
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2005 International Press
Vol. 5, No. 2, pp. 143-168, 2005 001

TWO-STAGE KALMAN FILTERING VIA STRUCTURED

SQUARE-ROOT

STOYAN KANEV∗ AND MICHEL VERHAEGEN†

Abstract. This paper considers the problem of estimating an unknown input (bias) by means

of the augmented-state Kalman (AKF) filter. To reduce the computational complexity of the AKF,

[12] recently developed an optimal two-stage Kalman filter (TS-AKF) that separates the bias esti-

mation from the state estimation, and shows that his new two-stage estimator is equivalent to the

standard AKF, but requires less computations per iteration. This paper focuses on the derivation of

the optimal two-stage estimator for the square-root covariance implementation of the Kalman filter

(TS-SRCKF), which is known to be numerically more robust than the standard covariance imple-

mentation. The new TS-SRCKF also estimates the state and the bias separately while at the same

time it remains equivalent to the standard augmented-state SRCKF. It is experimentally shown in

the paper that the new TS-SRCKF may require less flops per iteration for some problems than the

Hsieh’s TS-AKF [12]. Furthermore a second, even faster (single-stage) algorithm has been derived

in the paper by exploiting the structure of the least-squares problem and the square-root covariance

formulation of the AKF. The computational complexities of the two proposed methods have been

analyzed and compared the those of other existing implementations of the AKF.

Key words: two-stage augmented Kalman filter, square-root covariance implementation.

1. Introduction. This paper considers the problem of estimating an unknown,

time-varying bias in the state equation of a time-variant stochastic discrete-time sys-

tem in a minimum mean-square estimation error (MMSE) sense. A standard way of

computing the MMSE estimate is by augmenting the state of the system with the

unknown bias (after assuming a random walk model for the latter) and then estimat-

ing the resulting augmented state using a standard Kalman filter. This approach is

called the augmented-state Kalman filter (AKF). A disadvantage of this approach is

that the dimension of the covariance matrix increases so that the algorithm becomes

computationally more involved and numerical inaccuracies can occur. To avoid this,

a two-stage Kalman filter was proposed by Friedland in [5] that splits the state esti-

mation from the unknown bias estimation under the assumption that the bias term is

constant. While the approach of Friedland is very suitable for parallel computations,

as argued by [12], if the bias is nonconstant the estimator becomes suboptimal in

practice, i.e. it is not exactly equivalent to the AKF. To circumvent this problem,

Hsieh and Chen [12] recently proposed a modification of the two-stage Kalman filter

and proved its optimality also for stochastic/dynamic bias. In [18], a work that also

appeared at that time, the authors develop an alternative optimal two-stage Kalman

estimator under the weak assumption (which is not present in the work of Hsieh and

∗Delft Center for Systems and Control, Mekelweg 2, 2628 CD Delft, The Netherlands. Tel.

+31(0)15 27 86707, Fax. +31(0)15 27 86697, E-mail: {s.kanev; m.verhaegen}@dcsc.tudelft.nl

143

144 STOYAN KANEV AND MICHEL VERHAEGEN

Chen) that the bias is uncorrelated with the process noise.

The idea behind the Hsieh’s optimal two-stage Kalman filter (TS-AKF) is to

apply a certain transformation on the augmented state and its covariance matrix in

such a way that the transformed covariance matrix becomes block-diagonal. This

property makes it possible to rewrite the augmented Kalman filter as two separate

(but coupled!) filters, namely a bias-free estimator for the transformed system state

and a bias estimator. It is shown in [12] that the TS-AKF exactly implements the

AKF, and therefore achieves the MMSE estimate of the state and the bias. At the

same time, the computational cost of new TS-AKF is usually much lower than that

of the conventional AKF [12]. However, there exists a faster implementation of the

AKF that was shown to be even less computationally demanding than the TS-AKF

[20].

In this paper the same idea is used to derive a similar two-stage version of

the square-root covariance implementation of the augmented Kalman filter, which

is known to be numerically more reliable than than the standard covariance form

[26]. The newly proposed algorithm, called here the two-stage square-root covari-

ance Kalman filter (TS-SRCKF) consists similarly to the TS-AKF of two interacting

square-root covariance Kalman filters. It is shown that the new algorithm is also

equivalent to the AKF, but (in addition to the better numerical properties) can be

computationally less involved than the Hsieh’s TS-AKF for some problems. Further-

more, an even less computationally demanding algorithm is proposed in this paper by

exploiting the underlying structure of the least-squares problem and the square-root

covariance formulation of the AKF.

Since the work of Friedland [5] there has been a lot of interest in the state estima-

tion problem for systems with unknown inputs. A number of alternative derivations of

Friedland’s two-stage Kalman filtered appeared in the late 80’s [22, 2, 15, 25, 24, 23].

Friedland’s estimator, however, is optimal only for constant bias. As shown by [1], for

random bias the two-stage filter is optimal only when a certain algebraic constraint on

the correlation between the state and the bias process is satisfied. A suboptimal solu-

tion in the case of stochastic bias was proposed in [16]. Friedland’s two-stage bias filter

has also been extended to nonlinear systems [21, 29]. However, as discussed above, it

was only recently that an optimal two-stage Kalman estimator was developed for a

general random/dynamical bias [12, 18, 17]. The optimal two-stage Kalman filter of

Hsieh was subsequently extended in [13] to more general systems with no constraint

on their structure, as well as to nonlinear systems by means of using the extended

Kalman filter [11].

Another approach to state estimation in the presence of unknown bias is based

on the design of filters that are decoupled from the bias [19, 9, 4, 10]. Reduced

order estimators may also be used to further reduce the computational complexity

[6, 8, 14]. Note also, that there is a clear link between the unknown input observers

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 145

and the problem of detection and estimation of jump in the mean in systems. The

goal there is to detect the time instant of occurrence of a jump in the state as well

as to estimate its size. A very often used method for that purpose is the generalized

likelihood ratio (GRL) approach [28, 7], where basically a nominal Kalman filter is

used based on “no-jump” hypothesis from which the residual is used in a GLR scheme

to detect and estimate the jump, if occurred. Subsequently, the state estimate from

the Kalman filter is updated using the estimated jump. This paper, however, has only

the purpose to discuss and compare different implementations of the augmented state

Kalman filter which produce completely the same output (i.e. state-estimate and

covariance matrix), where with the focus on their computational complexity. Hence,

other alternatives as those mentioned above fall outside the scope of this paper.

2. Problem Formulation.

2.1. Notation. The following notation is used. R
n denotes the n-dimensional

Euclidean space. The δ-function is defined as

δkt ,

{

1, k = t,

0, k 6= t.

The square-root of a symmetric positive (semi-)definite matrix P is defined as any

matrix S such that SST = P . In order to avoid unnecessary definitions of new

variables, the notation P 1/2 will also be used to denote a square root of the matrix

P . Note that the square-root matrix S is not unique as the matrix SU is also a

square-root of P for any unitary matrix U . The notation νk ⌢ (ν̄k, Qν
k) is used to

denote a random Gaussian process νk with mean value ν̄k and covariance matrix Qν
k,

which can also be written in the square-root covariance representation

νk = ν̄k + (Qν
k)1/2wk, wk ⌢ (0, I),

where wk is a zero-mean white Gaussian noise with covariance matrix equal to the

identity matrix I. In matrices the symbol ⋆ will be used to denote block entries of

no importance for the discussion. The symbol • is used to denote matrices that can

be implied by symmetry arguments. Finally, for a matrix S, the shorthand notation

S2 = SST will also be used.

