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NETWORK ERROR CORRECTION, PART II:

LOWER BOUNDS

NING CAI∗ AND RAYMOND W. YEUNG†

Abstract. In Part I of this paper, we introduced the paradigm of network error correction as a

generalization of classical link-by-link error correction. We also obtained the network generalizations

of the Hamming bound and the Singleton bound in classical algebraic coding theory. In Part II, we

prove the network generalization of the Gilbert-Varshamov bound and its enhancement. With the

latter, we show that the tightness of the Singleton bound is preserved in the network setting. We

also discuss the implication of the results in this paper.
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1. Introduction. In Part I of this paper [1], we introduced the paradigm of net-
work error correction as a generalization of classical link-by-link error correction. We
also obtained the network generalizations of the Hamming bound and the Singleton
bound in classical algebraic coding theory.

To continue with our discussion, we first recall from [1] the definition of a network
error-correcting code. The notations here and in the sequel are inherited from [1].

Definition 1. Let (G, s,U ,R) be a network, and r(a,b) ≤ R(a,b) be positive
integers for (a, b) ∈ E. A network code for the network (G, s,U ,R) is a family of
local encoding functions {φ(a,b) : (a, b) ∈ E} such that φ(s,b) : Z −→ X r(s,b) and
φ(a,b) :

∏
(c,a)∈Γ+(a) X r(c,a) −→ X r(a,b) if a is not the source node s.

Definition 2. A network code is t-error-correcting if it can correct all τ-errors
for τ ≤ t, i.e., if the total number of errors in the network is at most t, then the
source message can be recovered by all the sink nodes u ∈ U . A network code is
Υ-error-correcting if it can correct E-errors for all E ∈ Υ.

In Part I, we have proved the network generalizations of the Hamming bound
and the Singleton bound. In this part, we will prove a network generalization of the
Gilbert-Varshamov bound and its enhancement. With the latter, we will show that
the tightness of the Singleton bound is preserved in the network setting.

The rest of Part II is organized as follows. In Section 2, we prove the Gilbert
bound and the Varshamov bound for network error-correcting codes. In Section 3, we
sharpen the Varshamov bound obtained in Section 2 to the strengthened Varshamov
bound. By means of the latter, we prove the tightness of the Singleton bound for
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network error-correcting codes obtained in Part I. Section 4 is a discussion of the
implication of the results in this work. Section 5 contains the proof of the results, and
the paper is concluded in Section 6.

2. The Gilbert-Varshamov Bound. In this and the next sections, we will
prove sufficient conditions for the existence of error-correcting codes on an acyclic
network (G, s,U ,R) by constructing such codes. We will assume that the code al-
phabet X is GF (q) for some sufficiently large prime power q (called the base field),
and we will work in an n-dimensional linear space GFn(q) spanned by a linear-code
multicast (LCM) to be defined shortly. The source alphabet Z will be a subset of
GFn(q) for a general code and a k-dimensional subspace of GFn(q) for some positive
integer k ≤ n for a linear code. Boldfaced letters (e.g., a,b, . . . , z) stand for row
vectors whose dimensions are understood from the context. The transpose operation
on vectors and matrices will be denoted by “τ”. So, vτ ,wτ , etc, are column vectors.
Addition and subtraction of vectors are understood to be in the linear spaces over
GF (q). With a slight abuse of notation, we also use GFn(q) to denote the linear
spaces of n-dimensional row vectors or column vectors in GF (q).

In this section, we consider general Υ-error-correcting codes and prove Gilbert-
type and Varshamov-type lower bounds on the sizes of optimal Υ-error-correcting
codes. By applying these bounds to t-error-correcting codes, we obtain asymptotically
optimal t-error-correcting codes for networks, i.e., codes that achieve the Singleton
upper bound proved in Part I when the size of the code alphabet is sufficient large.
For general Υ-error-correcting codes, however, there is a “small gap” between the
Varshamov-type lower bound and the Singleton upper bound asymptotically.

The definition of an LCM below has been simplified for acyclic networks and
adopted for the discussion of linear network error-correcting codes in this paper.

Definition 3. [2] A linear code multicast (LCM) V for an acyclic network
(G, s,U ,R) is an assignment of linear subspace LV (a) of (column space) GFn(q) to
a node a ∈ V and a column vector vτ

V ((a, b)) of dimension n to a channel (a, b) ∈ E∗

over a sufficiently large finite field GF (q) for a positive integer n, such that
1) LV (s) ⊂ GFn(q);
2) vτ

V ((a, b)) ∈ LV (a) if (a, b) ∈ Γ−(a);
3) vτ

V ((b, c)) is a linear combination of vτ
V ((a, b)), (a, b) ∈ Γ+(b) for all output chan-

nels (b, c) ∈ Γ−(b).
In [2], an inactive channel (i.e., a channel that does not carry information) in an

LCM is assigned a null vector (“all 0 vector”), but in the current paper, we simply
delete it from the channel set. That is, a vector assigned to a channel in an LCM is
always non-null. Denote by M(a) the matrix whose columns are the vectors assigned
to the input channels of node a. For any LCM V , by 3) in the above definition, there
exists a column vector cτ such that vτ

V ((a, b)) = M(a)cτ . Here, the column vector cτ
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depends on (a, b), but we omit this dependence in order to keep the notation simple.
For the time being, let GFn(q) plays the role of the source alphabet and call a row
vector w ∈ GFn(q) an input to the network. Let 〈·, ·〉 denotes the inner product, i.e.,
for row vectors a and b,

〈a,b〉 = abτ = baτ .

