), for any q ∈ R, the set of minimizers argminu∈U [f∗
a (t, x, u)q +

L∗(t, x, u)] is a singleton.

Proof. (i) We analyze f∗
a only, and the case for L∗ is similar. We first prove (15)

for f∗
a . Since (µ1

t , · · · , µ
K
t ) ∈ M[0,T ] with Hölder exponent β, and since |fa(x, u, y) −

fa(x, u, y′)| ≤ B2|y−y
′| with the Lipschitz constant B2 independent of (x, u), we may

select a finite constant c > 0 such that (15) holds.

The boundedness of f∗
a is obvious. We take (t, x, u) and (t′, x′, u′), both from the

set [0, T ]× R × U . We have

|f∗
a (t, x, u) − f∗

a (t′, x′, u′)|

= |f∗
a (t, x, u) − f∗

a (t, x′, u′)| + |f∗
a (t, x′, u′) − f∗

a (t′, x′, u′)|.(16)

By (H2), it is easy to show that |fa(x, u, y)− fa(x′, u′, y)| → 0 uniformly, as |x−x′|+

|u− u′| → 0. By the definition of f∗
a , this implies that |f∗

a (t, x, u) − f∗
a (t, x′, u′)| → 0

uniformly as |x − x′| + |u − u′| → 0. By combining (16) with (15), it follows that

|f∗
a (t, x, u) − f∗

a (t′, x′, u′)| → 0 uniformly, as |t− t′| + |x− x′| + |u− u′| → 0.

(ii) Under (H3), the partial derivatives ψx, ψxx exist, and for i = 1, 2,

∂[f∗
a (t, x, u)]i

∂xi
=

K
∑

k=1

πk

∫

∂[fa(x, u, y)]i

∂xi
µk

t (dy),

∂[L∗(t, x, u)]i

∂xi
=

K
∑

k=1

πk

∫

∂[L(x, u, y)]i

∂xi
µk

t (dy),

where the integration and differentiation are interchangeable due to the boundedness

of the derivatives of fa and L in x. The continuity of the derivatives may be proved

by following similar steps as in (i).

The proof of (iii) is obvious. Since both f∗
a and L∗ are defined using the measure

∑K

i=1 πiµ
i
t(dy), (iv) follows.

5. HJB Equation for Optimal Control of a Single Agent. The NCE

methodology translates into the analysis of the three coupled equations specifying

(i) the HJB equation for the optimal control problem based upon a single agent, (ii)

the optimal strategy for each type of agents as classified by the dynamic parameter

a, and (iii) the closed-loop M-V equation. Instead of directly analyzing the coupled

equation system, we shall begin by dealing with the decoupled individual equations.

This will provide insight into the structure of the underlying game problem.
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By using the notation in (13), we write the HJB equation

−
∂Va

∂t
= inf

u∈U

{

f∗
a (t, x, u)

∂Va

∂x
+ L∗(t, x, u)

}

+
σ2

2

∂2Va

∂x2
,(17)

where the terminal condition is Va(T, x) = 0. As in Section 4, the measure flow

(µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T , which is involved in f∗

a and L∗, is not restricted to satisfy

(9)-(11) simultaneously. The first step is to identify suitable conditions, so that the

HJB equation (17) gives a unique classical solution where the measure flow is only

generally specified.

Let QT = (0, T ) × R and QT = [0, T ] × R. We denote by C1,2(QT ) (resp.,

C1,2(QT )) the set of continuous functions v(t, x) with continuous derivatives vt, vxx

on QT (resp., QT ). Let C1,2
b (QT ) be the set consisting of all bounded functions in

C1,2(QT ).

Theorem 5. Suppose (H1)-(H4) hold, and the measure flow (µ1
t , · · · , µ

K
t ), 0 ≤

t ≤ T is in the class M[0,T ] with Hölder exponent β ∈ (0, 1]. Then equation (17) has

a unique solution Va ∈ C1,2
b (QT ).

Proof. We give the proof by standard methods in optimal control of non-degenera-

te diffusion processes. First, we can follow exactly the argument for proving Theorem

6.2 in Appendix of [15] to show that there exists a solution (actually determined as

a continuous function on QT ) Va ∈ C1,2(QT ) by only assuming that both f∗
a and

L∗ satisfy Hölder continuity in t rather than have a continuous derivative in t [15].

In constructing this particular solution Va by the approximation procedure, we may

obtain an a priori constant upper bound for Va by use of the boundedness of f∗
a and

L∗.

For any R > 0, let BR = (−R,R) and BR = [−R,R]. Subsequently, we can show

by standard Hölder estimate [15] (pp. 207-208) that for a small positive constant

δ ∈ (0, 1), Va ∈ C1+δ/2,2+δ((0, T )×BR) by restricting Va to the domain (0, T )×BR.

In other words, under the parabolic distance d((t, x), (s, y)) = (|t − s| + |x − y|2)1/2,

the functions Va, (Va)t and (Va)xx are all Hölder continuous on (0, T ) × BR with

exponent δ. This further implies the first and second order derivatives of Va appearing

in the HJB equation may be extended to [0, T ] × BR in an obvious way and Va ∈

C1+δ/2,2+δ([0, T ]×BR). Since R is arbitrary, we have Va ∈ C1,2(QT ).

The uniqueness follows from the standard verification theorem by interpreting

Va as the value function of an associated stochastic optimal control problem. This

completes the proof.

As in [15], by the verification theorem we may obtain uniqueness in the wider class

C1,2
p (QT ) ∩ C(QT ) (i.e., when v ∈ C(QT ) is restricted to QT , it is also in C1,2

p (QT ))

where C1,2
p (QT ) ⊂ C1,2(QT ) consists of functions satisfying a polynomial growth in

the spatial variable x.
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Given a measure flow in M[0,T ], by Theorem 5 we obtain a smooth solution for Va

and subsequently, corresponding to each (t, x) ∈ [0, T ]×R, under (H5) we get u(t, x)

as a well defined function minimizing the right hand side of (9). Hence we write the

optimal control law in a feedback form

u = ϕa(t, x|µ1
· , · · · , µ

K
· ),(18)

where (t, x) ∈ [0, T ]× R, (µ1
t , · · · , µ

K
t ) ∈ M[0,T ], and a is the dynamic parameter for

the associated agent.

We introduce an additional assumption for the control law (18).