2.2. Problem Statement. In this paper we consider the problem of estimating

the state xk and the (random/dynamical) bias µk for the following discrete-time

system

(1)
xk+1 = Akxk + Bkµk + ξk,

yk = Ckxk + Dkµk + ηk,

where

146 STOYAN KANEV AND MICHEL VERHAEGEN

(Ak, Bk, Ck, Dk) are the (known) system matrices of appropriate dimensions,

xk ∈ R
n is the system state,

µk ∈ R
l unknown input (bias),

yk ∈ R
p is the measured system output,

ξk ⌢ (0, (Qx
k)2) is zero-mean process noise with covariance E{ξkξT

t } = (Qx
k)2δkt,

ηk ⌢ (0, (Rk)2) is zero-mean measurement noise with covariance

E{ηkηT
t } = (Rk)2δkt.

The starting point in the augmented state Kalman filter is the representation of the

bias by means of a random walk model of the form

(2) µk+1 = µk + nk,

with nk ⌢ (0, (Qµ
k)2). As a result, equations (1) and (2) can be combined in the

following augmented state model

(3)
Xk+1 = ĀkXk + Q̄kνx

k ,

yk = C̄kXk + Rkν
y
k ,

where νx
k ⌢ (0, In+l), ν

y
k ⌢ (0, Ip), and

Xk ,

[

xk

µk

]

, Āk ,

[

Ak Bk

0 I

]

,

C̄k ,
[

Ck Dk

]

, Q̄k ,

[

Qx
k Qxµk

0 Q
µ
k

]

.

The matrix Q̄k is assumed upper block-triangular without any loss of generality.

It is assumed in the paper that the pair {Āk, C̄k} is observable. A necessary con-

dition for that is that the original pair {Ak, Ck} is observable and that no eigenvalues

of the matrix A lie on the unit circle.

The standard Kalman filter, used to estimate the state of the augmented system

(3) is referred to as the augmented-state Kalman Filter (AKF). In this paper, however,

instead of using the standard Kalman filter to estimate Xk we make use of a different,

numerically more robust implementation called the Square-Root Covariance Kalman

Filter (SRCKF). It is summarized in the next section.

2.3. The Square-Root Covariance Kalman Filter.

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 147

Algorithm 1 (SRCKF). Given Āk, B̄k, C̄k, Q̄k, Rk, Sk|k−1, Xk|k−1, and

new measurement data yk, compute:

Measurement update:

1. Using the QR-decomposition find orthogonal matrix T̄RM and matrices

Re and Gk such that

(4)

[

Re 0

Gk Sk|k

]

=

[

C̄kSk|k−1 −Rk

Sk|k−1 0

]

T̄RM

2. Form

(5) Xk|k = Xk|k−1 + GkR−1
e (yk − C̄kX̂k|k−1).

Time update:

3. Using the QR-decomposition find orthogonal matrix T̄RT and the square-

root covariance matrix Sk+1|k such that

(6)
[

Sk+1|k 0
]

=
[

−ĀkSk|k Q̄k

]

T̄RT

4. Compute

(7) Xk+1|k = ĀkXk|k.

It has been shown [27] that the Kalman filter can equivalently be implemented

as the solution of a least-squares problem making use of the square-root of the state

covariance matrix. This SRCKF implementation is briefly explained here as it is the

basis of the further developments in the paper. To begin with, assume that the state

estimate at time instant k can be represented as

Xk|k−1 = Xk + Sk|k−1wk, wk ⌢ (0, I).

In other words, Xk ⌢ (Xk|k−1, Pk|k−1) with Pk|k−1 = Sk|k−1S
T
k|k−1. Adding this

equation to the augmented system (3) results in






Xk|k−1

yk

0(n+l)×1






=







In+l 0n+l

C̄k 0p×(n+l)

Āk −In+l







[

Xk

Xk+1

]

+







Sk|k−1

Rk

Q̄k






νk,

with νk ⌢ (0, I2(n+l)+p). The SRCKF is based on the solution of the least-squares

problem minXk,Xk+1
‖νk‖2 and is summarized in Algorithm 1. A very detailed treat-

ment of the square-root covariance Kalman filter can be found in [27].

In the next section we show how the SRCKF can be split into two separate (but

coupled) estimators.

3. Two-Stage Implementation of the SRCKF. In this section we show

that the SRCKF, summarized in Algorithm 1, can be implemented as two separate

148 STOYAN KANEV AND MICHEL VERHAEGEN

SRCKF’s, one that estimates the bias and another that estimates the original system

state (but in another basis). To begin with, we define the transformation matrix

T (M) ,

[

I M

0 I

]

,

that has the properties that T (M1)T (M2) = T (M1 + M2) and therefore T−1(M) =

T (−M). Then, given two matrices Uk and Vk (to be determined in what follows), we

consider the following transformations

X̄k|k−1 , T (−Uk)Xk|k−1,(8)

X̄k|k , T (−Vk)Xk|k,(9)

S̄k|k−1 , T (−Uk)Sk|k−1,(10)

S̄k|k , T (−Vk)Sk|k,(11)

and the inverse transformations

Xk|k−1 = T (Uk)X̄k|k−1,(12)

Xk|k = T (Vk)X̄k|k,(13)

Sk|k−1 = T (Uk)S̄k|k−1,(14)

Sk|k = T (Vk)S̄k|k.(15)

The goal is to compute the matrices Uk and Vk in such a way that the transformed

covariance matrices become block-diagonal, i.e.

P̄k|k−1 , S̄k|k−1S̄
T
k|k−1 =

[

P̄ x
k|k−1

P̄
µ
k|k−1

]

(16)

P̄k|k , S̄k|kS̄T
k|k =

[

P̄ x
k|k

P̄
µ
k|k

]

.(17)

Before we proceed with finding expressions for the matrices Uk and Vk, we parti-

tion the transformed augmented state X̄ as follows

X̄k|k ,

[

x̄k|k

µ̄k|k

]

, X̄k|k−1 ,

[

x̄k|k−1

µ̄k|k−1

]

,

in conformance with the original augmented state. Using equations (6)-(5) we can

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 149

write

X̄k|k−1
(8)
= T (−Uk)Āk−1Xk−1|k−1

(13)
= T (−Uk)Āk−1T (Vk−1)X̄k−1|k−1(18)

X̄k|k
(9)
= T (−Vk)(Xk|k−1 + GkR−1

e (yk − C̄Xk|k−1))

(12)
= T (Uk − Vk)X̄k|k−1(19)

+T (−Vk)GkR−1
e (yk − C̄T (Uk)X̄k|k−1))

[

S̄k|k−1 0
]

(10)
= T (−Uk)

[

−Āk−1Sk−1|k−1 Q̄k−1

]

T̄RT

(15)
= T (−Uk)

[

−Āk−1T (Vk−1)S̄k−1|k−1 Q̄k−1

]

T̄RT(20)
[

Re 0

T (−Vk)Gk S̄k|k

]

(11)
=

[

C̄kSk|k−1 −Rk

T (−Vk)Sk|k−1 0

]

T̄RM

(14)
=

[

C̄kT (Uk)S̄k|k−1 −Rk

T (Uk − Vk)S̄k|k−1 0

]

T̄RM .(21)

Now, let us first concentrate on equation (20). Since at iteration (k − 1) the

square-root covariance S̄k−1|k−1 was made such that P̄k−1|k−1 is block diagonal, then

one can easily show that there exists an orthogonal matrix Tk−1|k−1 such that

(22) S̄k−1|k−1Tk−1|k−1 ,

[

S̄x
k−1|k−1

S̄
µ
k−1|k−1

]

.