Then we can define a linear network code φ based on any LCM V by
1. φ(s,a)(w) = 〈w,vV ((s, a))〉 for all a ∈ Γ−(s);
2. φ(a,b)(u(a)) = u(a)cτ , where u(a) is the row vector whose ith component is

the output of the ith channel in Γ+(a) in the same order as the columns of
M(a).

It is easy to verify inductively that

(1) φ̃(a,b)(w) = 〈w,vV ((a, b))〉

for all (a, b) ∈ E∗.
We now define a generic LCM which we will use for code construction. The

existence of a generic LCM is guaranteed by the theorem following the next definition.
Definition 4. [2] An LCM V assigning n-dimensional column vectors to the

channels in a network (G, s,U ,R) is generic if for all k ≤ n and any subset of k
channels {(a1, b1), (a2, b2), . . . , (ak, bk)}, that LV (aj) �⊂ span[vτ

V ((ai, bi)), i �= j] for
all j ∈ {1, 2, . . . , k} implies that vτ

V ((a1, b1)),vτ
V ((a2, b2)) . . . ,vτ

V ((ak, bk)) are linearly
independent.

Theorem 1. [2]
i) For a given network with source node s, for all n and sufficiently large q (depending
on the network and n), there exists a generic LCM assigning n-dimensional column
vectors over GF (q) to the channels in the network.
ii) For the generic LCM in i) and all nodes a ∈ V \ {s}, dim(LV (a)) is equal to
min(maxflow(s, a), n) = min(c(s, a), n).

To construct error correcting codes via a generic LCM, we need the following
preparation. Consider the given network and let n = minu∈U c(s, u). Then we can
obtain a subnetwork by deleting some channels if necessary, such that for all u ∈ U ,

(2) cut(s, u) = d+(u) = n.

For simplicity of notation, without loss of generality, we assume that (2) holds for
the given network. Moreover, we may assume without loss of generality that for all
a ∈ V \ U , d−(a) > 0, because a non-sink node without an output channel is useless
for communication and hence can be deleted from the node set. Obviously, for such
a network, a coding order always ends at a sink node. Choose a coding order and
denote it by �∗. Then we order the channel according to �∗ so that (a, b) precedes
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(c, d) implies a�∗c (note that a�∗a so in this case a may be equal to c), and denote
this order by �∗e.

Now by Theorem 1, we can find a generic LCM V assigning n-dimensional column
vectors to the channels in the network. This generic LCM V induces a network code
specified by φ and φ̃ as described above. Since for any u ∈ U ,

dim(LV (u)) = cut(s, u) = n = dim(LV (s))

by Theorem 1 and (2), and since LV (u) ⊂ LV (s), we see that

LV (u) = LV (s) = GFn(q).

This implies that the matrix M(u) is a full rank square matrix of size n.
Fix the coding order �∗ and choose any generic LCM V as prescribed above. We

now consider the situation that the channels are not necessarily error-free. As in the
previous sections, we regard the output of a channel (a, b) ∈ E∗ as the sum of the input
of the channel and an error symbol e(a,b) ∈ GF (q). Define e = (e(a,b) : (a, b) ∈ E∗),
which we will refer to as an error vector, where the components of e are ordered
according to �∗e. Further, we denote the set of all edges leading to a node c by
ec = (e(a,b) : b � c). Note that a � c implies that a�∗c since �∗ is a linear extension
of �.

We remind the readers that if an error vector e occurs, its components are added
to the channel inputs according to the coding order �∗. Then the output of a channel
(a, b) is a function of both the input w to the network and the error vector e that
occurs, and we denote it by ψ(a,b)(w, e). With this notation, a sink node u ∈ U
cannot distinguish the case that w is the input to the network and error e occurs in
the network from the case that w′ is the input to the network and error e′ occurs in
the network if and only if

(3) (ψ(a,u)(w, e) : (a, u) ∈ Γ+(u)) = (ψ(a,u)(w′, e′) : (a, u) ∈ Γ+(u)).

Obviously, the value of ψ(a,b)(w, e) only depends on w and eb. By the definition of
ψ(a,b), we have the recursive formula

(4) ψ(a,b)(w, e) = φ(a,b)(ψ(c,a)(w, e) : (c, a) ∈ Γ+(a)) + e(a,b),

with the initial condition

ψ(s,g)(w, e) = φ(s,g)(w) + e(s,g)

= φ̃(s,g)(w) + e(s,g)

= wvτ
V ((s, g)) + e(s,g)(5)

for all g ∈ Γ−(s).
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Lemma 1. For all (a, b) ∈ E∗, all network inputs w and w′, error vectors e and
e′, and µ ∈ GF (q),

(6) ψ(a,b)(w + w′, e + e′) = ψ(a,b)(w, e) + ψ(a,b)(w′, e′)

and

(7) ψ(a,b)(µw, µe) = µψ(a,b)(w, e).