(H6) For each a ∈ A and (µ1
t , · · · , µ

K
t ) ∈ M[0,T ], the function ϕa(t, x|µ1

· , · · · , µ
K
· )

is continuous in (t, x) ∈ [0, T ]× R, and Lipschitz continuous in x ∈ R.

Note that to explicitly verify the Lipschitz continuity in x for the feedback control

law, we usually need more concrete assumptions, such as affine linearity in ui for

the dynamics of the ith agent, combined with smoothness and convexity of the cost

integrand with respect to the control. In the literature, Lipschitz continuity of the

feedback has been a well studied topic; see, e.g., [15].

Denote µo
t = (µ1

t , · · · , µ
K
t ) ∈ M[0,T ] where 0 ≤ t ≤ T . By use of (18) we may

write a vector of feedback control laws with K distinct values of a. As in (12), for

a = θi we will simply write ϕa as ϕi, and consequently we define the following map

from M[0,T ] to the K-fold product set [C(QT )]K

Γ(µo
· ) = (ϕ1(t, x|µ

o
· ), · · · , ϕK(t, x|µo

· ))(19)

where µo
· = (µ1

· , · · · , µ
K
· ) and we use the same argument x inside each component

function. When these individual control laws are used by the corresponding agents,

the variable x is substituted by its own state variable (see (12)).

The nonlinear map Γ gives an important characterization of the individual-mass

interaction, and it turns out to have a close relation to the well known best response

map in noncooperative game theory. In a static n-person noncooperative game [17],

once the actions for the other n − 1 players are assumed, the best response map of

the given player will determine its optimal choice of one or more actions which is

optimal conditioned on other agents’ actions assumed in the first place. In our large

population multi-class agent game model, we may view theK-tuple µo
· = (µ1

· , · · · , µ
K
· )

as the effect of a virtual player, and then each ϕi may be regarded as the local optimal

strategy in response to that given µo
· . For this reason, we just extend the conventional

name by calling Γ the best response map.

6. The M-V Equation with Decentralized Lipschitz Feedback . We recall

that in (11) the feedback control has a functional dependence on the measure flow

(µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T . That causes the M-V equation (11) to be coupled with the
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HJB equation (9). In this section and in parallel to the treatment in Section 5, we

proceed by assuming a known feedback control law φa(t, x) (which may be written

as φk(t, x) when a = θk) for the associated agents with dynamic parameter a, which

leads to the following auxiliary equation














dx1 = f1[x1, φ1(t, x1), µ
1
t , · · · , µ

K
t ]dt+ σdw1,

...

dxK = fK [xK , φK(t, xK), µ1
t , · · · , µ

K
t ]dt+ σdwK ,

(20)

where the function φk(t, x) is the class CLip(x)(QT , U) consisting of continuous func-

tions from QT = [0, T ] × R to U , which are Lipschitz continuous in x. The initial

conditions and the Brownian motions in (20) are specified in the same form as in (12).

The key question is whether there exists a well defined vector process (x1, · · · , xK)

satisfying equation (20) in the McKean-Vlasov sense.

Before establishing existence results for (20), we introduce some preliminary

material about the metric on a space of probability measures. For related treat-

ment, the reader is referred to [44] (pp.172-174). Let C([0, T ],RK) be the space

of continuous functions on [0, T ] and we write it in the abbreviated form C(K).

For x, y ∈ C([0, T ],RK), define the norm ‖x − y‖ = supt∈[0,T ] |x(t) − y(t)|. Then

(C(K), ‖ · ‖) constitutes a Banach space. Also, we introduce the metric ρ(x, y) =

supt∈[0,T ] |x(t) − y(t)| ∧ 1, and it is easy to verify that (C(K), ρ) forms a complete

metric space, i.e., each Cauchy sequence has a limit in (C(K), ρ). It is well known

in functional analysis that (C(K), ‖ · ‖) is a separable space. On the other hand, the

convergence of a sequence in (C(K), ‖ ·‖) is equivalent to its convergence in the metric

ρ. Hence (C(K), ρ) is a separable and complete metric space.

On C([0, T ],RK), we specify the σ-algebra F (K) induced by all cylindrical sets of

the form {x(·) ∈ C(K) : xti
∈ Bi, ti ∈ [0, T ], i = 1, 2, · · · , l} where each Bi is a Borel

set in R
K and l is any positive integer. Let M(C(K)) be the space of all probability

measures m on (C(K),F (K)). Thus each (C(K),F (K),m) is a probability space. For

the product space C(K) × C(K), the space of probability measures is defined in an

obvious manner, and denoted as M(C(K)×C(K)). We introduce the canonical process

X to be a random process with the sample space C(K), i.e., Xt(ω) = ωt for ω ∈ C(K).

By the same procedure but replacing the dimension number K by one, we may

define the space of probability measures on C([0, T ],R), and we denote it by M(C(1)).

Based upon the metric ρ in (C(K), ρ), we now introduce the so-called Vasershtein

metric on M(C(K)). For m1,m2 ∈ M(C(K)), define

DT (m1,m2) = inf
m

∫

C(K)×C(k)

(

sup
s≤T

|Xs(ω1) −Xs(ω2)| ∧ 1
)

dm(ω1, ω2),(21)

where m ∈ M(C(K)×C(K)), p1 ◦m = m1 and p2◦m = m2 denoting the two marginal
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distributions of m, and m is called a coupling of m1 and m2. This gives a complete

metric on M(C(K)), which implies each fundamental sequence {mi, i ≥ 1} under the

metric DT has a limit in M(C(K)) [44]. We note that for both C(K) and M(C(K)),

we may define the corresponding space on a smaller interval [0, t] ⊂ [0, T ]. Similarly,

Dt(m1,m2) may be defined for t < T by considering the restriction of mi ∈ M(C(K))

to C([0, t],RK), which is embedded in a natural way as a subspace of C([0, T ],RK).

Remark. If (· ∧ 1) in (21) is replaced by (· ∧ d) for d > 0, we may denote the

associated metric by Dd
T (m1,m2), and all analysis in this section still holds.