Therefore, equation (20) becomes equivalent to

[

S̄k|k−1 0
]

= T (−Uk)

[

−Āk−1T (Vk−1)

[

S̄x
k−1|k−1

S̄
µ
k−1|k−1

]

, Q̄k−1

]

·

[

T T
k−1|k−1

I

]

T̄RT

=

[

I −Uk

0 I

] [

−

[

Ak−1S̄
x
k−1|k−1 ŪkS̄

µ
k−1|k−1

0 S̄
µ
k−1|k−1

]

,

[

Qx
k−1 Q

xµ
k−1

Q
µ
k−1

]]

TRT ,(23)

where the notation

(24) Ūk , Ak−1Vk−1 + Bk−1,

was introduced. In order to obtain S̄
µ
k|k−1 suppose that Uk is already selected such

that P̄k|k−1 is block diagonal. There is nothing wrong with this assumption as the

expression for S̄
µ
k|k−1 that we obtain is independent of Uk. Since P̄k|k−1 is block

diagonal, similarly to (22) it can be shown that there exists an orthogonal matrix

Tk|k−1 such that

(25) S̄k|k−1Tk|k−1 ,

[

S̄x
k|k−1

S̄
µ
k|k−1

]

.

150 STOYAN KANEV AND MICHEL VERHAEGEN

Therefore, equation (23) can be rewritten as follows

[

S̄x
k|k−1 0 0

0 S̄
µ
k|k−1 0

]

(26)

=

[

Ak−1S̄
x
k−1|k−1 (Ūk − Uk)S̄µ

k−1|k−1 Qx
k−1 Q

xµ
k−1 − UkQ

µ
k−1

0 S̄
µ
k−1|k−1 0 Q

µ
k−1

]

T (1),

where

T (1) =

[

−T T
k−1|k−1

In+l

]

T̄RT

[

Tk|k−1

In+l

]

.

Hence, the square-root covariance matrix S̄
µ
k|k−1 can be found by means of a

QR-decomposition,

(27)
[

S̄
µ
k|k−1 0

]

=
[

S̄
µ
k−1|k−1, Q

µ
k−1

]

T
(1)
µ .

To produce a similar expression for S̄x
k|k−1 we will first need to define Uk. In order to

find the matrix Uk such that the matrix P̄k|k−1 becomes block-diagonal we first note,

that

P̄k|k−1 = S̄k|k−1S̄
T
k|k−1

(20)
= T (−Uk)Q̄2

k−1T
T (−Uk)

+T (−Uk)Āk−1T (Vk−1)P̄k−1|k−1T
(Vk−1)Ā

T
k−1T

T (−Uk)

=

[

⋆ (Qxµ
k−1 − UkQ

µ
k−1)(Q

µ
k−1)

T

⋆ ⋆

]

+

[

I −Uk

0 I

][

Ak−1 Bk−1

0 I

][

I Vk−1

0 I

]

P̄k−1|k−1

(

•
)T

(24)
=

[

⋆ (Qxµ
k−1 − UkQ

µ
k−1)(Q

µ
k−1)

T

⋆ ⋆

]

+

[

Ak−1 Ūk − Uk

0 I

]

P̄k−1|k−1

(

•
)T

(17)
=

[

⋆ (Qxµ
k−1 − UkQ

µ
k−1)(Q

µ
k−1)

T

⋆ ⋆

]

+

[

⋆ (Ūk − Uk)P̄µ
k−1|k−1

⋆ ⋆

]

.

Therefore, in order that the upper off-diagonal term of P̄k|k−1 becomes equal to zero,

Uk needs to be taken such that the following equality holds

(Ūk − Uk)P̄µ
k−1|k−1 + (Qxµ

k−1 − UkQ
µ
k−1)(Q

µ
k−1)

T = 0

that implies

Uk = (ŪkP̄
µ
k−1|k−1 + Q

xµ
k−1(Q

µ
k−1)

T)(P̄µ
k−1|k−1 + (Qµ

k−1)
2)−1

(27)
= (ŪkP̄

µ
k|k−1 − Ūk(Qµ

k−1)
2 + Q

xµ
k−1(Q

µ
k−1)

T)(P̄µ
k|k−1)

−1.

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 151

Therefore,

(28) Uk = Ūk +
(

Q
xµ
k−1(Q

µ
k−1)

T − Ūk(Qµ
k−1)

2
)(

S̄
µ
k|k−1(S̄

µ
k|k−1)

T
)−1

.

Now that we have an expression for Uk we can proceed with finding an expression

of S̄x
k|k−1 independent on S̄

µ
k|k−1. To this end, from equation (26) we write

P̄ x
k|k−1 = Ak−1P̄

x
k−1|k−1A

T
k−1 + (Ūk − Uk)P̄µ

k−1|k−1(Ūk − Uk)T + (Qx
k−1)

2

+Uk(Qµ
k−1)

2UT
k + (Qxµ

k−1)
2 − UkQ

µ
k−1(Q

xµ
k−1)

T − Q
xµ
k−1(Q

µ
k−1)

T UT
k

= Ak−1P̄
x
k−1|k−1A

T
k−1 + (Ūk − Uk)(P̄µ

k−1|k−1 + (Qµ
k−1)

2)(Ūk − Uk)T

+(Qx
k−1)

2 + Ūk(Qµ
k−1)

2UT
k + Uk(Qµ

k−1)
2ŪT

k − Ūk(Qµ
k−1)

2ŪT
k + (Qxµ

k−1)
2

−UkQ
µ
k−1(Q

xµ
k−1)

T − Q
xµ
k−1(Q

µ
k−1)

T UT
k

(27)
= Ak−1P̄

x
k−1|k−1A

T
k−1 + (Ūk − Uk)P̄µ

k|k−1(Ūk − Uk)T + (Qx
k−1)

2

+Ūk(Qµ
k−1)

2UT
k + Uk(Qµ

k−1)
2ŪT

k − Ūk(Qµ
k−1)

2ŪT
k + (Qxµ

k−1)
2

−UkQ
µ
k−1(Q

xµ
k−1)

T − Q
xµ
k−1(Q

µ
k−1)

T UT
k .(29)

Furthermore, from equation (28) we can write that

(Ūk − Uk)P̄µ
k|k−1 = Ūk(Qµ

k−1)
2 − Q

xµ
k−1(Q

µ
k−1)

T ,

so that equation (29) becomes

P̄ x
k|k−1 = Ak−1P̄

x
k−1|k−1A

T
k−1 + (̄Ūk(Qµ

k−1)
2 − Q

xµ
k−1(Q

µ
k−1)

T
)

(Ūk − Uk)T + (Qx
k−1)

2

+Ūk(Qµ
k−1)

2UT
k + Uk(Qµ

k−1)
2ŪT

k − Ūk(Qµ
k−1)

2ŪT
k + (Qxµ

k−1)
2

−UkQ
µ
k−1(Q

xµ
k−1)

T − Q
xµ
k−1(Q

µ
k−1)

T UT
k

= Ak−1P̄
x
k−1|k−1A

T
k−1 + (Qx

k−1)
2 + Uk(Qµ

k−1)
2ŪT

k − Q
xµ
k−1(Q

µ
k−1)

T ŪT
k

+(Qxµ
k−1)

2 − UkQ
µ
k−1(Q

xµ
k−1)

T .

Therefore, the square-root covariance matrix can be obtained via the following QR-

decomposition

(30)
[

S̄x
k|k−1 0

]

=
[

Ak−1S̄
x
k−1|k−1, M

1/2
1

]

T
(1)
x ,

where it is denoted

M1 = (Qx
k−1)

2 + (Qxµ
k−1)

2 − Q
xµ
k−1(Q

µ
k−1)

T ŪT
k + Uk

(

Ūk(Qµ
k−1)

2 − Q
xµ
k−1(Q

µ
k−1)

T
)T

.