Denote a null vector (“all 0 vector”) by 0 whose dimension is understood from
the context. By the above lemma, for any network input w and error vector e, we
have,

ψ(a,b)((w, e) = ψ(a,b)(w,0) + ψ(a,b)(0, e).

Note that the two null vectors on the RHS above have different dimensions. Upon
observing that ψ(a,b)(w,0) = φ̃(a,b)(w) and defining θ(a,b)(e) = ψ(a,b)(0, e), we can
write

(8) ψ(a,b)(w, e) = φ̃(a,b)(w) + θ(a,b)(e).

In other words, ψ(a,b)(w, e) can be written as the sum of two linear functions of w

and e, respectively.
Our strategy for constructing a t-error-correcting code is to choose an appropriate

subset Z of GFn(q) as the source alphabet. To facilitate the description of the codes
that we will construct in the proof of the Gilbert-Varshamov bound (to be stated
shortly), we first introduce a few notations. An error vector e is said to have error
pattern E for a subset E of channels if its component e(a,b) �= 0 if only if (a, b) ∈ E.
For an error pattern set Υ, we denote by Υ∗ the set of error vectors with error pattern
in Υ, and for each u ∈ U , define the set

(9) Ξ(V,Υ, u) = {(θ(a,u)(e)M−1(u), (a, u) ∈ Γ+(u)) : e ∈ Υ∗},

We further define the set

(10) ∆(V,Υ) =
⋃

u∈U
{f = g′ − g : g,g′ ∈ Ξ(V,Υ, u)}.

For a vector w ∈ GFn(q), we write the sum set

(11) w + ∆(V,Υ) := {w + f : f ∈ ∆(V,Υ)}

so that for all w, w + ∆(V,Υ) has the same cardinality as ∆(V,Υ), i.e.,

(12) |w + ∆(V,Υ)| = |∆(V,Υ)|.
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In the case that Υ is the subset of channels with cardinality not larger than t, we
write Ξ(V,Υ, u) as Ξ(V, t, u) and ∆(V,Υ) as ∆(V, t), i.e.,

(13) Ξ(V, t, u) = {(θ(a,u)(e)M−1(u), (a, u) ∈ Γ+(u)) : wH(e) ≤ t},

where wH(e) denotes the Hamming weight of e. We say that a pair of input vectors of
the network w and w′ are Υ-separable at a sink node u if (3) does not hold for all error
vectors e and e′ in Υ∗, and that w and w′ are Υ-separable if they are Υ-separable
for all sink nodes. The notion of t-separability is defined analogously.

Lemma 2.

i) For all w,w′ ∈ GFn(q),

(14) w′ ∈ w + ∆(V,Υ)

if and only if w ∈ w′ + ∆(V,Υ).
ii) w and w′ are Υ-separable if and only if

(15) w′ �∈ w + ∆(V,Υ).

iii) Let Z ⊂ GFn(q). Then the restriction of the network code {φ(a,b) : (a, b) ∈ E∗}
induced by Z and a generic LCM V is a Υ-error correcting code for the network if
and only if the vectors in Z are pairwise Υ-separable. Moreover, the code is linear if
Z is a linear subspace of GFn(q).

Theorem 2 (Gilbert-Varshamov Bound). For all positive integer A with

(16) (A− 1)|∆(V,Υ)| < qn,

one can construct an Υ-error-correcting code with source alphabet size A (i.e., |Z| =
A). Moreover, for all positive integers k such that

(17) |∆(V,Υ)| < qn−k,

one can construct a linear code of at least k dimensions (i.e., |Z| = qk) via the given
generic LCM V.

The first and the second parts of this theorem are the network generalizations
of the Gilbert bound and the Varshamov bound for classical error-correcting codes,
respectively.

Remark: It can be seen from the proof of the Varshamov bound in Theorem 2 that
instead of (17), the condition

(18) max
1≤i≤n

|∆i(V,Υ)| < qn−k

is sufficient for the existence of a linear code of at least k dimensions, where {∆i(V,Υ) :
1 ≤ i ≤ n} is partition of ∆(V,Υ) such that ∆0(V,Υ) = {0} and for 1 ≤ i ≤ n,
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w ∈ ∆i(V,Υ) if and only if w ∈ ∆(V,Υ) and the last non-zero component of w is the
ith component.

To obtain a lower bound on |Z| which does not depend on the particular choice of
the LCM V , we observe that by the definitions of ∆(V,Υ) and Ξ(V,Υ, u), |∆(V,Υ)|
is upper bounded by

|∆(V,Υ)| ≤
∑
u∈U

|Ξ(V,Υ, u) − Ξ(V,Υ, u)|

≤
∑
u∈U

|Ξ(V, t, u)|2

≤ |U|(|Υ∗|)2,(19)

where

Ξ(V,Υ, u) − Ξ(V,Υ, u) = {f = g′ − g : g,g′ ∈ Ξ(V,Υ, u)}.