Let m ∈ M(C(K)) and define the random process y = (y1, · · · , yK) on [0, T ] as

follows.

yi(t) = xi(0) + σwi(t) +

∫ t

0

∫

C(K)

K
∑

j=1

πjfi(yi(s), φi(s, yi(s)), ω
j
s)dm(ω)ds,(22)

where 0 ≤ t ≤ T and the canonical process is denoted as ω· = (ω1
· , · · · , ω

K
· ). We

denote the law of y on [0, T ] by Φ(m) which clearly belongs to M(C(K)). The existence

proof below is based upon a fixed point method to show that there exists a unique m

such that Φ(m) = m, and we finish the proof by determining m as a product form.

Theorem 6. Under (H1)-(H6), there is a unique consistent solution pair (x1, · · · ,

xK) and (µ1, · · · , µK) to (20).

Proof. We break the proof into two steps where the first step is similar to the

proof of Theorem 1.1 in [44] which deals with a conventional M-V equation for a

single class of particles. For the reader’s convenience, we give the details of the fixed

point analysis.

Step 1. Takem, m̂ ∈ M(C(K)), and let y be defined by (22). Similarly, ŷ is defined

by (22) after replacing m by m̂. Both yi and ŷi have the same initial condition xi(0),

1 ≤ i ≤ K. Denote

ζ(s, yi(s), ωs) =

K
∑

j=1

πjfi(yi(s), φi(s, yi(s)), ω
j
s),

ζ̂(s, ŷi(s), ωs) =

K
∑

j=1

πjfi(ŷi(s), φi(s, ŷi(s)), ω
j
s),

where 0 ≤ s ≤ T . It follows that

sup
0≤s≤t

|yi(s) − ŷi(s)| ≤

∫ t

0

∣

∣

∣

∫

C(K)

ζ(s, yi(s), ωs)dm(ω) −

∫

C(K)

ζ̂(s, ŷi(s), ωs)dm̂(ω)
∣

∣

∣
ds.

(23)
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For any m ∈ M(C(K) × C(K)) such that p1 ◦m = m and p2 ◦m = m̂, we have

ξs ,

∣

∣

∣

∫

C(K)

ζ(s, yi(s), ωs)dm(ω) −

∫

C(K)

ζ̂(s, ŷi(s), ωs)dm̂(ω)
∣

∣

∣

=
∣

∣

∣

∫

C(K)×C(K)

ζ(s, yi(s), ωs)dm(ω, ω̂) −

∫

C(K)×C(K)

ζ̂(s, ŷi(s), ω̂s)dm(ω, ω̂)
∣

∣

∣

≤ C1(|yi(s) − ŷi(s)| ∧ 1) +
∑

j

∫

C(K)×C(K)

C2(|ω
j
s − ω̂j

s| ∧ 1)dm(ω, ω̂),(24)

where C1 and C2 are two constants obtained from the boundedness and Lipschitz

continuity of both fi and φi. Clearly, for all trajectories of the canonical process, we

have

∑

j

(|ωj
s − ω̂j

s| ∧ 1) ≤ K(|ωs − ω̂s| ∧ 1).(25)

Hence it follows from (24) and (25) that

ξs ≤ C1(|yi(s) − ŷi(s)| ∧ 1) +

∫

C(K)×C(K)

C2(|ωs − ω̂s| ∧ 1)dm(ω, ω̂),

which implies

ξs ≤ C1(|yi(s) − ŷi(s)| ∧ 1) + C2Ds(m, m̂)(26)

since m is any coupling of m and m̂. Consequently, it follows from (23) and (26) that

sup
0≤s≤t

|yi(s) − ŷi(s)| ≤

∫ t

0

[

C1(|yi(s) − ŷi(s)| ∧ 1) + C2Ds(m, m̂)
]

ds.(27)

Then (27) combined with Gronwall’s lemma gives

sup
0≤s≤t

|yi(s) − ŷi(s)| ∧ 1 ≤ CT

∫ t

0

Ds(m, m̂)ds(28)

where the constant CT depends upon the terminal time T . Subsequently,

sup
0≤s≤t

|y(s) − ŷ(s)| ∧ 1 ≤ KCT

∫ t

0

Ds(m, m̂)ds.(29)

We see that y and ŷ induce two probability distributions, denoted as Φ(m) and

Φ(m̂), respectively, on C(K), and furthermore, the joint distribution of (y, ŷ) gives a

measure mΦ on C(K) × C(K). By taking expectation on the left hand side of (29)

and expressing the calculation in terms of the canonical process and mΦ ∈ M(C(K)×

C(K)), we get an upper bound for Dt(Φ(m),Φ(m̂)). This leads to the inequality

Dt(Φ(m1),Φ(m2)) ≤ KCT

∫ t

0

Ds(m1,m2)ds.(30)
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Now, following a similar argument as in [44], we can show that {Φk(m), k ≥ 1} forms a

fundamental sequence, and there exists a unique m ∈ M(C(K)) satisfying Φ(m) = m.

This completes the first step.

Step 2. Next we examine the structure of the fixed point probability measure

m arising in the existence proof for a solution of (20). Let x = (x1, · · · , xK) denote

the solution of (22) on [0, T ] when m = Φ(m). Since all xi have independent initial

conditions and Brownian motions, they form n independent processes. We denote

product Bi = B1
i × · · · × BK

i , where i = 1, 2, · · · , and each Bk
i is a Borel set in R.

Since m is the law of the associated solution x on [0, T ] which has K independent

components, we have

m(ωti
∈ Bi, i = 1, 2, · · · , l) = P (x1(ti) ∈ B1

i , · · · , xK(ti) ∈ BK
i , i = 1, 2 · · · , l)

=
K
∏

k=1

P (xk(ti) ∈ Bk
i , i = 1, 2, · · · , l)

=

K
∏

k=1

mi(ωk
ti
∈ Bk

i , i = 1, 2, · · · , l)(31)

where mk is the law of xk, 1 ≤ k ≤ K. We get the second equality by independence in

terms of the underlying probability space (Ω,F , P ). Since (31) holds for all product

Borel sets in R
K , we see that m = m1 × · · · ×mK on F (K).