In order to find the matrix Vk we consider equation (21). By defining the matrix

(31) Sk , CkUk + Dk,

152 STOYAN KANEV AND MICHEL VERHAEGEN

equation (21) implies

(32)

[

ReR
T
e ReG

T
k T T (−Vk)

T (−Vk)GkRT
e P̄k|k + T (−Vk)GkGT

k T T (−Vk)

]

=







[

Ck Sk

]

P̄k|k−1

[

Ck Sk

]T

+ R2
k

[

Ck Sk

]

P̄k|k−1T
T (Uk − Vk)

T (Uk − Vk)P̄k|k−1

[

Ck Sk

]T

T (Uk − Vk)P̄k|k−1T
T (Uk − Vk)






.

Therefore,

P̄k|k = T (Uk − Vk)P̄k|k−1T
T (Uk − Vk) − T (−Vk)GkGT

k T T (−Vk).

The matrix Vk needs to be such that P̄k|k becomes block-diagonal. Hence, considering

block-entry (1,2) of P̄k|k, Vk should be such that the following equation holds

(33) (Uk − Vk)P̄µ
k|k−1 −

[

I −Vk

]

GkGT
k

[

0

I

]

= 0.

Let us introduce the notation

(34)

[

Gx
k

G
µ
k

]

, T (−Vk)Gk =





[

I −Vk

]

Gk
[

0 I

]

Gk



 .

Equation (33) then becomes

0 = (Uk − Vk)P̄µ
k|k−1 − Gx

kR−1
e ReG

T
k

[

0

I

]

(32)
= (Uk − Vk)P̄µ

k|k−1 − Gx
kR−1

e

[

Ck Sk

]

P̄k|k−1T
T (Uk)

[

0

I

]

= (Uk − Vk)P̄µ
k|k−1 − Gx

kR−1
e

[

Ck Sk

]

[

0

P̄
µ
k|k−1

]

= (Uk − Vk)P̄µ
k|k−1 − Gx

kR−1
e SkP̄

µ
k|k−1.

Therefore,

(35) Vk = Uk − Gx
kR−1

e Sk.

We will next obtain expressions for the square-root covariance matrices S̄
µ
k|k and

S̄x
k|k. To this end note that with the orthogonal matrix

T (2) ,

[

T T
k|k−1

−Ip

]

T̄RM

[

Ip

Tk|k

]

,

equation (21) can be expressed as follows

(36)







Re 0 0

Gx
k S̄x

k|k 0

G
µ
k 0 S̄

µ
k|k






=









CkS̄x
k|k−1 SkS̄

µ
k|k−1 Rk

S̄x
k|k−1 (Uk − Vk)S̄µ

k|k−1 0

0 S̄
µ
k|k−1 0









T (2).

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 153

Therefore, the matrix S̄
µ
k|k could be computed via the following QR-factorization

(37)

[

Re 0 0

G
µ
k S̄

µ
k|k 0

]

=

[

SkS̄
µ
k|k−1 CkS̄x

k|k−1 Rk

S̄
µ
k|k−1 0 0

]

T (3).

Thus, S̄
µ
k|k depends also on S̄x

k|k−1. As for the matrix S̄x
k|k an the expression can

be obtained that does not depend on S̄
µ
k|k−1. Moreover this expression will further

reduce the computational load for finding S̄x
k|k. To this end, we use equation (36) to

write

(38)
[

ReR
T
e Re(G

x
k)T

Gx
kRT

e P̄ x
k|k + Gx

k(Gx
k)T

]

=

[

CkP̄ x
k|k−1C

T
k + SkP̄

µ
k|k−1S

T
k + R2

k ⋆

P̄ x
k|k−1C

T
k + (Uk − Vk)P̄µ

k|k−1S
T
k P̄ x

k|k−1 + (Uk − Vk)P̄µ
k|k−1(Uk − Vk)T

]

.

Therefore,

P̄ x
k|k = P x

k|k−1 + (Uk − Vk)P̄µ
k|k−1(Uk − Vk)T − Gx

k(Gx
k)T

= P x
k|k−1 + (Uk − Vk)P̄µ

k|k−1(Uk − Vk)T − Gx
kR−1

e (Gx
kRT

e)T

(38)
= P x

k|k−1 + (Uk − Vk)P̄µ
k|k−1(Uk − Vk)T

−Gx
kR−1

e

(

P̄ x
k|k−1C

T
k + (Uk − Vk)P̄µ

k|k−1S
T
k

)T

(35)
= P x

k|k−1 + Gx
kR−1

e SkP̄
µ
k|k−1(Uk − Vk)T − Gx

kR−1
e CkP̄ x

k|k−1

−Gx
kR−1

e SkP̄
µ
k|k−1(Uk − Vk)T

= P x
k|k−1 − Gx

kR−1
e CkP̄ x

k|k−1.(39)

The last expression, however, still depends on S̄
µ
k|k−1 when the matrix (Gx

kR−1
e) is

computed using the QR-decomposition (36). However, (Gx
kR−1

e) can also be obtained

independent on S̄
µ
k|k−1 by means of a separate QR-decomposition. Indeed, note that

from equation (38) we obtain

Gx
kR−1

e = Gx
kRT

e (ReR
T
e)−1(40)

= (P̄ x
k|k−1C

T
k + (Uk − Vk)P̄µ

k|k−1S
T
k)

·(CkP̄ x
k|k−1C

T
k + SkP̄

µ
k|k−1S

T
k + R2

k)−1

(35)
= (P̄ x

k|k−1C
T
k + Gx

kR−1
e SkP̄

µ
k|k−1S

T
k)

·(CkP̄ x
k|k−1C

T
k + SkP̄

µ
k|k−1S

T
k + R2

k)−1.

Therefore,

Gx
kR−1

e (CkP̄ x
k|k−1C

T
k + SkP̄

µ
k|k−1S

T
k + R2

k) = P̄ x
k|k−1C

T
k + Gx

kR−1
e SkP̄

µ
k|k−1S

T
k ,

154 STOYAN KANEV AND MICHEL VERHAEGEN

from where it follows that

Gx
kR−1

e = P̄ x
k|k−1C

T
k (CkP̄ x

k|k−1C
T
k + R2

k)−1.

In other words, if we define the matrices

(41)

[

R̄e 0

Ḡx
k S̄x

k|k

]

=

[

CkS̄x
k|k−1 Rk

S̄x
k|k−1 0

]

T (4),

it can easily be seen that Ḡx
kR̄T

e = Ḡx
kR̄−1

e R̄eR̄
T
e = P̄ x

k|k−1C
T
k and thus

(42) Ḡx
k(R̄e)

−1 = Gx
kR−1

e

and that equation (39) follows from (41). Note, that in view of (42) the expression

for the matrix Vk in equation (35) can be rewritten as follows

(43) Vk = Uk − Ḡx
kR̄−1

e Sk.

In this way we have found suitable expressions for the square-root covariance

matrices S̄x
k|k−1, S̄

µ
k|k−1, S̄x

k|k, S̄
µ
k|k, and the transformation matrices Uk and Vk. What

remains is to obtain expressions for the state estimates x̄k|k−1, µ̄k|k−1, x̄k|k, µ̄k|k. We

begin with the bias estimates:

µ̄k|k−1
(18)
=
[

0 I
]

[

Ak−1 Bk−1

0 I

][

I Vk−1

0 I

][

x̄k−1|k−1

µ̄k−1|k−1

]

= µ̄k−1|k−1(44)

µ̄k|k
(19)
=
[

0 I
]

[

x̄k|k−1

µ̄k|k−1

]

+
[

0 I
]

GkR−1
e (yk −

[

Ck Sk

]

[

x̄k|k−1

µ̄k|k−1

]

)

(34)
= µ̄k|k−1 + G

µ
kR−1

e (yk − Ckx̄k|k−1 − Skµ̄k|k−1).(45)

Similarly, the bias-free estimates can be obtained as follows

x̄k|k−1
(18)
=
[

I −Uk

]

[

Ak−1 Bk−1

0 I

][

I Vk−1

0 I

][

x̄k−1|k−1

µ̄k−1|k−1

]

=
[

Ak−1 Bk−1 − Uk

]

[

I Vk−1

0 I

][

x̄k−1|k−1

µ̄k−1|k−1

]

= Ak−1x̄k−1|k−1 + (Ūk − Uk)µ̄k−1|k−1.(46)

x̄k|k
(19)
=
[

I Uk − Vk

]

[

x̄k|k−1

µ̄k|k−1

]

+ GkR−1
e (yk −

[

Ck Sk

]

[

x̄k|k−1

µ̄k|k−1

]

)

(35)
= x̄k|k−1 + GkR−1

e (yk − Ckx̄k|k−1)

(42)
= x̄k|k−1 + ḠkR̄−1

e (yk − Ckx̄k|k−1).(47)

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 155

Thus, we have derived two separate SRCKF’s: a bias filter governed by equations

(44), (45), (37), (27), and a bias-free filter given by equations (46), (47), (41), (30).