Let K = |E∗| and define

Υj = {E : |E| = j, E ∈ Υ}

for j = 0, 1, . . . ,K. Then by the definition of Υ∗, we have

(20) |Υ ∗ | =
K∑

j=0

|Υj|(q − 1)j .

By (19) and (20), the following corollary of Theorem 2 is immediate.

Corollary 1. For any given error-pattern set Υ and all positive integer A with

(21) (A− 1)|U|
⎛
⎝ K∑

j=0

|Υj |(q − 1)j

⎞
⎠

2

< qn,

one can construct an Υ-error-correcting code with source alphabet size A. Moreover,
for all positive integers k such that

(22) |U|
⎛
⎝ K∑

j=0

|Υj |(q − 1)j

⎞
⎠

2

< qn−k,

one can construct a linear code of at least k dimensions.

In particular, if Υ is the collection of subsets of channels with cardinality no larger
than t, then

|Υj | =

{ (
K
j

)
if j ≤ t

0 otherwise.
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Thus for t-error-correcting codes, the bounds in Corollary 1 can be expressed explicitly
as

(23) |∆(V, t)| ≤ |U|
⎡
⎣ t∑

j=0

(
K

j

)
(q − 1)j

⎤
⎦

2

.

Corollary 2. For a network with minu∈U c(s, u) = n, for all ε > 0 and suffi-
ciently large prime power q (depending on the network and ε), one can construct a
t-error correcting code with source alphabet Z such that

(24) log |Z| ≥ (n− 2t)(1 − ε) log q.

Moreover, for all sufficiently large prime power q and k = n−2t−1, one can construct
a k-dimensional linear t-error correcting code for the network.

3. The Strengthened Varshamov Bound and the Singleton Bound. In
this section, we continue with our discussion on t-error correcting codes for networks.
We first state the Singleton bound for network error-correcting codes proved in Part I
[1]. The tightness of this bound will also be shown upon proving in Theorem 4 an
enhancement of the Varshamov bound.

Theorem 3 (Singleton Bound). [1] Let (G, s,U ,R) be an acyclic network and
n = minu∈U c(s, u). If there exists a t-error-correcting code for the network with source
alphabet Z, then

(25) log |Z| ≤ (n− 2t) log q,

where n− 2t > 0.
Comparing the Singleton bound (upper bound on |Z|) and the bound in Corol-

lary 2 (lower bound on |Z|), which is a consequence of the Gilbert bound, we see that
the two bounds differ only by the ε in the latter. However, the gap between the two
bounds can be quite large because according to the proof of Corollary 2, q → ∞ as
ε→ 0.

Closing this gap involves sharpening the Varshamov bound by making a more
careful estimate on |∆(V, t)|, the size of the difference set. Toward this end, we
rewrite (10) via (9) as

∆(V, t)

= {(θ(a,u)(e), (a, u) ∈ Γ+(u))M−1(u) − (θ(a,u)(e′), (a, u) ∈ Γ+(u))M−1(u) :

u ∈ U and wH(e), wH(e′) ≤ t}.(26)

By the linearity of θ(a,u), we have

(θ(a,u)(e), (a, u) ∈ Γ+(u))M−1(u) − (θ(a,u)(e′), (a, u) ∈ Γ+(u))M−1(u)

= (θ(a,u)(e − e′), (a, u) ∈ Γ+(u))M−1(u),(27)
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and obviously

{e− e′ : wH(e), wH(e′) ≤ t} = {d : wH(d) ≤ 2t}

since n− 2t > 0. So,

(28) ∆(V, t) = {(θ(a,u)(d) (a, u) ∈ Γ+(u))M−1(u) : u ∈ U and wH(d) ≤ 2t}.

Then we have the upper bound

(29) |∆(V, t)| ≤ |U|
2t∑

i=0

(
n

i

)
(q − 1)i

which is tighter than (23) which was obtained from the more general upper bound in
(19). However, by combining this bound and Theorem 2, we still can only obtain the
same lower bound (n−2t−1) on the dimension of optimal linear codes as in Corollary
2. Nevertheless, the bound in (29) will be instrumental in proving the strengthened
Varshamov bound in the next theorem. In proving this theorem, we also need to
employ a more elaborate technique for bounding |∆(V, t)|.

Theorem 4 (Strengthened Varshamov Bound). For a fixed arbitrary acyclic
network with minu∈U c(s, u) = n and all sufficiently large q, there exists an (n− 2t)-
dimensional linear t-error-correcting code for the network.

With the strengthened Varshamov bound, the tightness of the Singleton bound
for all sufficiently large q is readily seen. It is well-known that the Singleton bound
for classical error-correcting codes on a sufficiently large field is tight. Thus not only
that the Singleton bound can be generalized for network error-correcting codes, but
also that the tightness of the bound is preserved.