Now for m = m1 × · · · ×mK , equation (22) for xi reduces to

xi(t) = xi(0) + σwi(t) +

∫ t

0

∫

C(K)

∑

j

πjfi(xi(s), φi(s, xi(s)), ω
j
s)dm(ω)ds

= xi(0) + σwi(t) +

∫ t

0

∑

j

πj

∫

C([0,T ],R)

fi(xi(s), φi(s, xi(s)), ω
j
s)dm

j(ωj)ds

= xi(0) + σwi(t) +

∫ t

0

∫

R

∑

j

πjfi(xi(s), φi(s, xi(s)), y)µ
j
s(dy)ds

where µj
s is the marginal distribution of mj at time s. We may further express the

right hand side of (22) in terms of the product measure µ1
t × · · · × µK

t which is the

marginal distribution at time t for the law of x, reducing (22) to the form (20);

uniqueness of the consistent pair follows from Step 1. This completes the proof.

For a set of functions (φ1, · · · , φK) such that φk ∈ CLip(x)(QT , U), for 1 ≤ k ≤ K,

we implement it as the set of control laws in (20), which leads to a well defined solution

x = (x1, · · · , xK) on [0, T ] by Theorem 6. Let the law of the resulting solution x be

denoted by m, and define the map from (CLip(x)(QT , U))K to M(C(K)):

m = ̂Γ(φ1, · · · , φK).(32)
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By taking marginal distributions for the solution process or equivalently for m in

(32), we get a measure flow (µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T . We introduce the map:

(µ1
· , · · · , µ

K
· ) = Γ(φ1, · · · , φK).(33)

Each µk
· on the left hand side corresponds to all marginal distributions on [0, T ] of the

component xk
t , 0 ≤ t ≤ T . It is easy to see that there is a well defined map relating

(µ1
· , · · · , µ

K
· ) to m:

(µ1
· , · · · , µ

K
· ) = pµ(m),(34)

where m ∈ ̂Γ([CLip(x)(QT , U)]K). We will call pµ the projection map.

Lemma 7. Under the assumptions in Theorem 6, for any (φ1, · · · , φK) such that

φk ∈ CLip(x)(QT , U), for 1 ≤ k ≤ K, the measure flow (µ1
t , · · · , µ

K
t ), 0 ≤ t ≤ T ,

obtained from (33) is in the class M[0,T ]. Hence Γ is a map from (CLip(x)(QT , U))K

to M[0,T ].

Proof. By Theorem 6, there exists a unique solution xt = (x1
t , · · · , x

K
t ), 0 ≤ t ≤ T ,

to (20) when the set of control laws (φ1, · · · , φK) is used. Take any 0 ≤ t′ < t′′ ≤ T .

For any bounded and Lipschitz continuous function ψ(y) with a Lipschitz constant

Lip(ψ), we have
∣

∣

∣

∫

ψ(y)µj
t′(dy) −

∫

ψ(y)µj
t′′(dy)

∣

∣

∣
= |Eψ(xj

t′) − Eψ(xj
t′′ )|

≤ Lip(ψ)E|xj
t′ − xj

t′′ |.

On the other hand, we have

xj
t′′ = xj

t′ +

∫ t′′

t′
fj [x

j
s, φj(s, x

j
s), µ

1
t , · · · , µ

K
t ]ds+ σ(wj(t

′′) − wj(t
′)),

and it follows that

E|xj(t′′) − xj(t′)|2 ≤ 2C2
1 |t

′′ − t′|2 + 2σ2|t′′ − t′|,

where C1 is an upper bound for fj(x, u, y). Hence
∣

∣

∣

∫

ψ(y)µj
t′(dy) −

∫

ψ(y)µj
t′′(dy)

∣

∣

∣
≤

√
2Lip(ψ)(C1|t

′ − t′′| + |σ||t′ − t′′|1/2)

≤
√

2Lip(ψ)(C1

√
T + |σ|)|t′ − t′′|1/2,

for all t′, t′′ ∈ [0, T ]. By the arbitrariness of ψ and j, the lemma follows.

The implication of this lemma is that, after all agents apply Lipschitz control

laws determined by their own parameter type, the resulting measure flow maintains

a certain continuity. Consequently, one can obtain a well defined new strategy by

solving an HJB equation involving that measure flow. Such a procedure makes it

feasible to develop strategy or policy iteration by use of the population limit. In other

words, one may repeatedly apply the two operators Γ and Γ alternatively.
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7. Feedback Regularity and Strategy Revision. We have the following

proposition about the composite map formed by Γ and Γ.

Proposition 8. Assume (H1)-(H6) and let µo
t = (µ1

t , · · · , µ
K
t ) ∈ M[0,T ]. We

have Γ ◦ Γ(µo
· ) ∈M[0,T ], i.e., ΓM , Γ ◦ Γ is a map from M[0,T ] to M[0,T ].

Proof. Given µo
t ∈ M[0,T ], we obtain a set of well defined feedback control laws

(φ1, · · · , φK) by the results in Section 5. Subsequently, the Lipschitz feedback as-

sumption combined with Lemma 7 implies this proposition.

Now it is clear that we obtain a solution to the equation system (9)-(11) for the

NCE methodology if we can find µo
t ∈ M[0,T ] to satisfy the fixed point equation

Γ ◦ Γ(µo
· ) = µo

· .(35)

Here we need to restrict the solution to the set M[0,T ] so that the machinery of the

decoupled HJB equation and McKean-Vlasov equation approach may be employed.

This is not an essential restriction since once there indeed exists a solution µo
t , we

can derive from (11) that µo
t ∈ M[0,T ] only by use of the boundedness of fi(x, u, y),

1 ≤ i ≤ K.

However, a drawback of directly analyzing (35) is that we only know µo
t is a “flow”

of measures with limited structural information. This makes it difficult to develop

fixed point analysis. For this reason, we will use an embedding strategy by finding a

certain measure m ∈ M(C(K)), which is associated with µo
· via the projection map

(34).

Under (H1)-(H6), for any µo
· ∈ M[0,T ], we obtain a set of control laws Γ(µo

· ) =

(φθ1
, · · · , φθK

) by solving the HJB equation (17). Subsequently we getm = ̂Γ◦Γ(µo
· ) ∈

M(C(K)), which further induces pµ ◦ ̂Γ ◦ Γ(µo
· ) ∈ M[0,T ]. Now we introduce an

auxiliary fixed point equation

̂Γ ◦ Γ ◦ pµ(m) = m,(36)

where m belongs to the image ̂Γ ◦Γ(M[0,T ]) ⊂ M(C(K)) of the map ̂Γ ◦Γ on M[0,T ].