These two filters are summarized in Algorithm 2 and Algorithm 3.

Algorithm 2 (Bias SRCKF).

Input: Given Ck, Dk, Q
µ
k , Rk, S̄

µ
k|k−1, S̄x

k|k−1, Uk, x̄k|k−1, µ̄k|k−1, and

new measurement data yk:

Define

(48) Sk = CkUk + Dk.

Measurement update:

1. Using the QR-decomposition find orthogonal matrix T (3) and matrices

Re and G
µ
k such

(49)

[

Re 0 0

G
µ
k S̄

µ
k|k 0

]

=

[

SkS̄
µ
k|k−1 CkS̄x

k|k−1 Rk

S̄
µ
k|k−1 0 0

]

T (3).

2. Compute

(50) µ̄k|k = µ̄k|k−1 + G
µ
kR−1

e (yk − Ckx̄k|k−1 − Skµ̄k|k−1).

Time update:

3. Using the QR-decomposition find orthogonal matrix T
(1)
µ and the square-

root covariance matrix S̄
µ
k+1|k such that

(51)
[

S̄
µ
k+1|k 0

]

=
[

S̄
µ
k|k, Q

µ
k

]

T (1)
µ

4. Compute

(52) µ̄k+1|k = µ̄k|k.

Output: µ̄k+1|k, S̄
µ
k+1|k, Sk.

156 STOYAN KANEV AND MICHEL VERHAEGEN

Algorithm 3 (Bias-Free SRCKF).

Input: Given Ak, Bk, Ck, Qx
k, Q

xµ
k , Q

µ
k , Rk, S̄

µ
k+1|k, S̄x

k|k−1, Sk, Uk,

x̄k|k−1, µ̄k|k, and new measurement data yk, compute:

Measurement update:

1. Using the QR-decomposition find orthogonal matrix T (4) and matrices

R̄e and Ḡ
µ
k such

(53)

[

R̄e 0

Ḡx
k S̄x

k|k

]

=

[

CkS̄x
k|k−1 Rk

S̄x
k|k−1 0

]

T (4).

Define

Vk = Uk − Ḡx
kR̄−1

e Sk(54)

Ūk+1 = AkVk + Bk(55)

Uk+1 = Ūk+1 + (Qxµ
k (Qµ

k)T − Ūk+1(Q
µ
k)2)(S̄µ

k+1|k(S̄µ
k+1|k)T)−1(56)

2. Compute

(57) x̄k|k = x̄k|k−1 + Ḡx
kR̄−1

e (yk − Ckx̄k|k−1).

Time update:

3. Using the QR-decomposition find orthogonal matrix T
(1)
x and the square-

root covariance matrix S̄x
k+1|k such that

M1 = (Qx
k)2 + (Qxµ

k)2 − Q
xµ
k (Qµ

k)T ŪT
k+1

+Uk+1(Ūk+1(Q
µ
k)2 − Q

xµ
k (Qµ

k)T)T(58)
[

S̄x
k+1|k 0

]

=
[

AkS̄x
k|k, M

1/2
1

]

T (1)
x .(59)

4. Compute

(60) x̄k+1|k = Akx̄k|k + (Ūk+1 − Uk+1)µ̄k|k.

Output: x̄k+1|k, S̄x
k+1|k, Uk+1.

Although not needed to run the two SRCKF’s, the original (augmented) state-

estimates and square-root covariance matrices can be restored by means of the inverse

transformations (12), (13), (14), (15):

[

x̂k|k

µ̂k|k

]

=

[

x̄k|k + Vkµ̄k|k

µ̄k|k

]

(61)

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 157

[

x̂k+1|k

µ̂k+1|k

]

=

[

x̄k+1|k + Uk+1µ̄k+1|k

µ̄k+1|k

]

(62)

Sk|k =

[

S̄x
k|k VkS̄

µ
k|k

0 S̄
µ
k|k

]

T T
k|k(63)

Sk+1|k =

[

S̄x
k+1|k Uk+1S̄

µ
k+1|k

0 S̄
µ
k+1|k

]

T T
k+1|k.(64)

Note that since the matrices Tk|k and Tk+1|k are unitary, the matrices Sk|kTk|k

and Sk+1|kTk+1|k are also square-root covariance matrices.

4. Structured SRCKF. In this section we will discuss another implementation

of the augmented-state SRCKF by making use of the structure (the sparseness of the

matrices). This new algorithm, called here the Structured SRCKF, does not separate

the bias estimation from the state estimation; it is based on the SRCKF applied to

the whole augmented system. It will be shown later on, that this Structured SRCKF

requires less flops per iteration that the TS-SRCKF, discussed above.

Consider the SRCKF, summarized in Algorithm 1. Clearly, most of the com-

putational effort of the algorithm is concentrated in the two QR decompositions in

equations (4) and (6). It has been shown in [27] that the square-root covariance

implementation can equivalently rewritten in a combined time/measurement update
[

C̄kSk|k−1 −Rk 0

ĀkSk|k−1 0 −Q̄k

]

Tr =

[

Re
k 0 0

Gk Sk+1|k 0

]

,(65)

X̂k+1|k = ĀkX̂k|k−1 + Gk(Re
k)−1(yk − C̄kX̂k|k−1).(66)

Since the matrix Sk|k−1 is lower triangular at each iteration, in order to keep the trian-

gular structure also in the matrix ĀkSk|k−1 we make Ā lower triangular by rewriting

the augmented system (3) as follows

(67)

[

µk+1

xk+1

]

=

[

I 0

Bk Ak

][

µk

xk

]

+

[

Q
µ
k 0

Q
xµ
k Qx

k

]

νk

yk =
[

Dk Ck

]

[

µk

xk

]

+ Rkξk.

Assume, without loss of generality, that the matrices Q
µ
k and Qx

k are lower trian-

gular. Applying (65) to the new system (67) results in the matrix

M =













[

Dk Ck

]

[

S
µ
k|k−1 0

S
xµ
k|k−1 Sx

k|k−1

]

−Rk 0

[

I 0

Bk Ak

][

S
µ
k|k−1 0

S
xµ
k|k−1 Sx

k|k−1

]

0 −

[

Q
µ
k 0

Q
xµ
k Qx

k

]













158 STOYAN KANEV AND MICHEL VERHAEGEN

that needs to be made lower triangular. To save computations we will now make use

of the structure of the matrix M . We can write

M =









DkS
µ
k|k−1 + CkS

xµ
k|k−1 CkSx

k|k−1 −Rk 0 0 0

S
µ
k|k−1 0 0 −Q

µ
k 0 0

BkS
µ
k|k−1 + AkS

xµ
k|k−1 AkSx

k|k−1 0 −Q
xµ
k −Qx

k 0









.

