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CANONICAL TIME-FREQUENCY, TIME-SCALE, AND

FREQUENCY-SCALE REPRESENTATIONS OF TIME-VARYING

CHANNELS∗

SCOTT T. RICKARD† , RADU V. BALAN‡ , H. VINCENT POOR§ , AND SERGIO VERDÚ§

Abstract. Mobile communication channels are often modeled as linear time-varying filters or,

equivalently, as time-frequency integral operators with finite support in time and frequency. Such a

characterization inherently assumes the signals are narrowband and may not be appropriate for wide-

band signals. In this paper time-scale characterizations are examined that are useful in wideband

time-varying channels, for which a time-scale integral operator is physically justifiable. A review

of these time-frequency and time-scale characterizations is presented. Both the time-frequency and

time-scale integral operators have a two-dimensional discrete characterization which motivates the

design of time-frequency or time-scale rake receivers. These receivers have taps for both time and

frequency (or time and scale) shifts of the transmitted signal. A general theory of these charac-

terizations which generates, as specific cases, the discrete time-frequency and time-scale models is

presented here. The interpretation of these models, namely, that they can be seen to arise from

processing assumptions on the transmit and receive waveforms is discussed. Out of this discus-

sion a third model arises: a frequency-scale continuous channel model with an associated discrete

frequency-scale characterization.

Key words: Time-Frequency, Time-Scale, Frequency-Scale, Delay, Doppler, Dilation, Doubly

Spread, Time-Varying, Canonical Channel Models, Rake Receiver, Wideband Regime

1. Introduction. It is common to assume that a received communication signal

is composed of superpositions of different versions of the transmitted signal. These

different versions arise from reflections of the signal off of scatterers in the environ-

ment. In the time-scale channel model, each reflection is a delayed and time scaled

copy of the transmitted signal. The delays arise from differing path lengths from

transmitter to scatterer to receiver. Relative motion of the transmitter, scatterers, or

receiver causes time dilations/contractions of the transmitted waveform x(t). Thus,

each reflection is of the form,

(1) xa,b(t) =
1
√

|a|
x

(
t − b

a

)
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and the received signal is a summation of the reflections characterized by L(a, b), the

wideband spreading function1,

(2) y(t) =

∫∫

L(a, b)
1

√

|a|
x

(
t − b

a

)

dadb.

We call a time-scale channel a wideband channel when the wideband spreading

function has finite support. Due to the physical limitations of signal propagation, it

is reasonable to expect that L(a, b) has finite support. The maximum possible rate

of change in path length, which is constrained by the speeds of the objects in the

environment, limits the support of L(a, b) to a narrow range around the a = 1 line.

Causality and the propagation loss associated with increasing path length effectively

limit the support of L(a, b) to a finite range in the b direction. The support in the

a direction causes a spreading in scale of the transmitted signal, and the support in

the b direction causes a spreading in time of the transmitted signal. Thus, channels

described by (2) are often referred to as doubly spread channels.

Many signals and signaling environments satisfy the narrowband condition, an

assumption under which the time dilations or contractions are modeled as Doppler

shifts. Under this assumption, each received reflection of the signal is assumed to be

of the form,

(3) xτ,θ(t) = x(t − τ)ej2πθt.

In the narrowband channel model, the received signal is a superposition of time delayed

and frequency shifted copies of the input and the channel is characterized by the

narrowband spreading function S(θ, τ),

(4) y(t) =

∫∫

S(θ, τ)x(t − τ)ej2πθtdτdθ,

where S(θ, τ) typically has finite support in θ and τ due to the physical limitations

of the channel. The span of this spreading in time and frequency has proven to be

a crucial parameter in communication systems [1, 2, 3]. Regardless of whether the

support constraint is satisfied or not, (4) is a time-frequency description of a general

time-varying linear system,

(5) y(t) =

∫

h(t, τ)x(t − τ)dτ.

When S(θ, τ) has no support constraint, the transmitted waveform and environment

need not satisfy the narrowband condition.

Kailath’s pioneering work in his 1959 Master’s thesis [4] and the concomitant

development of the rake channel model provided a mathematical framework for cap-

turing the energy associated with multiple transmission paths between transmitter

1We will assume that all integrals are taken over (−∞,∞) unless otherwise specified.
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and receiver using a discretization of the channel model. This work was furthered in

1963 by Bello, who proposed a discrete time-frequency characterization of the time-

varying channel [2]. In [5], Sayeed and Aazhang reinterpreted this characterization

from a diversity viewpoint, and used this canonical time-frequency channel character-

ization which combines a discrete set of time delayed and frequency shifted versions

of the input signal,

(6) y(t) =

N∑

n=0

K∑

k=−K

Ŝ

(
k

T
,

n

W

)

x
(

t − n

W

)

ej2πkt/T ,

where

(7) Ŝ(θ, τ) :=

∫∫

S(θ′, τ ′)sinc ((τ − τ ′) W ) sinc ((θ − θ′)T ) e−jπ(θ−θ′)T dθ′dτ ′

to define a delay-Doppler RAKE receiver, a two-dimensional extension of the classic

rake receiver. The delay-Doppler rake takes advantage of the inherent added channel

diversity associated with time-varying narrowband channels [5]. While the narrow-

band assumption is satisfied in many wireless communication signal environments,

many wireless systems are wideband due to the higher data rates and multiaccess

techniques [6]. Thus we may expect, in light of differences in the narrowband and

wideband models, some advantages to the development of a canonical time-scale chan-

nel characterization in wideband communication scenarios. Motivated by this, [7, 8]

used the channel in (2) to derive a time-scale canonical channel model

(8) y(t) =
∑

m,n

cm,n

a
m/2
0

x

(
t − nb0a

m
0

am
0

)

,

where a0, b0 are related to channel and signal characteristics, and

(9) cm,n =

∫∫

L(a, b)sinc

(

m − ln a

ln a0

)

sinc

(

n − b

ab0

)

dadb.

An identical formula has been derived independently in [9, 10]. There is a difference,

however, in the physical meaning of the decomposition in (8) between [7, 8] and [9, 10].

We will discuss this difference in Section 4 where we will also present our point of view

on canonical channel models. For us, a canonical model will refer to a time-varying

linear system applied to a particular class of transmit signals whose output is mea-

sured through a particular observation procedure. For example, the time-frequency

canonical model derived in [5] is based on bandlimited transmit signals observed at

the receiver over a finite observation horizon (i.e., a time-domain limited receiver).

As we discuss below, the time-scale canonical model can be derived from bandlimited

transmit signals being observed at a scale-domain limited receiver. Furthermore, the

new third canonical frequency-scale channel model introduced in this paper can be

derived from scale-limited transmit signals being received at a time-domain limited

receiver. We elaborate on this point in Section 4.
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Based on the above interpretation, in Section 4.1 we introduce a frequency-scale

time-varying channel model of the form:

(10) y(t) =

∫ ∞

−∞

∫ ∞

0

ρ̂(ω, a)ej2πωt 1√
a
x

(
t

a

)

dadω

which is equivalent to (5) for positive time supported input signals and positive time

horizon receivers, as we show in Appendix C. The canonical channel model derived

from (10) is

(11) y(t) =
∑

m,n

cm,nej2πmt/(T2−T1)1[T1,T2](t)a
n/2
0 x(an

0 t)

where

(12) 1[T1,T2](t) =

{

1 : T1 ≤ t ≤ T2

0 : otherwise

and cm,n are coefficients which depend on the span of the observation time horizon

(T2 − T1), the scale domain bandwidth, and frequency-scale spreading function (see

Equation (81)).