4. Discussion. In this section, we discuss the implication of the results obtained
in Part I and Part II of this paper.

Classical error-correcting codes are devised for correcting errors in point-to-point
communications. Such errors may be due to noise in the channel, or they may
be injected by adversaries such as a wiretapper. In either case, as long as the
error-correcting code employed is sufficiently powerful, reliable communication can
be achieved. The main idea of classical error correction is to spread redundancy over
time.

In a communication network as modeled in this paper, suppose the errors are due
to noise in the channels. Then a natural approach to achieving reliable and efficient
end-to-end communication is to convert each noisy channel into a noiseless channel
with rate equal to its own capacity by means of a channel code (e.g. a turbo code
[5]) and then employ an optimal network code for the whole network. In other words,
error correction is carried out on a link-by-link basis. This is called separation of
network coding and channel coding and has been studied in [6] and [7]. Specifically,
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separation theorems have been proved for general cyclic networks under the following
conditions:

1. the channels in the network are independent;
2. all the channels are memoryless.

In [6], the separation theorem is established under the assumption that there is a unit
delay in the transmission in every channel in the network, while in [7], the separation
theorem is established under a more general setting.

For wired communication networks, while it may be valid to assume that the
channels are independent, they are usually not memoryless. Thus, there is generally
no guarantee that link-by-link error correction is asymptotically optimal.

If instead the errors in the network are injected by adversaries such as a wiretapper
or a malicious node, the considerations would be very different. For example, if a
particular node within the network is malicious, then that node is unreliable even
over time. Since a classical error-correcting code only spreads redundancy over time,
no link-by-link error correction scheme can correct the errors injected by that node.
On the other hand, if a network error-correcting node is employed, as long as there
are not an overwhelming number of errors, which may be due to noise in the channels
or injected by adversaries, they can all be corrected because for a network error-
correcting code, redundancy is spread not only over time but also over space. This is
a feature of network correction which is not possessed by classical error correction.

For link-by-link error correction, a channel code is decoded at every intermediate
node in the network. Since decoding involves nonlinear operations, it is computa-
tionally expensive. In the last section, we have proved the strengthened Varshamov
bound which implies that when the base field is sufficiently large, the tightness of
the Singleton bound established in Part I can be achieved by linear network error-
correcting codes, i.e., linear network error-correcting codes are optimal (in the sense
of t-error correcting). For linear network error correction, unlike link-by-link error
correction, only linear operations is required at the intermediate nodes. Thus linear
network error correction offers a significant computational advantage over link-by-link
error correction.

As a remark, although we have established that linear network error-correcting
codes are optimal for correcting t errors when the base field is sufficiently large, it is
possible that a nonlinear network error-correcting code can correct certain (but not
all) error vectors e containing more than t errors which are impossible for the best
possible linear network code. This is a tradeoff between the computational efficiency
and the error-correcting capability of the scheme.

5. Proof of Results.

Proof of Lemma 1

We prove the lemma by induction on the order �∗e. The first channel in the order
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�∗e is a channel with input node s, say (s, g). Then by (5),

ψ(s,g)(w + w′, e + e′)

= (w + w′)vτ
V ((s, g)) + (e(s,g) + e′(s,g))

= (wvτ
V ((s, g)) + e(s,g)) + (w′vτ

V ((s, g)) + e′(s,g))

= ψ(s,g)(w, e) + ψ(s,g)(w′, e′),(30)

and

ψ(s,g)(µw, µe) = (µw)vτ
V ((s, g)) + µe(s,g)

= µ[wvτ
V ((s, g)) + e(s,g)]

= µψ(s,g)(w, e).

Assume that (6) and (7) hold for all the channels preceding channel (a, b). Then by
(4) and the induction hypothesis, we have

ψ(a,b)(w + w′, e + e′)

= φ(a,b)(ψ(c,a)(w + w′, e + e′) : (c, a) ∈ Γ+(a)) + (e(a,b) + e′(a,b))

= φ(a,b)((ψ(c,a)(w, e) + ψ(c,a)(w′, e′)) : (c, a) ∈ Γ+(a)) + (e(a,b) + e′(a,b)).(31)

By the linearity of φ(a,b), (31) yields

ψ(a,b)(w + w′, e + e′)

= φ(a,b)(ψ(c,a)(w, e) : (c, a) ∈ Γ+(a))

+φ(a,b)(ψ(c,a)(w′, e′) : (c, a) ∈ Γ+(a)) + (e(a,b) + e′(a,b))

= (φ(a,b)(ψ(c,a)(w, e) : (c, a) ∈ Γ+(a)) + e(a,b))

+(φ(a,b)(ψ(c,a)(w′, e′) : (c, a) ∈ Γ+(a)) + e′(a,b))

= ψ(a,b)(w, e) + ψ(a,b)(w′, e′),(32)

i.e., (6). Similarly, by (4), the induction hypothesis, and the linearity of φ(a,b), we
have

ψ(a,b)(µw, µe)

= φ(a,b)(ψ(c,a)(µw, µe) : (c, a) ∈ Γ+(a)) + µe(a,b)

= φ(a,b)(µψ(c,a)(w, e) : (c, a) ∈ Γ+(a)) + µe(a,b)

= µφ(a,b)(ψ(c,a)(w, e) : (c, a) ∈ Γ+(a)) + µe(a,b)

= µψ(a,b)(w, e),(33)

i.e., (7) holds.