Now, compute the following QR factorization

(68)

[

CkSx
k|k−1 −Rk 0

AkSx
k|k−1 0 −Qx

k

]

T1 =

[

Rǫ
k 0 0

G1
x S1

x 0

]

.

Then

M ∼









DkS
µ
k|k−1 + CkS

xµ
k|k−1 Rǫ

k 0 0

S
µ
k|k−1 0 −Q

µ
k 0

BkS
µ
k|k−1 + AkS

xµ
k|k−1 G1

x −Q
xµ
k S1

x









.

Next, compute the QR factorization making only the top two block rows lower trian-

gular

(69)









DkS
µ
k|k−1 + CkS

xµ
k|k−1 Rǫ

k 0

S
µ
k|k−1 0 −Q

µ
k

BkS
µ
k|k−1 + AkS

xµ
k|k−1 G1

x −Q
xµ
k









T2 =









Re
k 0 0

G
µ
k S

µ
k+1|k 0

Gx
k S

xµ
k+1|k U3









.

Finally, compute

(70)
[

U3 S1
x

]

T3 =
[

Sx
k+1|k 0

]

.

In this way we obtain

M ∼







Re
k 0 0 0

G
µ
k S

µ
k+1|k 0 0

Gx
k S

xµ
k+1|k Sx

k+1|k 0






,

and then X̄k+1|k can be computed from equation (66).

5. Computational Aspects. In this section we make a comparison between

the number of flops (elementary additions and multiplications) per time instant for

for the following implementations of the augmented-state Kalman filter:

• the conventional augmented-state Kalman filter (AKF), see e.g. [12].

• the structured augmented-state Kalman filter (Structured AKF), see [20],

which is basically the conventional AKF where use is made of the structure

of the matrix Āk (3),

• Hsieh’s two-stage Kalman filter (TS-AKF) [12].

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 159

• the square-root covariance implementation of the augmented Kalman filter

(SRCKF), as summarized in Algorithm 1.

• the square-root two-stage Kalman filter (TS-SRCKF), proposed in Algo-

rithms 2-3.

• the structured square-root covariance Kalman filter (Structured SRCKF),

proposed in Section 4.

In computing the number of flops we use the following algorithms:

QR decomposition The Householder algorithm [3, p.59] is used for computing a

QR decomposition (see Algorithm 4).

Algorithm 4 (Householder QR decomposition).

For a matrix A ∈ R
m×n do

for k=1:min(m,n)-1

[uk,gk,shk] = house(A(k,k:n)’);

A(k,k:n) = [shk, zeros(1,n-k)];

for j=k+1:m

bjk=uk’*A(j,k:n)’/gk;

A(j,k:n) = (A(j,k:n)’ - bjk*uk)’;

end;

end;

RETURN A.

where the function HOUSE is defined as

function [u,g,sh] = house(a);

s=sqrt(a’*a);

sh=-sign(a(1))*s;

u=a; u(1)=a(1)-sh;

g=s*(s+abs(a(1)));

Using the Householder algorithm for performing a QR decomposition to make

the first m rows of a matrix A ∈ R
(m+t)×n (m < n) lower-triangular, requires

fQR(m, t, n) =

m
∑

k=1

(

2(n − k + 3) +

m+t
∑

i=k+1

4(n − k + 1)

)

= m(2n − m + 5)

+2m
(

− 1
3m2 + (n − t + 1)m + (2n + 1)t − n − 2

3

)

flops.

The most significant reduction of the computational effort of the new algo-

rithms is achieved by means of making use of the sparseness of the matrices

during the QR decomposition.

160 STOYAN KANEV AND MICHEL VERHAEGEN

For a (partially) trapezoidal matrix M ∈ R
(m+t)×n

with m < n with the last r diagonals above the

main diagonal equal to zero one can exploit the struc-

ture and compute the QR factorization in less flops,

namely

fSQR(m, t, n, r) = fQR(m, t, n) − fQR(r, t, n)

+2r(n − r)(2m + 2t − r)

+4r.

Algorithm 5 is a modification of Algorithm 4 and computes the QR decom-

position utilizing the trapezoidal structure of the matrix.

Algorithm 5 (Sparse Householder QR decomposition).

For a partially trapezoidal matrix A ∈ R
(m+t)×n with (m < n) with

zeros above the (n − r)-th diagonal do

for k=1:m

[uk,gk,shk] = house(A(k,k:min(n,k+L))’);

A(k,k:n) = [shk, zeros(1,n-k)];

for j=k+1:m+t

aj=A(j,k:min(n,k+L))’;

bjk=uk’*aj/gk;

A(j,k:min(n,k+L)) = (aj - bjk*uk)’;

end;

end;

RETURN A.

Inverse For finding the inverse of a square matrix A ∈ R
n×n an algorithm based on

Gauss elimination and backward substitution is used. This algorithm looks for

a matrix M such that AM = I. For the i-th column of M we have Ami = ei

where ei = [01×(i−1), 1, 01×(n−i)]
T . Applying Gaussian elimination to the

matrix [A ei] one gets [Ã, ẽi] where Ã is an upper-triangular matrix. Using

subsequently backward substitution one obtains the elements of the vector

mi, which is such that Ami = ei holds. The same applies for all columns of

M . Obviously, it is not necessary to perform the same Gaussian elimination

on A for all vectors mi, one just needs to do this one time and apply the

transformation on the elements of the identity matrix (see Algorithm 6).

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 161

Algorithm 6 (Gaussian Elimination).

For a nonsingular matrix A ∈ R
n×n and matrix B ∈ R

n×n do

for k=1:n-1

for i=k+1:n

lik=A(i,k)/A(k,k);

for j=k+1:n

A(i,k)=0;

A(i,j)=A(i,j)-lik*A(k,j);

end;

B(i,:)=B(i,:)-lik*B(k,:);

end;

end;

RETURN A and B.

Algorithm 7 (Backward Substitution).

For a nonsingular, upper-triangular matrix A ∈ R
n×n and matrix

B ∈ R
n×n do

for k=n:-1:1

Ainv(k,:) = B(k,:);

for j=k+1:n

Ainv(k,:) = Ainv(k,:) - A(k,j)*Ainv(j,:);

end;

Ainv(k,:) = Ainv(k,:) / A(k,k);

end;

RETURN Ainv.

The total number of flops (fGE) required for performing Gaussian Elimination

is equal to

fGE(n) =

n−1
∑

k=1

n
∑

i=1



1 +





n
∑

j=k+1

2



+ 2n





=
1

6
n(n − 1)(10n + 1).

The backward substitution (Algorithm 7), on its turn, requires additionally

fBS(n) =

n
∑

k=1

2n(n − k) + n = n3

flops. Therefore, the inverse of a full n-by-n matrix A costs

fINV (n) =
1

6
n(16n2 + 9n − 1)

162 STOYAN KANEV AND MICHEL VERHAEGEN

flops.

Since in the square-root covariance implementation of the Kalman filter we

need only to invert triangular matrices, the first step in this algorithm (the

Gaussian elimination) is not needed. To invert a triangular matrix only back-

ward substitution is applied.

Square root The square root S of a matrix P ∈ R
n×n is obtained using the Cholesky

factorization [3, p.46], see Algorithm 8 that requires

fCh(n) =
n
∑

i=1

(

2(i − 1) + 1 +
n−i
∑

k=1

2(i − 1) + 1

)

=
1

6
n(n + 1)(2n + 1)

flops.

Algorithm 8 (Cholesky Factorization).

For a nonsingular matrix A ∈ R
n×n do

R=0;

for i=1:n,

R(i,i) = 1/(A(i,i)-R(1:i-1,i)’*R(1:i-1,i));

for j=i+1:n

R(i,j) = (A(i,j)-R(1:i-1,i)’*R(1:i-1,j))/R(i,i);

end;

end;

RETURN R.