Each of the three doubly spread canonical channel models discussed above moti-

vates the development of a different two-dimensional rake receiver. A delay-dilation

rake receiver based on the canonical time-scale channel characterization [9, 11, 10]

leverages the diversity in wideband signaling environments in the same way that the

delay-Doppler rake leverages the diversity in narrowband signaling environments [5].

Such a channel model and receiver may be particularly useful for ultra-wideband

signaling due to the extremely wide transmission signal bandwidth [12, 13].

1.1. Outline of paper. In Section 2 we review background material on contin-

uous narrowband (time-frequency) and wideband (time-scale) channel characteriza-

tions and examine simple one-path delay-Doppler and one-path delay-dilation chan-

nels in the framework of these representations. We derive and discuss the mapping

between time-frequency and time-scale kernel operators and note that there exist time-

frequency channels with no corresponding time-scale channel. In Section 3 we develop

a general technique for the generation of canonical channel models and demonstrate

the application of the technique to time-frequency and time-scale kernel operators.

In Section 4 we discuss the interpretation and derivation of these canonical models

from reasonable processing assumptions on the transmit and receive waveforms. In

Section 4.1 we propose a frequency-scale canonical channel characterization based on

the translation operators in frequency and scale. We conclude and propose future

work in Section 5.

2. Continuous Narrowband and Wideband Channel Characterizations.

In this section we review and discuss the time-frequency and time-scale channel mod-

els and examine some simple channels to gain some intuition concerning the charac-

terizations. The time-frequency description is a general time-varying linear system
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characterization. However, in a slight abuse of nomenclature, we will refer to all

channel characterizations which can be related to the channel described by S(θ, τ)

via Fourier transforms and phase factors as narrowband channels. Specifically, in this

section, we discuss twelve such equivalent characterizations which were first explored

by Kailath [4], Zadeh [14], and Bello [2]. We call these “narrowband” characteriza-

tions because when S(θ, τ) has finite support, the characterization is typically used

only in narrowband systems and is not appropriate for wideband signals. We will

only discuss the support condition constraint on S(θ, τ) for the narrowband charac-

terizations when relevant, and consider the more general case where there is no such

constraint on the support of S(θ, τ). Similarly, we will refer to channel characteri-

zations based on the time-scale kernel L(a, b) as wideband characterizations because

they are typically used in a wideband setting [15].

2.1. Narrowband Characterizations. In this section, we develop a general

technique for the generation of canonical channel models and demonstrate the appli-

cation of the technique to time-frequency and time-scale kernel operators.

The linear time-varying channel is characterized by the time-varying impulse re-

sponse h(t, τ) which denotes the response of the channel at time t to an impulse at

time t − τ . The channel input-output relationship is thus,

(13) y(t) =

∫

h(t, τ)x(t − τ)dτ.

Such notation is used in, for example, [16, 17, 18, 19, 5].

Another possible notation for the time-varying impulse response is

(14) y(t) =

∫

k0(t, τ)x(τ)dτ.

with the interpretation that k0(t, τ) is the response of the channel at time t to an

impulse at time τ . This is the formulation used in, for example, [20, 21, 22]. Bello [2]

calls k0(t, τ) a kernel system function and notes the obvious correspondence between

the two representations, h(t, τ) = k0(t, t − τ). Bello [2] defines four equivalent repre-

sentations of the time-varying channel represented by k0(t, τ) that map the time or

frequency representations of the input into the time or frequency representations of

the output. We define these four kernel functions,

(15)

y(t) =

∫

k0(t, τ)x(τ)dτ Y (θ) =

∫

k1(θ, τ)x(τ)dτ

y(t) =

∫

k2(t, ν)X(ν)dν Y (θ) =

∫

k3(θ, ν)X(ν)dν.

The kernel system functions can be transformed into one another using the Fourier

transform. For example, the kernel function that maps the input time domain to the

output time domain (k0(t, τ)) and the kernel function that maps the input time do-

main to the output frequency domain (k1(θ, τ)) are Fourier transforms of one another
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with respect to the first argument. We can summarize the relationships among the

kernel system functions as follows,

(16)

k0(t, τ)
Ft→θ- k1(θ, τ)

k2(t, ν)

Fν→τ

6

Ft→θ

- k3(θ, ν).

Fν→τ

6

That is,

(17)

k0(t, τ) =

∫

k2(t, ν)e−j2πντ dν k1(θ, τ) =

∫

k0(t, τ)e−j2πtθdt

k2(t, ν) =

∫

k3(θ, ν)ej2πθtdθ k3(θ, ν) =

∫

k1(θ, τ)ej2πτνdτ.

The direction of the Fourier transform between k0 and k2 (and also between k1 and k3)

is opposite to convention; We take the Fourier transform with respect to a “frequency”

variable (ν) and replace it with a “time” variable (τ). This is necessary to be consistent

with the kernel functions as defined in (15).

Bello [2] provides the following useful interpretation of the kernel system functions,

• The response to input δ(t − t0) is time function k0(t, t0) with spectrum

k1(θ, t0),

• The response to input ej2πθ0t is time function k2(t, θ0) with spectrum k3(θ,

θ0),

and also notes, by simple inspection of (15), that k0 and k3 are time-frequency duals

of one another, as are k1 and k2.

Despite the simple input-output interpretations, the kernel system functions often

lack intuitive physical interpretations [4]. For this reason, Bello [2] and Kailath [23]

examined eight other system function characterizing the linear time-varying channel.

These eight system functions are (13); its time-frequency dual,

(18) Y (θ) =

∫

G(θ, ν)X(θ − ν)dν;

the three functions obtained by taking the Fourier transform of h(t, τ) with respect to

t, τ , and both t and τ ; and the three functions obtained by taking the inverse Fourier

transform of G(θ, ν) with respect to θ, ν, and both θ and ν. These eight functions

are listed in Table 1.

In the current literature, h(t, τ) is usually referred to as the time-varying impulse

response, (e.g., [16, 17, 18, 19, 5]) and the delay-Doppler spreading function, S(θ, τ),

is known simply as the spreading function (e.g., [16, 17, 18, 19, 5, 21]). Unfortunately,

k0(t, τ) is also commonly referred to as the time-varying impulse response (e.g., [20,
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Table 1

Eight system functions characterizing the linear time-varying channel, their function names

from Bello [2], and their associated input-output relationship or definition.

h(t, τ) input delay spread function y(t) =

∫

h(t, τ)x(t − τ)dτ

S(θ, τ) delay-Doppler spreading function S(θ, τ) =

∫

h(t, τ)e−j2πtθdt

T (t, ν) time-varying transfer function T (t, ν) =

∫

h(t, τ)e−j2πτνdτ

H(θ, ν) output Doppler spread function H(θ, ν) =

∫∫

h(t, τ)e−j2π(tθ+τν)dtdτ

G(θ, ν) input Doppler spread function Y (θ) =

∫

G(θ, ν)X(θ − ν)dν

V (t, ν) Doppler-delay spreading function V (t, ν) =

∫

G(θ, ν)ej2πθtdθ

M(θ, τ)
frequency dependent

modulation function
M(θ, τ) =

∫

G(θ, ν)ej2πντ dν

g(t, τ) output delay spread function g(t, τ) =

∫∫

G(θ, ν)ej2π(θt+ντ)dθdν

21]). We will refer to k0(t, τ) as the time-varying impulse response kernel to avoid

confusion.

The relationships among the eight functions via duality and the Fourier transform

are summarized in the following diagram. Duality is represented by a dotted line.

(19)

G(θ, ν) � Ft→θ
V (t, ν)

I
..............R

I
..............R

h(t, τ)
Ft→θ -

Fτ→ν

6

S(θ, τ)

M(θ, τ)

Fτ→ν

6

� Ft→θ
g(t, τ)

I
..............R

I
..............R

T (t, ν)

Fτ→ν

? Ft→θ - H(θ, ν)

Fτ→ν

?