For analyzing equation (36), we introduce the regularity condition as follows. Take

two measures m, m̃ ∈ ̂Γ ◦ Γ(M[0,T ]). Denote the two measure flows µo
· = pµ(m) and

µ̃o
· = pµ(m̃) on [0, T ]. We write the associated drift vector at time t as fa[xt, ut, µ

o
t ]

and fa[xt, ut, µ̃
o
t ]. The cost integrands are given as L[xt, ut, µ

o
t ] and L[xt, ut, µ̃

o
t ].

Accordingly, the associated HJB equations (17) are solved to give two sets of feedback

control laws φa(t, x) and φ̃a(t, x), a ∈ A, with each individual control law being in

CLip(x)(QT , U) under (H6). For instance, we have (φθ1
, · · · , φθK

) = Γ ◦ pµ(m). The

feedback regularity (FR) condition is given as: There exists a constant c1 > 0 such

that

sup
(t,x)∈[0,T ]×R

|φa(t, x) − φ̃a(t, x)| ≤ c1DT (m, m̃), ∀ a ∈ A.(37)
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The FR condition (37) characterizes a sensitivity property for the control law when

a perturbation of the pre-image of the measure flow, associated with the map pµ, is

involved. This, in turn, is related to certain continuous dependence of the solution

Va (as well as its derivatives) to the HJB equation (17) on the functions f∗
a and L∗

appearing there.

Lemma 9. Under (H1)-(H6), there exists a constant c2 such that

DT (m, m̃) ≤ c2 sup
a∈A,(t,x)∈Q

T

|φa(t, x) − φ̃a(t, x)|(38)

where QT = [0, T ] × R, and m, m̃ ∈ M(C(K)) are induced by (32) using the two sets

of control laws φa and φ̃a, a ∈ A, respectively.

Proof. Recall that for aj = θk, we write faj
(resp., φaj

) as fk (resp., φk). For the

two solutions, denoted by xt and x̃t, we write their equations by components,

xi(t) = xi(0) + σwi(t) +

∫ t

0

∫

CK

K
∑

j=1

πjfi(xi(s), φi(s, xi(s)), ω
j
s)dm(ω)ds,

x̃i(t) = xi(0) + σwi(t) +

∫ t

0

∫

CK

K
∑

j=1

πjfi(x̃i(s), φ̃i(s, x̃i(s)), ω
j
s)dm̃(ω)ds,

where the initial condition is xi(0), 1 ≤ i ≤ K, and the Brownian motion is wi. By

use of the Lipschitz continuity of both fi and the feedback control laws, we get

|fi(xi(s), φi(s, xi(s)), ω
j
s) − fi(x̃i(s), φ̃i(s, x̃i(s)), ω̃

j
s)|

≤ |fi(xi(s), φi(s, xi(s)), ω
j
s) − fi(x̃i(s), φi(s, x̃i(s)), ω̃

j
s)|

+ |fi(x̃i(s), φi(s, x̃i(s)), ω̃
j
s) − fi(x̃i(s), φ̃i(s, x̃i(s)), ω̃

j
s)|

≤ C1(|xi(s) − x̃i(s)| ∧ 1) + C2 sup
(s,x)∈Q

T

|φi(s, x) − φ̃i(s, x)| + C3(|ω
j
s − ω̃j

s| ∧ 1).(39)

Now, similar to the derivation of (27), we use (39) to obtain

|x(t) − x̃(t)| ≤ C1

∫ t

0

(|x(s) − x̃(s)| ∧ 1)ds+ C2t sup
a∈A,(s,x)∈Q

T

|φa − φ̃a|

+ C3

∫ t

0

Ds(m, m̃)ds

which together with Gronwall’s lemma gives

sup
0≤s≤t

|x(s) − x̃(s)| ∧ 1 ≤C2t sup
a∈A,(t,x)∈Q

T

|φa − φ̃a| + C3

∫ t

0

Ds(m, m̃)ds.

Subsequently,

Dt(m, m̃) ≤ C2t sup
a∈A,(t,x)∈Q

T

|φa − φ̃a| + C3

∫ t

0

Ds(m, m̃)ds.
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By using Gronwall’s lemma again, we complete the proof.

Theorem 10. Assume (H1)-(H6) hold. If the constants c1 for (37) and c2 for

(38) can be selected to satisfy the composite gain (CG) condition c1c2 < 1, then there

exists a unique solution for (35) and hence a unique solution for the NCE equation

system (9)-(11).

Proof. It follows easily from a fixed point argument that there is a unique m ∈

M(C(K)) satisfying equation (36). Consequently, we can construct µo
· = pµ(m) to

satisfy (35). Assume we have two measure flows µo
· , µ̃

o
· ∈ M[0,T ] satisfying (35), and

then by the construction of the mappings Γ,Γ, ̂Γ, it is easy to derive the associated

fixed points m and m̃ for (36) such that µo
· = pµ(m) and µ̃o

· = pµ(m̃). Since we

necessarily have m = m̃, it follows that µo
· = µ̃o

· . This completes the proof.

7.1. Discussion on Feedback Regularity. For illustrating the inequality in

the FR condition (37), we examine a highly simplified situation by considering a linear

quadratic model with nonlinear coupling, which is a variant of (2). In addition, there

is no bound constraints on the control. We note that for general nonlinear models, it

is much more difficult to obtain the corresponding estimates explicitly.

We consider a system of uniform agents, i.e., A degenerates to a singleton. Let

the dynamics be given by dzi = azidt + buidt+ (α/n)
∑n

j=1 φ(zj)dt + σdwi, and the

cost is Ji = E
∫ T

0 [(zi − (β/n)
∑n

j=1 ψ(zj))
2 + ru2

i ]dt, 1 ≤ i ≤ n. First, assume two

measure flows µt , µ
(1)
t and µ̃t , µ

(2)
t on [0, T ], which are the marginal distributions

on R, respectively, of two probability measures m1 and m2, both in M(C(1)). We

determine two sets of functions f (k)(t) =
∫

R
φ(y)µ

(k)
t (dy), z∗(k)(t) =

∫

R
ψ(y)µ

(k)
t (dy),

where k = 1, 2, t ∈ [0, T ] and φ, ψ are bounded and Lipschitz continuous functions