Proof of Lemma 2

i) If w′ ∈ w + ∆(V,Υ), then w′ = w + f , or w = w′ + (−f), for some f ∈ ∆(V,Υ).



48 NING CAI AND RAYMOND W. YEUNG

Since f ∈ ∆(V,Υ) implies (−f) ∈ ∆(V,Υ), we have w ∈ w′ + ∆(V,Υ). The converse
is immediate by symmetry.
ii) Assume that w and w′ are not Υ-separable. Then there exists a sink node u ∈ U
and error vectors e and e′, both in Υ∗, such that (3) holds. Now substitute (8) into
(3) to obtain
(34)

(φ̃(a,u)(w) + θ(a,u)(e) : (a, u) ∈ Γ+(u)) = (φ̃(a,u)(w′) + θ(a,u)(e′) : (a, u) ∈ Γ+(u)).

By (1) and the definition of the matrix M(u), we have

(φ̃(a,u)(w) + θ(a,u)(e) : (a, u) ∈ Γ+(u))

= (φ̃(a,u)(w) : (a, u) ∈ Γ+(u)) + (θ(a,u)(e) : (a, u) ∈ Γ+(u))

= wM(u) + (θ(a,u)(e) : (a, u) ∈ Γ+(u)),(35)

and similarly
(36)

(φ̃(a,u)(w′) + θ(a,u)(e′) : (a, u) ∈ Γ+(u)) = w′M(u) + (θ(a,u)(e′) : (a, u) ∈ Γ+(u)).

Substituting (35) and (36) into (34), we have

(37) wM(u) + (θ(a,u)(e) : (a, u) ∈ Γ+(u)) = w′M(u) + (θ(a,u)(e′) : (a, u) ∈ Γ+(u)).

Multiplying M−1(u) to both sides, we obtain

w + (θ(a,u)(e) : (a, u) ∈ Γ+(u))M−1(u) = w′ + (θ(a,u)(e′) : (a, u) ∈ Γ+(u))M−1(u),

or equivalently,
(38)
w′ = w + [(θ(a,u)(e) : (a, u) ∈ Γ+(u))M−1(u) − (θ(a,u)(e′) : (a, u) ∈ Γ+(u))M−1(u)].

Thus we have shown that (3) is equivalent to (38). Since [Ξ(V,Υ, u) − Ξ(V,Υ, u)] ⊂
∆(V,Υ) by the definition in (10), (38) implies that (cf. (9))

(39) w′ ∈ w + [Ξ(V,Υ, u) − Ξ(V,Υ, u)] ⊂ w + ∆(V,Υ).

Hence, (15) does not hold.
Conversely, assume that (15) does not hold. Then there exists by (10) a sink node

u ∈ U such that (39) holds. Thus by the definition in (9), there is a pair of error
vectors e and e′ in Υ∗ such that (38) holds, which we have shown is equivalent to (3),
i.e., w and w′ are not Υ-separable. This completes the proof of part ii).
iii) This part follows immediately from the definitions of Υ-error-correcting codes for
networks, Υ-separability, and the linearity of {φ(a,b) : (a, b) ∈ E∗}.

Proof of Theorem 2

To obtain (16), we employ the well-known greedy algorithm due to Gilbert [3] to
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obtain a set Z ⊂ GFn(q) such that for all z, z′ ∈ Z,

(40) z′ �∈ z + ∆(V,Υ).

Then by ii) and iii) of Lemma 2 and (40), the restriction of {φ(a,b) : (a, b) ∈ E∗} is
an Υ-error correcting code for the network. The greedy algorithm works as follows.
We begin with the initial ground set W1 = GFn(q). In each step, say the ith step,
where i ≥ 1, we add an arbitrary vector zi taken from the ground set Wi to Z, delete
the vectors in the subset (zi + ∆(V,Υ)) ∩ Wi from the ground set Wi, and call the
resulting set the (i + 1)th ground set Wi+1. That is, the new ground set becomes
Wi+1 = Wi \ (zi + ∆(V,Υ)). We repeat this procedure until we obtain a set Z with
|Z| = A. By (12), we delete at most |∆(V,Υ)| vectors from the ground set in each
step. So for i ≤ A− 1, by the condition (16), the ground set still has at least

|GFn(q)| − i|∆(V,Υ)|
= qn − i|∆(V,Υ)|
≥ qn − (A− 1)|∆(V,Υ)|
> 0

vectors after the ith step, and therefore it is possible to choose the next vector zi+1

from the ground set. Obviously, the set Z obtained this way satisfies (40).
To obtain a linear code with dimension k for k satisfying (17), by ii) and iii) of

Lemma 2, it is sufficient for us to find a k-dimensional subspace of GFn(q) such that
(40) hold for all z, z′ ∈ Z, which by linearity is equivalent to

(41) ∆(V,Υ) ∩ Z = {0}.