We can derive the following input-output relationships,

(20)

y(t) =

∫

h(t, τ)x(t − τ)dτ y(t) =

∫∫

S(θ, τ)ej2πθtx(t − τ)dθdτ

y(t) =

∫

T (t, ν)ej2πνtX(ν)dν Y (θ) =

∫

H(θ − ν, ν)X(ν)dν
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and

(21)

Y (θ) =

∫

G(θ, ν)X(θ − ν)dν Y (θ) =

∫∫

V (t, ν)e−j2πtθX(θ − ν)dtdν

Y (θ) =

∫

M(θ, τ)e−j2πτθx(τ)dτ y(t) =

∫

g(t − τ, τ)x(τ)dτ.

We can relate the eight system functions to the four kernel system functions as follows,

k0(t, τ) = h(t, t − τ) = g(t − τ, τ)(22)

k1(θ, τ) =

∫∫

S(ν, t)ej2π(t+τ)(ν−θ)dνdt= M(θ, τ)e−j2πτθ(23)

k2(t, ν) = T (t, ν)ej2πtν =

∫∫

V (τ, θ)ej2π(t−τ)(θ+ν)dτdθ(24)

k3(θ, ν) = H(θ − ν, ν) = G(θ, θ − ν)(25)

S(θ, τ) and V (t, ν) are distinctive in that their input-output characterizations and

relations to the kernel system functions involve double integrals. In fact, it is the

double integral formulation involving S(θ, τ) in (20) with the interpretation that the

output is a superposition of time-delayed and Doppler-shifted copies of the input that

makes S(θ, τ) an extremely useful characterization. For completeness, we note the

inverse relations,

S(θ, τ) =

∫∫

k1(ν, t)ej2π(t+τ)(ν−θ)dνdt(26)

V (t, ν) =

∫∫

k2(τ, θ)e
j2π(t−τ)(θ+ν)dτdθ(27)

and note the following relationship between the dual characterizations h(t, τ) and

G(θ, ν),

h(t, τ) =

∫∫

G(θ, ν)ej2πθte−j2π(t−τ)(θ−ν)dθdν(28)

G(θ, ν) =

∫∫

h(t, τ)e−j2πtθej2π(θ−ν)(t−τ)dtdτ.(29)

Although less commonly used in the literature, k3(θ, ν) plays a pivotal role in

understanding the narrowband and wideband characterizations [7]. We note the map-

ping between k3 and S,

k3(θ, ν) =

∫

S(θ − ν, τ)e−j2πτνdτ(30)

S(θ, τ) =

∫

k3(θ + ν, ν)ej2πτνdν,(31)

which can be derived directly from the input-output channel characterizations. In the

kernel system formulation of the channel, the outputs could be simply expressed in

term of the kernel functions for inputs that were impulses in time and frequency. For

the above characterizations, these relations are:
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• The response to δ(t − t0) is h(t, t − t0) with spectrum M(θ, t0)e
−j2πθt0 .

• The response to ej2πθ0t is T (t, θ0)e
j2πtθ0 with spectrum H(θ − θ0, θ0).

For clarity, we display just the front face of the cube in (19), which details the

Fourier transform relationships among the four most commonly used system functions.

(32)

h(t, τ)
Ft→θ- S(θ, τ)

T (t, ν)

Fτ→ν

? Ft→θ- H(θ, ν).

Fτ→ν

?

In order to get some intuition concerning the channel characterization functions

(both the four kernel functions (15) and the additional eight characterizations listed

in Table 1, we examine simple channels. Consider the time-invariant channel that

consists of a pure delay.

x(t) → channel → x(t − τ0)

In the case of the time-varying impulse response kernel, this channel is represented by

k0(t, τ) = δ(t− τ − τ0). In the case of the time-varying impulse response, this channel

is represented by h(t, τ) = δ(τ − τ0). Plots of these two functions are displayed

in Figure 1. One useful attribute of a system function is for a visual inspection

of the function to readily reveal some physical properties of the channel. In the

case of Figure 1, we see that, for k0(t, τ), a diagonal delta function line crossing

through (0,−τ0) and (τ0, 0) arises from a delay of τ0. For h(t, τ), a delay of τ0

corresponds to a horizontal delta function line τ0 from the origin. A channel with

several reflections (i.e., several different delays), would thus correspond to a system

function with several parallel delta function lines. When the channel involves both

a simple delay and a Doppler shift, the simple delta function lines for both k0(t, τ)

and h(t, τ) are modulated by the Doppler shift. Table 2 displays the twelve system

functions for the delay and delay-Doppler channels. The system function with the

simplest form is S(θ, τ) which is the product of delta functions. From this, we interpret

a region of localized energy in S(θ, τ) centered at (θ0, τ0) as arising from an echo path

with delay τ0 and Doppler shift θ0; see Figure 2.

2.2. Wideband Characterizations. Starting from the wideband channel char-

acterization,

(33) y(t) =

∫∫

L(a, b)
1

√

|a|
x

(
t − b

a

)

dadb.
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�

6

6t = τ + τ0

6 6τ = τ0

Fig. 1. k0(t, τ) (left) and h(t, τ) (right) for the delay-by-τ0 channel.

Table 2

Time-frequency characterization functions for the one-path delay and one-path delay-Doppler

channels. S(θ, τ) has a very simple form for the one-path delay-Doppler channel.

y(t) = x(t − τ0) y(t) = x(t − τ0)e
j2πθ0t

k0(t, τ) δ(t − τ − τ0) δ(t − τ − τ0)e
j2πθ0t

k1(θ, τ) e−j2π(τ+τ0)θ e−j2π(τ+τ0)(θ−θ0)

k2(t, ν) ej2π(t−τ0)ν ej2πt(ν+θ0)e−j2πτ0ν

k3(θ, ν) δ(θ − ν)e−j2πτ0ν δ(θ − ν − θ0)e
−j2πτ0ν

h(t, τ) δ(τ − τ0) δ(τ − τ0)e
j2πtθ0

S(θ, τ) δ(τ − τ0)δ(θ) δ(τ − τ0)δ(θ − θ0)

T (t, ν) e−j2πτ0ν ej2πθ0te−j2πτ0ν

H(θ, ν) e−j2πτ0νδ(θ) e−j2πτ0νδ(θ − θ0)

G(θ, ν) e−j2πτ0θδ(ν) e−j2πτ0(θ−θ0)δ(ν − θ0)

V (t, ν) δ(t − τ0)δ(ν) ej2πτ0θ0δ(t − τ0)δ(ν − θ0)

M(θ, τ) e−j2πτ0θ e−j2πτ0(θ−θ0)ej2πτθ0

g(t, τ) δ(t − τ0) ej2πτ0θ0δ(t − τ0)e
j2πτθ0

-

6

�

?

θ

τ

6(θ0, τ0)6

-

6

�

?

a

b

6(a0, b0)6

Fig. 2. S(θ, τ) for one-path channel with delay τ0 and Doppler shift θ0 (left); L(a, b) for

one-path channel with delay b0 and time dilation a0 (right).
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Table 3

Time-scale characterization functions for the one-path delay and one-path delay-dilation channels.

y(t) = x(t − b0) y(t) = 1√
|a0|

x( t−b0
a0

)

L(a, b) δ(a − 1)δ(b − b0) δ(a − a0)δ(b − b0)

L(2)(a, θ) δ(a − 1)e−j2πb0θ δ(a − a0)e
−j2πb0θ

we derive the frequency domain to frequency domain mapping,

Y (θ) =

∫∫∫

L(a, b)
1

√

|a|
x

(
t − b

a

)

e−j2πtθdadbdt(34a)

=

∫∫∫

L(a, b)
√

|a|x (t′) e−j2π(at′+b)θdadbdt′(34b)

=

∫∫

L(a, b)
√

|a|X (aθ) e−j2πbθdadb(34c)

and defining,

(35) L(2)(a, θ) =

∫

L(a, b)e−j2πbθdb,

we obtain

(36) Y (θ) =

∫

L(2)(a, θ)
√

|a|X (aθ) da.