Multiplication The triangular structure of S̄
µ
k+1|k is utilized when computing Uk+1,

namely that first the inverse, say SINV of S̄
µ
k+1|k is computed (which is also

a triangular matrix) and next the product SINV ST
INV is formed. Due to the

triangular structure of SINV this product can be computed in

fSS′(l) =

l
∑

i=1

l
∑

j=i

(2i − 1) =
1

6
l(2l + 1)(l + 1)

flops. Similarly, the product between a full k-by-p matrix and a lower (upper)

diagonal p-by-p matrix can be computed in

fGRe
(k, p) =

p
∑

j=1

2k(p − j) = 2kp2 − kp(p + 1)

flops. On the other hand, the multiplication of two full matrices A ∈ R
n×p

and B ∈ R
p×m requires

M(n, p, m) = nm(2p − 1)

flops.

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 163

Addition The flops required for adding two n-by-p matrices is obviously

A(n, p) = np.

Tables 1, 2 and 3 summarize the number of flops needed by the SRCKF, TS-

SRCKF and Structured SRCKF algorithm, respectively, for performing one complete

iteration, respectively. The number of flops required by the the other three compared

algorithms (i.e. AKF, TS-AKF, and Structured AKF), have also been calculated,

although not summarized here to avoid unnecessary details. Only the total number

of flops, the number of additions and multiplications together, are compared.

Table 1

Number of flops needed by the SRCKF for completing one iteration.

operation equation flops

Form C̄kSk|k−1 - M(p, n + l, n + l)

QR factorization (4) fQR(n + l + p, 0, n + l + p)

R−1
e - fBS(p)

GkR−1
e - M(n + l, p, p)

innovation - A(p, 1) + M(p, n + l, 1)

AkSk|k - M(n + l, n + l, n + l)

QR factorization (6) fQR(n + l, 0, 2(n + l))

Xk|k (5) A(n + l, 1) + M(n + l, p, 1)

Xk+1|k (7) M(n + l, n + l, 1)

Table 4 summarizes the number of fops per time instant for the six compared

Kalman filter implementations, computed for two different system dimensions (n, p, l).

The percentages given between brackets represent the relative improvement with re-

spect to the conventional AKF. Figure 1 depicts this relative reduction as a function

of l and p for a fixed system order n = 15. Clearly, the algorithm that requires the

least number of flops is the Structured SRCKF method, followed by the Structured

AKF. The slowest algorithm, which is actually computationally more involved than

the conventional AKF itself, is the SRCKF. The two-stage implementations, TS-AKF

and TS-SRCKF, lie in between having approximately the same computational com-

plexity (the TS-SRCKF needing less flops than TS-AKF only when l > p, i.e. when

the dimension of the bias vector is larger than that of the number of measurements).

It therefore become clear, that by simply exploiting the structure of the AKF and its

square-root implementation (i.e. using the Structured SRCKF and Structured AKF)

one can save much more computations than using the two-stage implementations

(TS-SRCKF and TS-AKF).

Finally, we would like to discuss on the discussions that can be found in some other

works. In particular, the results presented in this section confirm those previously

164 STOYAN KANEV AND MICHEL VERHAEGEN

Table 2

Number of flops needed by the TS-SRCKF for completing one iteration.

operation equation flops

(Qx
k)2, Qxµ

k (Qµ
k)T

(Qµ
k)2, (Qxµ

k)2 - M(n, n, n) + M(l, l, l) + M(n, l, n + l)

Sk (48) M(p, n, l) + A(p, l)

{CkS̄x
k|k−1, SkS̄

µ
k|k−1} - fGRe

(p, n) + fGRe
(p, l)

str. QR decomposition (49) fSQR(p + l, 0, p + l + n, p − 1)

str. QR decomposition (53) fSQR(n + p, 0, n + p, p − 1)

{R−1
e , R̄−1

e }, - 2fBS(p)

{Gµ
kR−1

e , Ḡx
kR̄−1

e }, - fGRe
(l, p) + fGRe

(n, p)

Vk (54) A(n, l) + M(n, p, l)

Ūk+1 (55) A(n, l) + M(n, n, l)

(S̄µ
k+1|k)−1 - fBS(l)

(S̄µ
k+1|k)−1(S̄µ

k+1|k)−T - fSS′(l)

Uk+1 (56) 2A(n, l) + 2M(n, l, l)

ex
k = yk − Ckx̄k|k−1 - A(p, 1) + M(p, n, 1)

e
µ
k = ex

k − Skµ̄k|k−1 - A(p, 1) + M(p, l, 1)

x̄k|k (57) A(n, 1) + M(n, p, 1)

µ̄k|k (50) A(l, 1) + M(l, p, 1)

{x̄k+1|k, µ̄k+1|k} (60),(52) M(n, n, 1) + 2A(n, l) + M(n, l, 1)

AkS̄x
k|k - fGRe

(n, n)

M1 (58) 3A(n, n) + 2M(n, l, n)

M
1/2
1 - fCh(n)

QR decomposition (59) fQR(n, 0, 2n)

QR decomposition (51) fQR(l, 0, 2l)

Computation of the original state and SRC

{x̂k|k, µ̂k|k} (61) A(n, 1) + M(n, l, 1)

{x̂k+1|k, µ̂k+1|k} (62) A(n, 1) + M(n, l, 1)

S12
k|k (63) fGRe

(n, l)

S12
k+1|k (64) fGRe

(n, l)

summarized in [12] and [20], although both papers contain some small errors in the

expressions of the number of flops. Still, similarly to what is stated in [12], the example

here shows that the TS-AKF requires less flops than the conventional AKF, while the

Structured AKF is even faster than the TS-AKF, as argued in [20].

6. Parallel Implementation of the TS-SRCKF. Apart from the reduced

computational demand required by the TS-SRCKF, it is also very suitable for parallel

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 165

Table 3

Number of flops needed by the Structured SRCKF for completing one iteration.

operation equation flops

DkS
µ
k|k−1 - fGRe

(p, l)

Ck

[

S
xµ
k|k−1 Sx

k|k−1

]

- M(p, n, l) + fGRe
(p, n)

BkS
µ
k|k−1 - fGRe

(n, l)

Ak

[

S
xµ
k|k−1 Sx

k|k−1

]

- M(n, n, l) + fGRe
(n, n)

{Akx̂k|k−1, Bkµ̂k|k−1} - M(n, n, 1) + M(n, l, 1)

R−1
e - fBS(p)

GkR−1
e - fGRe

(n + l, p)

innovation - A(p, 1) + M(p, n + l, 1)

X̂k+1|k (66) A(n + l, 1) + M(n + l, p, 1)

str. QR factorization (68) fSQR(p + n, 0, p + 2n, p + n − 1)

str. QR factorization (69) fSQR(p + l, n, p + 2l, l + p − 1)

str. QR factorization (70) fSQR(n, 0, n + l, n − 1)

Table 4

Number of flops needed by the compared methods for completing one iteration.

Algorithm flops per iteration

n = 5, p = 5, l = 5 n = 15, p = 5, l = 10

Covariance implementation

AKF 10,845 119,820

Structured AKF 7,010 (↓ 35.4%) 66,320 (↓ 44.7%)

TS-AKF 10,230 (↓ 5.7%) 101,420 (↓ 15.4%)

Square-Root Covariance implementation

SRCKF 12,065 (↑ 11.2%) 129,535 (↑ 8.1%)

TS-SRCKF 10,387 (↓ 4.2%) 93,347 (↓ 22.1%)

Structured SRCKF 6,393 (↓ 41.1%) 50,493 (↓ 57.9%)

implementation due to its decoupled structure. Table 5 illustrates how the TS-SRCKF

can be implemented on two processors, where only at two instances data needs to be

transferred from the processor implementing the bias-filter (left) to the processor that

implements the bias-free filter (right). These two instances are the computation of the

matrix Uk+1 in equation (56), where the matrix S̄
µ
k+1|k is needed, and the computation

of x̄k+1|k in (60), where µ̄k|k is necessary.