This is done by a Varshamov-type approach as follows (cf. [4]). According to this
approach, in order to obtain the linear Υ-error-correcting code for the network, we
will construct an (n−k)×n matrix H analogous to the parity check matrix in classical
coding theory. To this end, we need a few definitions. First, we partition ∆(V,Υ)
into

(42) {∆i(V,Υ) : 0 ≤ i ≤ n},

where ∆0(V,Υ) = {0}, and for 1 ≤ i ≤ n, w ∈ ∆i(V,Υ) if and only if w ∈ ∆(V,Υ)
and the last non-zero component of w is the ith component. That is, for i > 0, for
all w ∈ ∆i(V,Υ),

(43) w = (w1, w2, . . . , wi,0),

with wi �= 0. Next, we let K1 = {0τ} ⊂ GFn−k(q), where 0 is the (n−k)-dimensional
null row vector. For 2 ≤ i ≤ n and any fixed (i − 1) (n − k)-dimensional column
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vectors (h′τ
1 ,h

′τ
2 , . . .h

′τ
i−1), let

Ki(h′τ
1 ,h

′τ
2 , . . .h

′τ
i−1)(44)

:=

⎧⎨
⎩kτ : wikτ +

i−1∑
j=1

wjh′τ
j = 0τ for some w ∈ ∆i(V,Υ) and kτ ∈ GFn−k(q)

⎫⎬
⎭ .

Then

(45) |∆0(V,Υ)| = |K1| = 1,

and for 2 ≤ i ≤ n and all h′τ
1 ,h

′τ
2 , . . .h

′τ
i−1,

(46) |Ki(h′τ
1 ,h

′τ
2 , . . .h

′τ
i−1)| ≤ |∆i(V,Υ)|.

To construct an (n−k)×n matrix H = (hτ
1 ,h

τ
2 . . . ,h

τ
n), we will choose the n (n−k)-

dimensional column vectors hτ
1 ,h

τ
2 , . . . ,h

τ
n recursively as follows:

Step 1: Begin with GFn−k(q) \ K1 and choose an arbitrary h1 in it.
Step 2: Choose an arbitrary vector hτ

2 ∈ GFn−k(q) \ K2(hτ
1).

For i ≥ 2,
Step i: Choose an arbitrary hτ

i ∈ GFn−k(q) \ Ki(hτ
1 ,h

τ
2 . . . ,h

τ
i−1).

This procedure can be continued until i = n so that we can obtain all the columns of
H , i.e., hτ

1 ,h
τ
2 . . . ,h

τ
n, because for all i ≤ n, by the conditions in (17), (45) and (46),

the size of the set of candidates for hτ
i is at least

|GFn−k(q)| − |Ki(h′τ
1 ,h

′τ
2 , . . .h

′τ
i−1)|

≥ qn−k − |∆i(V,Υ)|
≥ qn−k − |∆(V,Υ)|
> 0.

Next we let

(47) Z = {z : z ∈ GFn(q) and Hzτ = 0}.

Obviously, Z is a linear subspace having dimension n− rank(H) ≥ n − (n− k) = k.
To complete the proof, we have to show that Z satisfies the condition (41). Indeed,
if (41) does not hold for Z, there must exist a z ∈ Z ∩ ∆i(V,Υ) for some i with
0 < i ≤ n. Now we write z = (z1, z2, . . . , zi,0) as in (43), and then by (47), we have

0 = Hzτ = zihτ
i +

i−1∑
j=1

zjhτ
j ,

which by (44) yields

hτ
i ∈ Ki(hτ

1 ,h
τ
2 . . . ,h

τ
i−1).
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So we have arrived at a contradiction to Step i in the construction of H , completing
our proof.

Proof of Corollary 2
We assume that n − 2t > 0, otherwise both parts of the corollary are trivial. Then
t < n ≤ K(= |E∗|). From (23), we have

|∆(V, t)| ≤ |U|
⎡
⎣ K∑

j=0

(
K

j

)⎤
⎦

2

q2t

= |U|22Kq2t.

Thus

(48) log |∆(V, t)| < 2t log q + 2K + log |U|.

Now choose

(49) (|Z| =) A = 
 qn

|∆(V, t)| �

so that (16) is satisfied, and for any fixed ε > 0, choose

q ≥ 2
2K+log |U|
(n−2t)ε ,

so that

log |U| ≤ (n− 2t)ε log q − 2K.

Then from (48), we have

(50) log |∆(V, t)| < 2t log q + (n− 2t)ε log q.

Hence, it follows from (49) that

log |Z| ≥ n log q − log |∆(V, t)|
> n log q − 2t log q − (n− 2t)ε log q

= (n− 2t)(1 − ε) log q.

This proves the first part of the corollary upon invoking the Gilbert bound in Theo-
rem 2.

In (50), by choosing ε = (n− 2t)−1, we have

log |∆(V, t)| < 2t log q + log q

= (2t+ 1) log q,
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or

|∆(V, t)| < q2t+1 = qn−(n−2t−1) = qn−k.

Then the second part of the corollary is proved upon invoking the Varshamov bound
in Theorem 2.