Table 3 displays the wideband characterization functions for the one-path delay

and one-path delay-dilation channels. In the narrowband case, S(θ, τ) is the product

of delta functions for the one-path delay-Doppler channel; In the wideband case, the

one-path delay-dilation channel is the product of delta functions. We interpret a

region of concentrated energy in L(a, b) centered at (a0, b0) as arising from an echo

path with delay b0 and dilation parameter a0.

2.3. Narrowband and Wideband Correspondence. In this section we brief-

ly examine the correspondence between the narrowband and wideband channel mod-

els. More specifically, we wish to link the narrowband channel model characterized

by the dozen system functions discussed above, one of which was described by the

time-frequency integral operator,

(37) NSx(t) :=

∫∫

S(θ, τ)x(t − τ)ej2πθtdτdθ

to the wideband channel description embodied in the time-scale integral operator,

(38) WLx(t) :=

∫∫

L(a, b)
1

√

|a|
x

(
t − b

a

)

dadb.
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We are interested in the mapping between S and L for NS = WL. The approach taken

here differs from the traditional interpretation of the narrowband characterization as

an approximation of the wideband characterization when applied to narrowband sig-

nals. This approximation is discussed in detail in, for example, [24, 25, 15, 26, 27,

28, 29]. We do not consider the narrowband description of the channel as an approx-

imation of the wideband channel, but rather look at the two descriptions without

constraining the properties of the input signal.

We first establish the relation from wideband to narrowband, showing that for

every time-scale kernel, there exists a corresponding time-frequency kernel. Starting

from (38), we have

y(t) =

∫∫

L(a, b)
1

√

|a|
x

(
t − b

a

)

dadb(39a)

=

∫ (∫
√

|a|L(a, t − aτ)da

)

x(τ)dτ,(39b)

and therefore,

(40) k0(t, τ) =

∫
√

|a|L(a, t − aτ)da.

Returning to the mapping from L(a, b) to the narrowband characterizations, start-

ing from (40), the remaining system functions can be related to L(a, b) as follows,

(41) h(t, τ) =

∫
√

|a|L(a, (1 − a)t + aτ)da

and, taking the Fourier transform of (41) with respect to t, we obtain,

(42) S(θ, τ) =

∫∫
√

|a|L(a, (1 − a)t + aτ)e−j2πθtdadt.

Using (40), it is possible to relate L to all twelve narrowband representations [7].

It is also possible to express L(a, b) in terms of S(θ, τ),

(43) L(a, b) =

∫∫ |θ|
√

|a|
S((1 − a)θ, τ)ej2πθ(b−aτ)dθdτ

although the mapping relies on the assumption that the input signal has no DC

component; see [7] for a discussion of this mapping. We can observe from (36) that,

in the wideband model, the DC input component can only affect the DC output

component. Intuitively, it is clear that rescaling the time axis and shifting in time a

DC signal does not have any effect, and all the time-scale channel can do is amplify or

attenuate the DC component of a signal. This is not the case in the narrowband model.

For example, from k3(θ, ν) in (15) it is clear that the DC input signal component

can affect any output frequency component. Therefore, there are time-frequency

characterizations which have no corresponding time-scale representation.
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We look to some simple channel models and examine the mappings between L
and S. We first consider the wideband (delay-dilation) single path channel,

(44) L(a, b) = δ(a − a0)δ(b − b0).

It follows from (42) that,

(45) S(θ, τ) =







√
|a0|

|1−a0|e
−j2πθ

b0−a0τ
1−a0 : a0 6= 1

δ(θ)δ(τ − b0) : a0 = 1

and, substituting this into (4) we obtain y(t) = xa0,b0(t), as expected.

We can derive the time-varying impulse response characterization h(t, τ) for the

wideband single path channel,

h(t, τ) =

∫

S(θ, τ)ej2πθtdθ(46a)

=

∫ √

|a0|
|1 − a0|

e
−j2πθ

b0−a0τ
1−a0 ej2πθtdθ(46b)

=

√

|a0|
|1 − a0|

δ

(
b0 − a0τ − (1 − a0)t

1 − a0

)

(46c)

=
√

|a0|δ(b0 − a0τ − (1 − a0)t)(46d)

which is also valid when a0 = 1. We can compare this result to that of the single

narrowband path (delay by τ0, Doppler shift by θ0) channel, h(t, τ) = δ(τ −τ0)e
j2πtθ0 .

The wideband path gives rise to a delta function line with slope a0−1
a0

intersecting the

τ -axis at b0/a0; The narrowband path gives rise to a modulated delta function line

parallel to the t-axis intersecting the τ -axis at τ0.

We now turn to the expression of the narrowband (delay-Doppler) single path in

the wideband model:

(47) S(θ, τ) = δ(θ − θ0)δ(τ − τ0).

If we ignore the difficulties arising from the instabilities on the a = 1 line [7], it follows

from (43) that

(48) L(a, b) =
|θ0|

√

|a|(1 − a)2
ej2πθ0

b−aτ0
1−a

and, substituting this into (2), we indeed obtain, y(t) = xτ0,θ0(t).

The various channel characterizations for the simple one-path models (including

the time-invariant one-path model) are displayed in Table 4. We note that the one-

path delay-dilation channel requires infinite support in time-frequency (45) whereas

it requires only point support in time-scale (44). On the other hand, the one-path

delay-Doppler channel requires infinite support in time-scale (48) whereas it requires
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Table 4

Time-frequency and time-scale characterizations for the one-path delay-Doppler and one-path

delay-dilation channels.

one-path delay only
one-path delay-Doppler

θ0 6= 0

one-path delay-dilation

a0 6= 1

S(θ, τ ) δ(θ)δ(τ − t0) δ(θ − θ0)δ(τ − τ0)

√
|a0|

|1−a0|
e
−j2πθ

b0−a0τ
1−a0

L(a, b) δ(a − 1)δ(b − t0)
|θ0|√

|a|(1−a)2
e

j2πθ0
b−aτ0
1−a δ(a − a0)δ(b − b0)

h(t, τ ) δ(τ − t0) δ(τ − τ0)e
j2πtθ0

p
|a0|δ((1− a0)t+ a0τ − b0)

k3(θ, ν) δ(θ − ν)e−j2πt0ν δ(θ − ν − θ0)e
−j2πτ0ν

p
|a0|e−j2πθb0δ(ν − a0θ)

only point support in time-frequency. Thus, since we are interested in channels which

have finite support in time-frequency or time-scale (as we will see in the next sec-

tions), the choice of channel model is crucial and must be appropriate to the signaling

environment (i.e., narrowband or wideband). Examination of k3(θ, ν) for the one-

path channels reveals that it is possible (up to a scaling constant) for the one-path

delay-Doppler and the one-path delay-dilation channels to have the same effect on a

narrowband signal (eg, X(ν) = δ(ν − ν0)) by setting τ0 = b0/a0 and θ0 = v0

(
a0−1

a0

)

.

3. Discrete Canonical Channel Models. In this section we develop a gen-

eral technique for the generation of canonical channel models and demonstrate the

application of the technique to time-frequency and time-scale kernel operators.