7. Conclusions. In this paper a two-stage implementation is developed for the

augmented-state square-root covariance Kalman filter (TS-SRCKF) in the spirit of

166 STOYAN KANEV AND MICHEL VERHAEGEN

5
10

15

5
10

15

−40

−20

0

20

40

60

80

100

pl

re
du

ct
io

n
[%

]

Structured SRCKF
Structured AKF
TS−SRCKF
TS−AKF
SRCKF

Fig. 1. Comparison between the Structured SRCKF, Structured AKF, TS-SRCKF, TS-AKF

and SRCKF as a function of p and l for a system with n = 15 states.

Table 5

Parallel implementation of the Two-Stage SRCKF. The two dashed lines indicate that infor-

mation needs to be exchanged (or data needs to be shared)

(48) Sk •

(49) (Re, G
µ
k , S̄

µ
k|k) •

(51) S̄
µ
k+1|k •

(50) µ̄k|k •

(52) µ̄k+1|k •

(R̄e, Ḡ
x
k, S̄x

k|k) (53)•

(Vk, Ūk+1) (54),(55)•

Uk+1 (56)•

x̄k|k (57)•

x̄k+1|k (60)•

S̄x
k+1|k (58)•

[12]. The performance of the new TS-SRCKF is exactly the same as that of the

standard square-root covariance Kalman filter (SRCKF), i.e. both provide the MMSE

error state estimate. However, the computational effort of the former, measured by

the number of flops for one iteration, is usually much less than that of the SRCKF,

even for problems of small size. Furthermore, it has been experimentally established

that for some applications the new TS-SRCKF can require even less flops than the

Hsiah’s two-stage Kalman filter (TS-AKF).

Furthermore, similarly to what is claimed in [20], it has been experimentally

TWO-STAGE KALMAN FILTERING VIA STRUCTURED SQUARE-ROOT 167

demonstrated that the Structured AKF implementation, that basically makes use of

the fact that the A-matrix of the augmented system has certain structure, requires

even less flops than the two-stage implementations. And last, a new and faster im-

plementation than all those mentioned above has also been derived in the paper. It

is referred to as the Structured SRCKF as it is based on the SRCKF but makes use

of the sparsity (structure) of the matrices.

REFERENCES

[1] A. T. Alouani, P. Xia, T. R. Rice, and W. D. Blair, On the optimality of the two-stage

state estimation in the presence of random bias, IEEE Transactions on Automatic Control,

38:8(1993), pp. 1279–1282.

[2] G. J. Bierman, The treatment of bias in the square-root information filter/smoother, Journal

of Optimization Theory and Applications, 16:1/2(1975)), pp. 165–178.

[3] Åke Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

[4] M. Darouach and M. Zasadzinski, Unbiased minimum variance estimation for systems with

unknown exogenious inputs, Automatica, 33:4(1997), pp. 717–719.

[5] B. Friedland, Treatment of bias in recursive filtering, IEEE Transactions on Automatic

Control, AC-14:4(1969), pp. 359–367.

[6] B. Friedland, On the properties of reduced-order Kalman filters, IEEE Transactions on

Automatic Control, 34:3(1989), pp. 321–324.

[7] F. Gustafsson, Adaptive Filtering and Change Detection, John Wiley & Sons Ltd., 2000.

[8] D. Haessig and B. Friedland, Separate-bias estimation with reduced-order Kalman filters,

IEEE Transactions on Automatic Control, 43:7(1998), pp. 983–987.

[9] M. Hou and R. J. Patton, Optimal filtering for systems with unknown inputs, IEEE Trans-

actions on Automatic Control, 43:3(1998), pp. 445–449.

[10] C.-S. Hsieh, Robust two-stage Kalman filters for systems with unknown inputs, IEEE Trans-

actions on Automatic Control, 45:12(2000), pp. 2374–2378.

[11] C.-S. Hsieh, General two-stage extended Kalman filters, IEEE Transactions on Automatic

Control, 48:2(2003), pp. 289–293.

[12] C.-S. Hsieh and F.-C. Chen, Optimal solution of the two-stage Kalman estimator, IEEE

Transactions on Automatic Control, 44:1(1999), pp. 194–199.

[13] C.-S. Hsieh and F.-C. Chen, General two-stage Kalman filters, IEEE Transactions on Auto-

matic Control, 45:4(2000), pp. 819–824.

[14] C.-S. Hsieh and F.-C. Chen, Optimal minimal-order least-squares estimators via the general

two-stage Kalman filter, IEEE Transactions on Automatic Control, 46:11(2001), pp. 1772–

1776.

[15] M. B. Ignagni, An alternate derivation and extension of friedland’s two-stage Kalman esti-

mator, IEEE Transactions on Automatic Control, 26:3(1981), pp. 746–750.

[16] M. B. Ignagni, Separate-bias estimator with bias state noise, IEEE Transactions on Automatic

Control, 35:3(1990), pp. 338–341.

[17] M. B. Ignagni, Optimal and suboptimal separate-bias Kalman extimators for a stochastic bias,

IEEE Transactions on Automatic Control, 45:3(2000), pp. 547–551.

[18] J.Ỹ. Keller and M. Darouach, Optimal two-stage Kalman filter in the presence of random

bias, Automatica, 33:9(1997), pp. 1745–1748.

[19] P. K. Kitanidis, Unbiased minimum-variance linear state estimation, Automatica, 23(1987),

pp. 775–778.

[20] K. Lo, Q. Lu, and W.H. Kwon, Comments on “optimal solution of the two-stage Kalman

168 STOYAN KANEV AND MICHEL VERHAEGEN

estimator, IEEE Transactions on Automatic Control, 1(2002), pp. 198–199.

[21] J. M. Mendel, Extension of friedland’s bias filtering technique to a class of nonlinear systems,

IEEE Transactions on Automatic Control, 21(1976), pp. 296–298.

[22] J. M. Mendel and H. D. Washburn, Multistage estimation of bias states in linear systems,

International Journal of Control, 28:4(1978), pp. 511–524.

[23] E. L. Shreve and W. R. Hendrick, Separating bias and state estimates in a recursive second-

order filter, IEEE Transactions on Automatic Control, 19(1974), pp. 585–586.

[24] E. C. Tacker and C. C. Lee, Liear filtering in the presence of time-varying bias, IEEE

Transactions on Automatic Control, 17(1972), pp. 828–829.

[25] A. Tanaka, Parallel computation in linear discrete filtering, IEEE Transactions on Automatic

Control, 20(1975), pp. 573–575.

[26] M. Verhaegen and P. van Dooren, Numerical aspects of different Kalman filter implemen-

tations, IEEE Transactions on Automatic Control, 31:10(1986), pp. 907–917.

[27] M. Verhaegen and V. Verdult, Filtering and System Identification: An Introduction, TU-

Delft, lecture notes for the course sc4040 (et4094) edition, 2003.

[28] A. Willsky and H. Jones, A generalized likelihood ratioi approach to the detection and

estimation of jumps in linear systems, IEEE Transactions on Automatic Control, 1(1976),

pp. 108–112.

[29] D. H. Zhou, Y. X. Sun, Y. G. Xi, and Z. J. Zhang, Extension of friedland’s separate-bias

estimation to randomly time-varying bias of nonlinear systems, IEEE Transactions on

Automatic Control, 38:8(1993), pp. 1270–1273.