Proof of Theorem 4
To enhance the Varshamov bound, we proceed as follows. Let

(51) ∆∗(V, t) = ∆(V, t) \ {0},

and write

(52) Z = {z : Hzτ = 0},

where H is an (n− k)×n matrix. Then (41) holds if and only if for all w ∈ ∆∗(V, t),

(53) Hwτ �= 0.

By (51), the partition in (42) partitions ∆∗(V, t) into

(54) {∆i(V, t) : 1 ≤ i ≤ n}.

The set Z in (52) is a subspace of GFn(q) of at least k dimensions, and the matrix
H is to be chosen such that the restriction of the network code {φ(a,b) : (a, b) ∈ E∗}
induced by Z is a t-error-correcting code for the network.

To show the existence of an (n− k) × n matrix H as in the proof of Theorem 2
with k = n − 2t (instead of k = n − 2t − 1), we further partition ∆i(V, t) in (54)
by defining a relation ∼ among the vectors in GFn(q) \ {0} such that for w,w′ ∈
GFn(q)\{0}, w ∼ w′ if and only if there exists a µ ∈ GF (q)\{0} such that w′ = µw.
Obviously, the relation ∼ is an equivalence relation and therefore induces a partition
of GFn(q) \ {0}. For all w ∈ ∆∗(V, t), by (28), there exists d ∈ GFK(q) (K = |E∗|)
such that wH(d) ≤ 2t and

(55) w = (θ(a,u)(d), (a, u) ∈ Γ+(u))M−1(u).

It is clear that d �= 0 since by the linearity of θ(a,u),

(θ(a,u)(0), (a, u) ∈ Γ+(u))M−1(u) = 0 �∈ ∆∗(V, t)

(note that the two 0’s have different dimensions). Again by the linearity of θ(a,u), for
all µ ∈ GF (q) \ {0} and for all w ∈ ∆∗(V, t), from (55), we have

µw = µ(θ(a,u)(d), (a, u) ∈ Γ+(u))M−1(u) = (θ(a,u)(µd), (a, u) ∈ Γ+(u))M−1(u),
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where µd �= 0 and wH(µd) ≤ 2t. Thus, if w ∈ ∆∗(V, t), then µw ∈ ∆∗(V, t). Further,
it is easy to see from the definition of ∆∗

i (V, t) that if w ∈ ∆∗
i (V, t), then µw ∈

∆∗
i (V, t). Then the relation ∼ partitions ∆i(V, t) for i = 1, 2, . . . n into equivalence

classes each with (q − 1) vectors, implying a total of (q − 1)−1|∆i(V, t)| equivalence
classes in ∆i(V, t).

We now prove that for any fixed equivalence class Q of ∆i(V, t), there are exactly
q2t(n−1) 2t×n matrices H := (h1,h2, . . . ,hn) such that there exists w ∈ Q satisfying

(56) Hwτ = 0.

Since the vectors in Q are multiples of each other, a matrix H satisfies (56) for all
w ∈ Q if and only if it satisfies (56) for w = (w1, w2, . . . , wi−1, 1,0) ∈ Q ⊂ ∆i(V, t).
Now Hwτ

1 = 0 if and only if

hi = −
i−1∑
j=1

wjhj .

Thus hi is fixed once h1,h2, . . . ,hi−1,hi+1, . . . ,hn are arbitrarily chosen (hi actu-
ally depends only on h1,h2, . . . ,hi−1). This proves our claim that there are exactly
q2t(n−1) matrices H such that there exists w ∈ Q satisfying (56). Together with (29)
and (51), this implies that the number of 2t × n matrices H such that there exists
w ∈ ∆∗(V, t) satisfying (56) is upper bounded by

n∑
i=1

(q − 1)−1|∆i(V, t)|q2t(n−1)

= q2t(n−1)(q − 1)−1|∆∗(V, t)|
= q2t(n−1)(q − 1)−1(|∆(V, t)| − 1)

≤ q2t(n−1)(q − 1)−1|U|
2t∑

i=1

(
n

i

)
(q − 1)i

≤ 2K |U|q2t(n−1)(q − 1)2t−1

< (2K |U|q−1)q2tn,

where the second last inequality above follows because 2t < n ≤ K. On the other
hand there are totally q2tn 2t× n matrices over GF (q). So if q is a prime power such
that

q ≥ 2K |U|,

then there must exist a 2t × n matrix H such that (53) holds for all w ∈ ∆∗(V, t),
which defines a subspace Z via (52) of at least (n − 2t) dimensions that induces a
t-error-correcting code. This completes the proof.
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6. Conclusion. In this two-part paper, we introduce network error correction as
a generalization of classical link-by-link error correction. We have obtained network
generalizations of the fundamental bounds in classical algebraic coding theory on the
size of the source alphabet, namely the Hamming bound, the Singleton bound, and
the Gilbert-Varshamov bound. In particular, we have shown that the tightness of the
Singleton bound is preserved in the network setting. The results in this paper have
set a new direction for both network coding theory and algebraic coding theory.
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