3.1. The canonical rake receiver model. We begin with the derivation of the

canonical model associated with the standard rake receiver. The classic expression of

the sampling theorem for a signal X(ν) with support (−W/2, W/2) is

(49) x(t) =

∞∑

n=−∞
x
( n

W

) sin
(
πW

(
t − n

W

))

πW
(
t − n

W

) .

An alternative formulation of the sampling theorem [19] is obtained by defining g(t) =

x(α − t),

(50) g(t) =
∞∑

n=−∞
g
( n

W

) sin
(
πW

(
t − n

W

))

πW
(
t − n

W

)

and thus,

(51) x(α − t) =

∞∑

n=−∞
x
(

α − n

W

) sin
(
πW

(
t − n

W

))

πW
(
t − n

W

) .

Mapping (α, t) → (t, τ), we obtain,

(52) x(t − τ) =

∞∑

n=−∞
x
(

t − n

W

) sin
(
πW

(
τ − n

W

))

πW
(
τ − n

W

) .
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Following [19], substituting (52) into the time-varying impulse response channel char-

acterization (13), we obtain

y(t) =

∫

h(t, τ)x(t − τ)dτ(53a)

=

∞∑

n=−∞
x
(

t − n

W

)
[
∫

h(t, τ)
sin
(
πW

(
τ − n

W

))

πW
(
τ − n

W

) dτ

]

︸ ︷︷ ︸

=hn(t)

(53b)

≈
L:=⌈Tm/W⌉
∑

n=0

x
(

t − n

W

)

hn(t)(53c)

where the approximation is made based on the assumption that the channel is causal

and has finite multipath spread, Tm. That is, h(t, τ) = 0, ∀τ < 0, τ > Tm. Under this

assumption, the approximation (53c) corresponds to hn(t) for which the mainlobe of

the sinc function overlaps with the support of the time-varying impulse response. The

tapped-delay line in (53c) forms the basis for the classic rake receiver, where hn(t)’s

are usually assumed to be independent of each other.

3.2. The canonical time-frequency model. We now proceed to examine the

time-frequency canonical channel model which was originally derived in [5]. Alter-

native, but similar models are explored in [30, 31, 32]. The path we take in this

derivation is essentially the same as that in [5]. We look at only the (0, T ) portion

of the received waveform, that is, y(t)1(0,T )(t). Starting from (53b), we impose the

(0, T ) restriction and obtain

(54) y(t)1(0,T )(t) =
∞∑

n=−∞
x
(

t − n

W

) [∫

h(t, τ)1(0,T )(t)sinc
(

W
(

τ − n

W

))

dτ

]

.

Now we expand the h(t, τ)1(0,T )(t) term as a Fourier series,

h(t, τ)1(0,T )(t) =
∞∑

k=−∞

1

T

[
∫ T

0

h(t′, τ)e−j2πkt′/T dt′
]

ej2πkt/T(55a)

=

∞∑

k=−∞

1

T

[∫ ∞

−∞
h(t′, τ)1(0,T )(t

′)e−j2πkt′/T dt′
]

︸ ︷︷ ︸R
∞

−∞
S(θ,τ)T sinc(( k

T −θ)T)e−jπ(k−T θ)dθ

ej2πkt/T(55b)

which is valid for t ∈ (0, T ).

Substituting (55b) into (54) we obtain,

(56) y(t) =

∞∑

n=−∞

∞∑

k=−∞
x
(

t − n

W

)

ej2πkt/T Ŝ

(
k

T
,

n

W

)

where,

(57) Ŝ(θ, τ) :=

∫∫

S(θ′, τ ′)sinc ((τ − τ ′)W ) sinc ((θ − θ′)T ) e−jπ(θ−θ′)T dθ′dτ ′
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(56) is valid for that part of any bandlimited signal received during (0, T ).

Under the path scatterer interpretation we assume that the channel introduces a

maximum delay spread of Tm and maximum Doppler spread of Bd, that is, S(θ, τ)

has support in (−Bd, Bd) × (0, Tm). In the smoothed version of S(θ, τ) in (57), if we

consider only the terms in (56) where the main lobe of the smoothing kernel (which has

size (−1/T, 1/T )-by-(−1/W, 1/W )) overlaps with the support of S(θ, τ), we need only

sum over n = 0, . . . , N where N = ⌈WTm⌉ and k = −K, . . . , K where K = ⌈TBd⌉.
We thus obtain the canonical representation of the time-frequency channel model,

(58) y(t) =

⌈WTm⌉
∑

n=0

⌈TBd⌉∑

k=−⌈TBd⌉
x
(

t − n

W

)

ej2πkt/T Ŝ

(
k

T
,

n

W

)

.

3.3. Restatement. The double sum time-frequency channel formulation (56)

was obtained by assuming,

• the input signal is bandpass with bandwidth W , and

• the output signal is analyzed only for t ∈ (0, T ).

With these assumptions in mind, we define the following two projection operators,

(59) PT x(t) := 1[0,T ](t)x(t)

and,

(60) QW x(t) := F−1{1[−W/2,W/2](ω)F{x(t)}(ω)},

and using the following two operators, the translation operator,

(61) Tτx(t) := x(t − τ),

and the modulation operator,

(62) Mνx(t) := x(t)ej2πνt,

we can rewrite (56) as,

(63) PTNSQW =
∑

m,n

cm,nPT Mm
1
T

T n
1

W
QW

where the cm,n = Ŝ
(

m
T , n

W

)
and NS is the narrowband channel operator defined

in (37). Restating the channel operator in this setting, we can ask what general

properties of the operators allow us to express the channel as a double summation of

transformed input waveforms. In this section, we determine properties of the operators

that are sufficient conditions for the existence of such an expansion. Our goal is to

develop an analogous time-scale canonical channel model. That is, in Section 3.6 we

propose projections P and Q such that,

(64) PWLQ =
∑

m,n

cm,nPDm
a0

T n
b0Q
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for some choice of dilation and translation spacing parameters (a0 and b0), where the

cm,n depend on L, and D is the dilation operator,

(65) Dax(t) :=
1

√

|a|
x

(
t

a

)

,

for the wideband channel operator defined in (38).

3.4. Generalization. For the statement of the general theorem, we require the

following definition.

Definition 3.1 (paired-up operators). P and U are paired-up operators with

generator e0 iff,

1. P is an orthogonal projection in L2(R)

2. U is unitary in L2(R)

3. PU = UP

4. ∃e0 ∈ Ran P s.t.{Ume0 : m ∈ Z} is an orthonormal basis for RanP

Using two different pairs of paired-up operators, the following theorem gives a

sufficient condition for the channel expansion.

Theorem 3.2. If (P, U) and (Q, V ) are both paired-up operators with generator

elements e0 and f0 respectively, H is a bounded operator, and ∃cm,n such that

(66)
∑

m,n

cm,n

〈
V n+kf0, U

l−me0

〉
=
〈
HV kf0, U

le0

〉
, ∀k, l,

then,

(67) PHQ =
∑

m,n

cm,nPUmV nQ.

The proof of this theorem can be found in Appendix A and a method for calcu-

lating the coefficients cm,n can be found in Appendix B.

3.5. Revisiting time-frequency. The example we have seen so far of the ap-

plication of this theorem corresponds to the situation

• (P, U, e0) = (PT , M 1
T

, 1√
T

1[0,T ](t))

• (Q, V, f0) = (QW , T 1
W

,
√

W sinc(Wt))

for the operator H = NS of the form,

(68) Hx(t) =

∫∫

S(θ, τ)ej2πθtx(t − τ)dθdτ.