on R. Accordingly, we obtain two sets of control laws

u
(k)
t = ϕ(k)(t, zi) = −

b

r
(Πtzi + s

(k)
t ), k = 1, 2,

which minimizes Ji = E
∫ T

0 [(zi − βz∗(k))2 + ru2
i ]dt subject to dzi = azidt + buidt +

αf (k)dt+ σdwi. In the above, we have

dΠt

dt
+ 2aΠt −

b2

r
Π2

t + 1 = 0,(40)

ds
(k)
t

dt
+ (a−

b2

r
Πt)s

(k)
t + αΠtf

(k) − βz∗(k) = 0,(41)

where 0 ≤ t ≤ T , and ΠT = 0, s
(k)
T = 0. Let CΠ = sup0≤t≤T Πt. For a proof of the

optimality of the control law, see e.g. [9]. By combining Gronwall’s lemma with (41),

we see that there exist constants c1 and c2 depending upon CΠ such that

sup
0≤t≤T

|s
(2)
t − s

(1)
t | ≤ c1|α| sup

0≤τ≤T

|f (2)(τ) − f (1)(τ)| + c2|β| sup
0≤τ≤T

|z∗(2)(τ) − z∗(1)(τ)|.
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Letting g stand for φ and ψ, we have

∫

g(x)µt(dx) −

∫

g(x)µ̃t(dx) =

∫

g(Xt(ω1))dm1(ω1) −

∫

g(Xt(ω2))dm2(ω2)

=

∫

g(Xt(ω1))dm(ω1, ω2) −

∫

g(Xt(ω2))dm(ω1, ω2)

where X is the canonical process and m is a coupling of m1 and m2. Hence

∣

∣

∣

∫

g(x)µt(dx) −

∫

g(x)µ̃t(dx)
∣

∣

∣

≤c3

∫

C([0,T ],R2)

sup
0≤t≤T

(|Xt(ω1) −Xt(ω2)| ∧ 1)dm(ω1, ω2)

for a constant c3 depending upon φ and ψ. Noticing that |ϕ(2)(t, z) − ϕ(1)(t, z)| =
|b|

r
|s

(2)
t − s

(1)
t |, we get

|ϕ(2)(t, z) − ϕ(1)(t, z)| ≤
|b|

r
c3(c1|α| + c2|β|)DT (m1,m2).

It is seen that the coefficient |b|

r
c3(c1|α| + c2|β|) can be made sufficiently small by

choosing suitably small α and β.

8. Asymptotic Equilibrium Analysis. Within the context of a population of

n agents with dynamics (1), for any 1 ≤ k ≤ n, the kth agent’s admissible control set

Uk consists of all Lipschitz feedback controls uk adapted to the σ-algebra F(zi(τ), τ ≤

t, 1 ≤ i ≤ n) (i.e., uk(t) is a continuous function of (t, z1(t), · · · , zn(t)) and Lipschitz

continuous in (z1(t), · · · , zn(t))), which ensures a unique strong solution to the closed-

loop system of the n agents exists on [0,∞). In parallel, we define Ud
k , as a subset of

Uk, such that the Lipschitz feedback control uk(t) depends upon (t, zk(t)). We denote

Un = U1 × · · · × Un and Ud,n = Ud
1 × · · · × Ud

n.

Note that Uk is not restricted to be decentralized, and this will give a stronger

characterization of the ε-Nash strategies introduced below. For each i, we denote by

u−i the vector obtained by deleting ui in (u1, · · · , ui, · · · , un).

For the dynamic game problem specified by (1)-(2), we rewrite the individual cost

(2) for the ith agent in the form

Ji(ui, u−i) = E

∫ T

0

[

(1/n)

n
∑

j=1

L(zi, ui, zj)
]

dt, 1 ≤ i ≤ n,(42)

which indicates the effect of the control laws of other agents due to the coupling in

dynamics and individual costs.

Definition 11. For the n players, let the costs be given by Jk, 1 ≤ k ≤ n. A set

of controls uk ∈ Uk (resp., uk ∈ Ud
k ) each given as a Lipschitz feedback ϕk, 1 ≤ k ≤ n,

is called an ε-Nash equilibrium with respect to the strategy space Un (resp., Ud,n), if
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there exists ε ≥ 0 such that for any fixed 1 ≤ i ≤ n, we have

Ji(ui, u−i) ≤ Ji(u
′
i, u−i) + ε,

when any alternative u′i ∈ Ui (resp., u′i ∈ Ud
i ,), determined as another Lipschitz

feedback ϕ̃i, is applied by the ith player.

In relation to (ui, u−i) in Definition 11, we may also call ui an ε-Nash strategy.

This is with an underlying assumption that other players use strategies u−i.

8.1. Decoupling Rate and Crossing Perturbation. Let φθk
(t, x) ∈ CLip(x)

(QT , U), 1 ≤ k ≤ K, be a set of K functions associated with different values θk, not

necessarily satisfying the NCE principle. These functions are used by the n agents

for their individual control laws. We write the closed-loop equation as follows:

dzi = (1/n)

n
∑

j=1

fai
(zi, φai

(t, zi), zj)dt+ σdwi, 1 ≤ i ≤ n,(43)

where φai
reduces to φθk

if ai = θk. By the Lipschitz condition of the feedback, we

see that there exists a unique strong solution (z1, · · · , zn) on [0, T ]. For the agent

with dynamic parameter ai, we write the associated M-V equation system as follows

dẑi = fai
[ẑi, φai

(t, ẑi), µ
1
t , · · · , µ

K
t ]dt+ σdwi, 1 ≤ i ≤ n,(44)

where the initial condition is ẑi(0) = zi(0). In contrast to the coupled processes in

(43), equation (44) gives n independent processes. Denote

εn = sup
1≤k≤K

|Fn({θk}) − πk|(45)

which measures the gap between the empirical distribution of the dynamic parameter

and its limit. Under (H0), we have limn→∞ εn = 0.

We have the following decoupling result which shows that each process zi may be

approximated by the corresponding process ẑi as n→ ∞.

Theorem 12. Assume (H0)-(H3) and let zi and ẑi, 1 ≤ i ≤ n, be given by

(43)-(44). We have

sup
1≤i≤n

E sup
0≤t≤T

|zi(t) − ẑi(t)|
κ = O(n−1/2 + εn),

where κ = 1, 2, εn is given by (45), and the right hand side may depend upon the

terminal time T .