Modulation and translation operators are a natural fit with our channel description,

NS , which describes the channel as a (continuous) summation of time and frequency

shifts of the input signal. In Appendix B we demonstrate the coefficient calculation

procedure for these specific operators. The procedure correctly derives the result

cm,n = Ŝ
(

m
T , n

W

)
where Ŝ is defined in (57).
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3.6. Time-scale canonical model. We now develop the time-scale canonical

characterization. For other possible extensions to time-scale, see the approach in [33,

34, 35] using wavelet packet modulation.

The Mellin transform (also known as the scale transform) of a signal x ∈ L2(0,∞)

is defined by

(69) Mx(ω) :=

∫ ∞

0

e−j2πω ln tx(t)
dt√

t

which represents the composition of two unitary transformations

x(t) → et/2x(et)
Ft→ω−→ Mx(ω).

For more information on the Mellin transform and its use in time-frequency analysis

we refer the reader to [36]. For the time-scale canonical characterization, we will

require the projection operator in the Mellin transform domain

(70) Rα := M
−11[−α/2,α/2]M

which acts on a function x ∈ L2(0,∞) as follows

x(t)
M−→ Mx(ω)

1[−α/2,α/2]−→ 1[−α/2,α/2](ω)Mx(ω)
M

−1

−→ Rαx(t)

where α > 0 defines the cut-off Mellin “frequency”. Explicitly, this means

(71) Rαx(t) =

∫ ∞

0

1√
tτ

sinc[α(ln t − ln τ)]x(τ)dτ, t > 0.

Using the characteristic function in the Mellin transform domain,

(72) Γ0(ω) = 1h− 1
2 ln a0

, 1
2 ln a0

i(ω),

leads to the scale generator

(73) γ0(t) =

{
1√

ln a0

1√
t
sinc

(
ln t
ln a0

)

: t > 0

0 : t < 0.

For further details on the Mellin transform domain and its generators, consult [37].

It can be shown that (P, U, e0) = (R 1
2 ln a0

, Da0 , γ0(t)) are paired-up, and thus for

the time-scale model, we use the following paired-up operators,

• (P, U, e0) =
(

R 1
2 ln a0

, Da0 ,
1√

ln a0

1√
t
sinc

(
ln t
ln a0

))

• (Q, V, f0) = (Q 1
b0

, Tb0 ,
1√
b0

sinc( t
b0

))

to decompose the wideband channel corresponding to the operator H = WL of the

form,

(74) Hx(t) =

∫∫

L(a, b)
1

√

|a|
x

(
t − b

a

)

dadb
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into a discrete double summation,

(75) PWLQ =
∑

m,n

cm,nPDm
a0

T n
b0Q.

In Appendix B we calculate the coefficients in the time-scale case,

(76) cm,n =

∫∫

L(a, b)sinc

(

m − ln a

ln a0

)

sinc

(

n − b

ab0

)

dadb,

and the canonical time-scale model is then2

(77) y(t) =
∑

m,n

cm,n

a
m/2
0

x

(
t − nb0a

m
0

am
0

)

.

4. Physical Interpretation of Canonical Models. In [10] the canonical

model (77) is obtained by using two sampling results: the classical Shannon sam-

pling formula for bandlimited functions, and a similar sampling result for functions

that have finite support in the Mellin transform domain. With the help of these two

formulas, [10] obtained a decomposition of the received signal into a series of such as

(77) where parameters a0, b0 are directly related to transmit signal bandwidth and

transmit signal Mellin domain bandwidth. The trouble with such a model is that there

are no signals that are perfectly (Fourier) frequency bandlimited and Mellin transform

bandlimited (similar to the classical result that there are no time-frequency bandlim-

ited signals except for the trivial zero signal). One can argue that the transmit signal

is essentially frequency bandlimited, as well as, Mellin domain bandlimited, and thus

a decomposition of type (77) should hold approximately. Furthermore, for a practical

application, the infinite series (77) is truncated to a finite number of terms consistent

with the finite size of the wideband spreading function L. Thus, another approxima-

tion is introduced, so overall one might expect that not much is lost by the initial

assumption of joint Fourier frequency - Mellin domain band limitedness.

In contrast, the approach we took in [8] does not suffer from the shortcomings

outlined above. This different approach uses all the three players: the sender, the

channel, and the receiver. The sender prepares the transmit signal by tailoring some

of its properties. That is, the signal is embedded into the range of an orthogonal

projection Q (e.g. Q can be an ideal lowpass filter); The channel acts via the operator

H (5); and the receiver observes the channel output but in the observation process

applies its own projection operator P through measurement, e.g. P is a time cut-

off operator. Thus, the entire transmitter-channel-receiver chain is modeled by a

“sandwich” of operators PHQ where P and Q are under the user’s control, and H

is the channel operator. To simplify notation, the transmit signal is assumed to lie

already in the range of Q, and thus Q often disappears from formulae.

2It is also possible to reverse the order of application of T and D in (75). In such case, the

generated model in fact is more like that in (74) in that the time-shifts are not scaled.
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Thus, our basic model for transmitter-to-receiver communication system contains

three blocks (see Figure 3):

1. A transmit signal shaper, which is mathematically translated into a projec-

tion Q; this can be thought of as the last stage of a modulator which, for

narrowband communication channels, is either a bandpass filter around the

carrier frequency, or a lowpass filter when analysis is done in the base band;

2. A physical channel, mathematically modeled by a linear time-varying system

H ; as such it can be written as in (5);

3. A received signal observation, which again is translated into another projec-

tion P at the receiver; typically for memoryless source and channels, this is

a time cut-off operator, due to real-time operation constraints.

By changing the transmitter shaping and receiver observation projections, we obtain

the different canonical representations. With this interpretation in mind, we can

revisit previous models.

Physical Channel

-P
y

Receiver

- - -Qx

Transmitter

H

Fig. 3. Our basic model for a communication channel.

The standard rake receiver uses a channel model of type:

y(t) =
∑

n

hn(t)x
(

t − n

W

)

which is obtained for P equal to the identity operator (i.e. the entire channel output is

available for processing) and for Q equal to the projection onto the space of frequency

bandlimited functions. As mentioned before, x is already assumed to be a frequency

bandlimited signal, thus x ∈ Ran Q.

The time-frequency channel model of [5] uses the model (6) which is obtained

when P is the time cut-off multiplication by 1[0,T ] and Q is the ideal lowpass filter.

The time-scale channel model of [8] in (77) uses the ideal Mellin domain lowpass

filter as P and the ideal lowpass filter as Q. In other words, the channel output is

observed through a scale filter defined using the Mellin transform. We now present

another canonical model in which the pair of projectors consists of the time cut-off

1[T1,T2](t) for P and the ideal Mellin domain lowpass filter for Q.

4.1. The Frequency-Scale Canonical Model. We now consider a frequency-

scale canonical channel characterization based on the translation operators in fre-
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quency and scale. In the frequency-scale model, we restrict ourselves to x(t) defined

for t > 0 and use for the transmitter projection Q the Mellin domain band limiter

R 1
2 ln a0

. Thus, the transmitter transmits scale limited waveforms. We use for the

receiver projection P simply a time cut-off

(78) P[T1,T2]x(t) := 1[T1,T2](t)x(t)

where T2 > T1 > 0 define the receiver observation time horizon. The overall chain of

operators then decouples into the series

(79) PHQ −→
∑

m,n

cm,nP[T1,T2]M
m
1/(T2−T1)

Dn
a0

R 1
2 ln a0

.

For this model the following theorem gives a decomposition into a series of dilated

and frequency shifted versions of the input signal.

Theorem 4.1 (The Canonical Frequency-Scale Channel Model). Assume a time-

varying channel H defined by (5). Then for any signal x that is Mellin domain

bandlimited to [− 1
2 ln a0

, 1
2 lna0

], i.e. x ∈ Ran Q,

(80) y(t) := Hx(t) =
∑

m,n∈Z

cm,nej2πmΩt 1

a
n/2
0

x

(
t

an
0

)

for all T1 < t < T2, where Ω = 1
T2−T1

,

cm,n =
1

Ω2
e−jmπΩ(T1+T2)

∫ ∞

−∞

(∫ ∞

0

ρ̂(ω, a)ejπω(T1+T2)sinc
(ω

Ω
− m

)

sinc

(
ln a

ln a0
− n

)

da

)

dω,(81)

and ρ̂ is computed in turn from h(t, τ) through (113).

The convergence in (80) is in the L2 sense. The proof of Theorem 4.1 is included

in Appendix D. In (80) we see that if we receive scale limited waveforms over a

finite time window, that we can decompose the time varying channel into a discrete

representation involving a countable sum of weighted scale frequency shifts of the

transmitted waveform.

5. Summary and Future Work. Table 5 summarizes the projection and trans-

lation operators used to generate the three discrete canonical channel model discussed

in this paper. Each of the models can be thought of as sending a transmit waveform

through a shaping transmission filter Q and then receiving the signal through a re-

ceiving filter P . The corresponding discrete channel models are presented in Table 6.

We have presented here a general theory which generates these models based on as-

sumptions on the transmitter and receiver characteristics:

• The time-frequency model arises from:

– frequency-bandlimited transmit waveforms
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Table 5

Summary of canonical models of the form PHQ =
P

m,n cm,nPUmV nQ.

model P U V Q

time-frequency PT M 1
T

T 1
W

QW

time-scale R 1
2 ln a0

Da0 Tb0 Q 1
b0

frequency-scale P[T1,T2] M1/(T2−T1) Da0 R 1
2 ln a0

Table 6

Summary of canonical models.

model characterization

time-frequency y(t) =
∑

m,n cm,nej2πmt/T x
(
t − n

W

)

time-scale y(t) =
∑

m,n cm,n
1

a
m/2
0

x
(

t−nb0am
0

am
0

)

frequency-scale y(t) =
∑

m,n cm,nej2πmt/(T2−T1) 1

a
n/2
0

x
(

t
an
0

)

– put through a time-frequency (narrowband) channel

– at a time-limited receiver.

• The time-scale model arises from:

– frequency-bandlimited transmit waveforms

– put through a time-scale (wideband) channel

– to a scale-limited receiver.

• The frequency-scale model arises from:

– scale-limited transmit waveforms

– put through a frequency-scale channel

– to a time-limited receiver.

One of the many items for further study is the question of the physical interpre-

tation of the frequency-scale model. In what settings can we envision a channel which

imparts a limited range of frequency and scale shifts of an input signal? Perhaps a

direct path only model of a wideband sonar signal reflecting off the undulating sur-

face of the ocean with a moving transmitter would impart simultaneously a frequency

shift (caused by the frequency of the ocean surface waves) and a scale shift (caused

by the change in transmission path length during transmission). Indeed, one main

topic of future research is to characterize the channel scenarios which lead to efficient

representation in each of the three models.

Further research topics include a full analysis of the two dimensional delay-dilation

and Doppler-dilation rake receivers which arise from these canonical models, includ-

ing an analysis as to which communication scenarios result in performance gains for

the two-dimensional rake over conventional receivers. Also, we hope to generalize
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the information theoretic analysis to the delay-dilation and Doppler-dilation rake re-

ceivers similar to that which was done for delay-Doppler rake receiver in [5]. Similarly,

it would be of interest to develop a canonical time-scale and frequency-scale multi-

antenna wideband channel model similar to that proposed in [38] for time-frequency

channels. Also, [33, 34, 35] introduce wavelet-based channel models; A comparison

of these models to the model derived in this work in Section 3 is a topic of future

research. Finally, we ask, is there a corresponding underspread/overspread theory

(see [22, 39]) for the time-scale and frequency-scale canonical models?

Appendix.

A. Proof of Main Theorem. Proof. First we expand PQ using the orthonor-

mal basis and unitary properties of the paired-up operators,

(82) P =
∑

m

〈·, Ume0〉Ume0

and

(83) Q =
∑

n

〈·, V nf0〉V nf0,

we derive,

PQx =
∑

m

〈Qx, Ume0〉Ume0(84a)

=
∑

m

〈
∑

n

〈x, V nf0〉V nf0, U
me0

〉

Ume0(84b)

=
∑

m,n

〈x, V nf0〉 〈V nf0, U
me0〉Ume0.(84c)

We use this to determine,

P

(
∑

m,n

cm,nUmV n

)

Qx =
∑

m,n

cm,nUmPQV nx(85a)

=
∑

m,n

cm,nUm




∑

k,l

〈
V lf0, U

ke0

〉 〈
V nx, V lf0

〉
Uke0



(85b)

=
∑

m,n,k,l

cm,n

〈
V lf0, U

ke0

〉 〈
x, V −nV lf0

〉
UmUke0(85c)

=
∑

u,s

(
∑

m,n

cm,n

〈
V n+uf0, U

s−me0

〉

)

〈x, V uf0〉Use0(85d)

where the commuting property of paired-up operators was used in (85a), (84c) was

used in moving from (85a) to (85b), and the unitary property of V was used in
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moving from (85b) to (85c). Now, looking to the LHS of (67), we expand using the

orthonormal basis and obtain,

PHQx =
∑

s

〈HQx, Use0〉Use0(86a)

=
∑

s

〈

H

(
∑

u

〈x, V uf0〉V uf0

)

, Use0

〉

Use0(86b)

=
∑

s,u

〈x, V uf0〉 〈HV uf0, U
se0〉Use0(86c)

=
∑

u,s

hu,s 〈x, V uf0〉Use0.(86d)

Given H , we then compute,

(87) hu,s := 〈HV uf0, U
se0〉

which we use to solve,

(88)
∑

m,n

cm,n

〈
V n+uf0, U

s−me0

〉
= hu,s, ∀u, s

for cm,n. These cm,n satisfy (67).

B. Solving the Coefficient Equation. We now discuss the form of the solu-

tion to (66). We define

(89) ak,l :=
〈
V kf0, U

le0

〉

and define

(90) c̃m,n := cn,−m

which allows us to express (66) as,

hu,s =
∑

m,n

cm,n

〈
V n+uf0, U

s−me0

〉
(91a)

=
∑

m,n

〈
V u−nf0, U

s−me0

〉
c̃n,m(91b)

= (a ⋆ c̃)u,s(91c)

where

(92) (a ⋆ c̃)u,s :=
∑

k,l

au−k,s−lc̃k,l =
∑

k,l

ak,lc̃u−k,s−l

Expressing h, a, and c̃ in the Z-transform domain,

A(z1, z2) :=
∑

k,l

zk
1 zl

2ak,l=
∑

k,l

zk
1zl

2

〈
V kf0, U

le0

〉
(93)

H(z1, z2) :=
∑

k,l

zk
1 zl

2hk,l=
∑

k,l

zk
1zl

2

〈
HV kf0, U

le0

〉
(94)

C̃(z1, z2) :=
∑

k,l

zk
1 zl

2c̃k,l(95)
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we can write (91c) as,

(96) H = AC̃

and solve for C̃

(97) C̃(z1, z2) =
H(z1, z2)

A(z1, z2)
.

In terms of cm,n, this is,

(98) cm,n = Z−1

(
H(z1, z2)

A(z1, z2)

)

−n,m

where

(99) Z−1 (F (z1, z2))m,n =

∫ 1

0

∫ 1

0

e−j2πθ1me−j2πθ2nF
(
ej2πθ1 , ej2πθ2

)
dθ1dθ2.