Proof. We begin by considering the case κ = 1. Denote the relation j ∈ S(θk) if
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the dynamic parameter associated with zj is aj = θk. It follows that

zi(s) − ẑi(s) =

∫ s

0

(1/n)

n
∑

j=1

fai
(zi, φai

(t, zi), zj)dt

−

∫ s

0

fai
[ẑi, φai

(t, ẑi), µ
1
t , · · · , µ

K
t ]dt

=

∫ s

0

K
∑

k=1

∑

j∈S(θk)

(1/n)fai
(zi, φai

(t, zi), zj)dt

−

∫ s

0

K
∑

k=1

πk

∫

y∈R

fai
(ẑi, φai

(t, ẑi), y)µ
k
t (dy)dt.(46)

Let

Di
k(t) ,

∑

j∈S(θk)

(1/n)fai
(zi, φai

(t, zi), zj) − πk

∫

R

fai
(ẑi, φai

(t, ẑi), y)µ
k
t (dy).

We have

Di
k(t)

=
∑

j∈S(θk)

(1/n)fai
(zi, φai

(t, zi), zj) −
∑

j∈S(θk)

(1/n)fai
(ẑi, φai

(t, ẑi), zj) (, Di
k,1)

+
∑

j∈S(θk)

(1/n)fai
(ẑi, φai

(t, ẑi), zj) −
∑

j∈S(θk)

(1/n)fai
(ẑi, φai

(t, ẑi), ẑj) (, Di
k,2)

+
∑

j∈S(θk)

(1/n)fai
(ẑi, φai

(t, ẑi), ẑj) − πk

∫

fai
(ẑi, φai

(t, ẑi), y)µ
k
t (dy). (, Di

k,3)

By the Lipschitz continuity condition of φai
and fai

, there exists a constant C > 0,

independent of n, such that

|Di
k,1| + |Di

k,2| ≤ C
∑

j∈S(θk)

(1/n)[|zi − ẑi| + |zj − ẑj |].(47)

It follows from (46)-(47) that

sup
0≤s≤t

|zi(s) − ẑi(s)| ≤ C

∫ t

0

|zi(s) − ẑi(s)|ds+ C

∫ t

0

(1/n)
n

∑

j=1

|zj(s) − ẑj(s)|ds

+

∫ t

0

K
∑

k=1

|Di
k,3(s)|ds,(48)

which gives

n
∑

i=1

sup
0≤s≤t

|zi(s) − ẑi(s)| ≤ 2C

n
∑

i=1

∫ t

0

|zi(s) − ẑi(s)|ds+

∫ t

0

n
∑

i=1

K
∑

k=1

|Di
k,3(s)|ds

≤ 2C

n
∑

i=1

∫ t

0

sup
0≤τ≤s

|zi(τ) − ẑi(τ)|ds +

∫ t

0

n
∑

i=1

K
∑

k=1

|Di
k,3(s)|ds.(49)
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Now we show

sup
0≤t≤T

K
∑

k=1

E|Di
k,3(t)| = O(n−1/2 + εn).(50)

In fact, we have

E|Di
k,3(t)|

2

≤ 2E

∣

∣

∣

∣

∑

j∈S(θk)

[

(1/n)fai
(ẑi, φai

(t, ẑi), ẑj) −

∫

(1/n)fai
(ẑi, φai

(t, ẑi), y)µ
k
t (dy)

]

∣

∣

∣

∣

2

+ 2E

∣

∣

∣

∣

[

(1/n)
n

∑

j=1

1{j∈S(θk)} − πk

]

∫

fai
(ẑi, φai

(t, ẑi), y)µ
k
t (dy)

∣

∣

∣

∣

2

, 2S1 + 2S2.

We clearly have S2 = O(ε2n) by (H0). By independence of the components ẑj, 1 ≤

j ≤ n, the crossing terms in S1 generated by taking j′ 6= j′′ (for j) is zero after taking

expectations, which implies S1 = O(1/n). Thus it follows that

E|Di
k,3(t)|

2 = O(1/n+ ε2n),

where the right hand side does not depend upon t, and therefore, E(
∑K

k=1 |D
i
k,3(t)|)

2

= O(1/n+ ε2n) by the elementary inequality (y1 + · · · + yK)2 ≤ K(y2
1 + · · · + y2

K) for

real numbers. Hence E
∑K

k=1 |D
i
k,3(s)| = O(n−1/2 + εn), and (50) follows.

Now by (50) and (49), it follows from Gronwall’s lemma that

n
∑

i=1

E sup
0≤s≤T

|zi(s) − ẑi(s)| = O(n1/2 + nεn),

which, combined again with Gronwall’s lemma and (48), yields E sup0≤s≤T |zi(s) −

ẑi(s)| = O(n−1/2 + εn). This completes the case for κ = 1.

By combining the finished part with boundedness of sup1≤i≤n sup0≤t≤T |zi(t) −

ẑi(t)|, the case with κ = 2 follows. This completes the proof.

The following performance analysis involves extensive crossing perturbation es-

timate. Specifically, when a given agent changes its control, it will result in state

process variations for other agents. In turn, these variations, together with the initial

control change, will affect the dynamics of that agent.

Theorem 13. Assume (H0)-(H6) hold and there exists a set of Lipschitz con-

trol laws (u1, · · · , un) = (ϕa1
, · · · , ϕan

) satisfying the NCE principle, i.e., the set of

control laws (ϕθ1
, · · · , ϕθK

) is derived from the HJB equation (9) together with the

M-V equation (11), and satisfies the Lipschitz condition (H6). When the ith agent

changes its control from ui to u′i ∈ Ud
i and the control laws of all other agents re-

main the same, the cost Ji(u
′
i, u−i) can be decreased by at most O(n−1/2 + εn), i.e.,

Ji(u
′
i, u−i) ≥ Ji(ui, u−i) −O(n−1/2 + εn), where εn is given by (45).
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Proof. To simplify the notation, we consider a strategy change for the first agent.