We can express (98) as a convolution of coefficients by defining

(100) Â(ej2πθ1 , ej2πθ2) :=
1

A(ej2πθ1 , ej2πθ2)

and

(101) âm,n :=

∫ 1

0

∫ 1

0

e−j2πθ1me−j2πθ2nÂ
(
ej2πθ1 , ej2πθ2

)
dθ1dθ2,

and we can obtain the cm,n using

(102) cm,n = c̃−n,m = (â ⋆ h)−n,m.

Coefficient Calculation. Thus, to calculate the coefficients cm,n,

1. calculate hk,l via (87),

2. calculate am,n via (89),

3. use am,n to obtain A(ej2πθ1 , ej2πθ2) via (93),

4. use A(ej2πθ1 , ej2πθ2) to obtain âm,n vua (100) and (101), and

5. use hk,l and âm,n to obtain cm,n via (102).

Here, we present the highlights of the coefficient calculation procedure for the

time-frequency and time-scale canonical models. For more detailed steps, consult [7].

Example: Time-frequency.

(103) hk,l =

√

W

T

∫∫∫

1[0,T ](t)e
j2πt(θ− l

T )sinc(Wt − k − Wτ)S(θ, τ)dθdτdt

(104) am,n =

√

W

T

∫ T

0

e−j2π nt
T sinc(Wt − m)dt
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For θ1, θ2 ∈ [0, 1],

(105) A(ej2πθ1 , ej2πθ2) =

{ √
WTej2πWTθ1θ2 : θ1 ∈

(
0, 1

2

)

√
WTej2πWT (θ1−1)θ2 : θ1 ∈

(
1
2 , 1
)

(106) âm,n =
1√
WT

∫ 1

0

e−j2πθ2nsinc(WTθ2 + m) =
1

WT
a−m,ndθ2

(107) cm,n =

∫∫

S(θ, τ)ejπ(Tθ+m)sinc(Tθ + m)sinc(n + Wτ)dθdτ

which are precisely the coefficients in (58).

Example: Time-scale.

hu,s =
1√

b0 ln a0
∫∫

1
√

|a|
L(a, b)

(∫ ∞

0

1√
t
sinc

(
t − b

ab0
− u

)

sinc

(
ln t

ln a0
− s

)

dt

)

dadb(108)

(109) am,n =

√
1

b0 ln a0

∫ ∞

0

1√
t
sinc

(
t

b0
− m

)

sinc

(
ln |t|
ln a0

− n

)

dt.

For θ1, θ2 ∈
[
− 1

2 , 1
2

]
, in distributional sense,

(110) A(θ1, θ2) =

√
1

b0 ln a0
b

1
2+j2π

θ2
ln a0

0

∫ ∞

0

t
− 1

2+j2π
θ2

ln a0 ej2πθ1tdt

(111) âm,n =
√

ln a0

∫ 1
2

− 1
2

∫ 1
2

− 1
2

b
−j2π

θ2
ln a0

0 e−j2πθ1me−j2πθ2n

∫∞
0 t

− 1
2+j2π

θ2
ln a0 ej2πθ1tdt

dθ1dθ2

(112) cm,n =

∫∫

L(a, b)sinc

(

m − ln a

ln a0

)

sinc

(

n − b

ab0

)

dadb.

C. The Equivalence between (5) and (10). In this section we obtain the

correspondence relations between the two forms (5) and (10) of a general time-varying

linear system when input signal are supported on positive time domain, and the

observation is restricted to a positive time horizon.

Consider first the input-output relationship given by (5). For positive time sup-

ported input signals, the output is given by

y(t) =

∫ ∞

0

h(t, t − τ)x(τ)dτ
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We change the integration variable τ → t
a , and since we have a positive time horizon,

i.e. t > 0, we obtain:

y(t) =

∫ ∞

0

h

(

t, t − t

a

)

x

(
t

a

)
t

a2
d a.

Now denote ρ(t, a) = t
a
√

a
h
(
t, t − t

a

)
, and ρ̂(ω, a) its Fourier transform with respect

to t. Then the inverse Fourier transform allows us to write

y(t) =

∫ ∞

−∞

(∫ ∞

0

ρ̂(ω, a)ej2πωt 1√
a
x

(
t

a

)

da

)

dω

that is (10), where, explicitly,

(113) ρ̂(ω, a) =
1

a
√

a

∫ ∞

0

e−j2πωtt h

(

t, t
a − 1

a

)

dt.

For the converse, assume the input-output relationship in given by (10). Then,

performing the integration over ω first we obtain

y(t) =

∫ ∞

0

ρ(t, a)
1√
a
x

(
t

a

)

da.

Next we need to change the integration variable a into τ = t − t
a

y(t) =

∫ t

−∞
ρ

(

t,
t

t − τ

)√

t − τ

t
x(t − τ)dτ

which is exactly (5) with

(114) h(t, τ) = 1t>τ (t)

√

t − τ

t

∫ ∞

−∞
ej2πωtρ̂

(

ω,
t

t − ω

)

dω

where 1t>τ (t) := 1[τ,∞)(t).

D. Proof of Theorem 4.1. We follow the recipe proposed in Appendix B. The

two sets of paired-up operators and generators are:

(P = 1[T1,T2], MΩ, e0(t) =
√

Ω1[T1,T2](t))

and

(Q = M
−11[− 1

2 ln a0
, 1
2 ln a0

]M, Da0 , f0(t) =

√
1

t ln a0
sinc(

ln t

ln a0
)1t>0(t)).

First we need to compute hk,l and am,n. We have:

hk,l = 〈HDk
a0

f0, M
l
Ωe0〉

=
1√
ln a0

∫ ∞

−∞

(
∫ ∞

0

ρ̂(ω, a)

(
∫ T2

T1

1√
t
ej2πt(ω−lΩ)sinc

(
ln t/a

ln a0
− k

)

dt

)

da

)

dω
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am,n = 〈Dm
a0

f0, M
n
Ωe0〉 =

1√
ln a0

∫ T2

T1

1√
t
e−j2πΩntsinc

(
ln t

ln a0
− m

)

dt.

Next we compute A(z1, z2) =
∑

m,n am,nzm
1 zn

2 , at z1 = ej2πθ1 , z2 = ej2πθ2 for

θ1 ∈ [− 1
2 , 1

2 ], θ2 ∈ [0, 1]. We obtain:

A(ej2πθ1 , ej2πθ2) =

√

Ω

(θ2 + n0) ln a0
e

j2πθ1
1

ln a0
ln

θ2+n0
Ω

where n0 = n0(θ2) is the only integer so that θ2+n0

Ω ∈ [T1, T2). Then

Â(ej2πθ1 , ej2πθ2) =
1

A(ej2πθ1 , ej2πθ2)
=

√

(θ2 + n0) ln a0

Ω
e−j2πθ1

1
ln a0

ln
θ2+n0(θ2)

Ω

which has its Fourier expansion with coefficients âm,n given by

âm,n =
√

ln a0

∫ T2

T1

√
te−j2πnΩtsinc

(

m +
ln t

ln a0

)

dt.

Then the coefficients cm,n that solve the equation a ⋆ r̃ = h with r̃n,m = cm,−n are

given by

cm,n = (â ⋆ h)−n,m

=
1

Ω2
e−jmπΩ(T1+T2)

·
∫ ∞

−∞

(∫ ∞

0

ρ̂(ω, a)ejπω(T1+T2)sinc
(ω

Ω
− m

)

sinc

(
ln a

ln a0
− n

)

da

)

dω

which is exactly (81).
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