We write

dzi = (1/n)

n
∑

j=1

fa1
(zi, ϕai

(t, zi), zj)dt+ σdwi, 1 ≤ i ≤ n,(51)

and


























dz′1 = (1/n)
∑n

j=1 fa1
(z′1, ϕ̃a1

(t, z′1), z
′
j)dt+ σdw1

dz′2 = (1/n)
∑n

j=1 fa2
(z′2, ϕa2

(t, z′2), z
′
j)dt+ σdw2

...

dz′n = (1/n)
∑n

j=1 fan
(z′n, ϕan

(t, z′n), z′j)dt+ σdwn,

(52)

where the equation system (52) gives the closed-loop dynamics after the first agent

takes the control ϕ̃a1
instead of ϕa1

. The two equation systems (51) and (52) have

the same initial condition (z1(0), · · · , zn(0)). We further introduce the auxiliary M-V

equation system

dz′′i = fai
[z′′i , ϕai

(t, z′′i ), µ1
t , · · · , µ

K
t ]dt+ σdwi,(53)

where the initial condition is still (z1(0), · · · , zn(0)).

We compare (z2, · · · , zn) and (z′2, · · · , z
′
n) in (51) and (52) by treating z1 and z′1

as an additional quantity, and show by Gronwall’s lemma that

sup
2≤j≤n

sup
0≤s≤T

|zj(s) − z′j(s)| ≤ O(1/n),(54)

where the right hand side holds uniformly with respect to the choices of ϕ̃a1
.

By the same argument as in proving Theorem 12, we get

sup
2≤j≤n

E sup
0≤t≤T

|z′′j (t) − z′j(t)|
κ + sup

1≤j≤n

E sup
0≤t≤T

|z′′j (t) − zj(t)|
κ = O(n−1/2 + εn),

for κ = 1, 2.

We introduce the new equation

dẑ′1 = (1/n)

n
∑

j=1

fa1
(ẑ′1, ϕ̃a1

(t, ẑ′1), z
′′
j )dt+ σdw1,(55)

where ẑ′1(0) = z1(0) and (z′′1 , · · · , z
′′
n) is given by (53). By (52) and (55), once ϕ̃a1

is

selected, we can show that

E sup
0≤t≤T

|ẑ′1(t) − z′1(t)|
κ = O(n−1/2 + εn), κ = 1, 2.

Next, we construct

dz̃′1 = fa1
[z̃′1, ϕ̃a1

(t, z̃′1), µ
1
t , · · · , µ

K
t ]dt+ σdw1,(56)
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where z̃′1(0) = z1(0). Combining (55)-(56) and applying a similar argument as in

proving the decoupling results in Theorem 12, we can show that

E sup
0≤t≤T

|ẑ′1 − z̃′1| = O(n−1/2 + εn).

Subsequently, we can show that

E

∫ T

0

(1/n)
n

∑

j=1

L(z′1, ϕ̃a1
(t, z′1), z

′
j)dt

≥ E

∫ T

0

(1/n)

n
∑

j=1

L(z′1, ϕ̃a1
(t, z′1), z

′′
j )dt−O(n−1/2 + εn)

≥ E

∫ T

0

(1/n)

n
∑

j=1

L(z̃′1, ϕ̃a1
(t, z̃′1), z

′′
j )dt−O(n−1/2 + εn)

≥ E

∫ T

0

L[z̃′1, ϕ̃a1
(t, z̃′1), µ

1
t , · · · , µ

K
t ]dt−O(n−1/2 + εn)

≥ E

∫ T

0

L[z′′1 , ϕa1
(t, z′′1 ), µ1

t , · · · , µ
K
t ]dt−O(n−1/2 + εn),

where the last inequality follows from the optimality interpretation of ϕa1
for (53).

By further comparing E
∫ T

0
L[z′′1 , ϕa1

(t, z′′1 ), µ1
t , · · · , µ

K
t ]dt with the cost E

∫ T

0
(1/n)

∑n

j=1 L(z1, ϕa1
(t, z1), zj)dt under the control laws (ϕa1

, · · · , ϕan
) in (51) for the n

agents, we can show the theorem holds when u1 changes within Ud
1 . This completes

the proof.

In Theorem 13, the equilibrium analysis is based upon the general nonlinear

dynamics and we need to restrict the strategy change within the set Ud
i . This simplifies

the performance comparison. Now we proceed to consider the strategy change in the

wider set Ui. To get a tractable analysis, meanwhile, we need to introduce more

structural information into the system model. In particular, we consider individual

dynamics and costs involving both additive and multiplicative coupling. The corollary

below may be proved by following the above argument in establishing Theorem 13

and we will not repeat the details here.

Corollary 14. Assume the conditions in Theorem 13 hold, the individual dy-

namics may be decomposed into the form

fai
(zi, ui, zj) = f0

ai
(zi, ui)g

0
ai

(zj) + g1
ai

(zj),

and the cost is given in the form Ji(ui, u−i) = E
∫ T

0

{

(1/n)
∑n

j=1[L
0(zi, ui)h

0(zj) +

h1(zj)]
}

dt, 1 ≤ i ≤ n. Also, assume the individual controls (u1, · · · , un) = (ϕa1
, · · · ,

ϕan
) are specified by the NCE principle as in Theorem 13. Then (u1, · · · , un) is an

ε-Nash strategy with respect to Un, where ε→ 0 as n→ ∞.

We note that the result in Corollary 14 may be further extended to models with

a cost integrand of the form Θ(zi, ui, (1/n)
∑n

j=1 h(zj)) for Ji. Hence, our NCE
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methodology can deal with many typical models with mean field coupling. It would be

of interest to consider the asymptotic equilibrium analysis with respect to the strategy

space Un for more general nonlinear models than that appearing in Corollary 14. This

will depend upon developing more sophisticated crossing perturbation analysis and

will be investigated in future work.
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[12] D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly

interacting diffusions. Stochastics, 20(1987), pp. 247-308.

[13] R. L. Dobrushin, Prescribing a system of random variables by conditional distributions. The-

ory of Probab. and its Appl., 3(1970), pp. 458-486.

[14] G. M. Erickson, Differential game models of advertising competition. Europ. J. Oper. Res.,

83(1995), pp. 431-438.

[15] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-

Verlag, New York, 1975.

[16] A. Friedman, Differential Games, Wiley-Interscience, 1971.

[17] J. W. Friedman, Game Theory with Applications to Economics, 2nd ed. Oxford University

Press, New York, 1990.

[18] D. Fudenberg and D. K. Levine, The Theory of Learning in Games. MIT Press, Cambridge,

MA, 1998.

[19] E. J. Green, Continuum and finite-player noncooperative models of competition. Economet-



250 MINYI HUANG, ROLAND P. MALHAMÉ, AND PETER E. CAINES
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