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APPENDIX IL 

O N MATRICES*. 

405. A SET of n quantities 
(#! , . . . , Xn) 

is often denoted by a single letter x, which is then called a row letter, or a column letter. 
By the sum (or difference) of two such rows, of the same number of elements, is then 
meant the row whose elements are the sums (or differences) of the corresponding elements 
of the constituent rows. If m be a single quantity, the row letter mx denotes the row 
whose elements are ,..., mxn. If x, y be rows, each of n quantities, the symbol xy 
denotes the quantity x$x + + . 

406. The set of n equations denoted by 

#»=a*,i£i + + < * £ > (* = 1, , ) 

where n may be greater or less than p, can be represented in the form # = a £ , where a 
denotes a rectangular block of np quantities, consisting of n rows each of p quantities, 
the r-th quantity of the -th row being aitr. Such a block of quantities is called a 
matrix ; we call a^ r the ( , r)th element of the matrix. The sum (or difference) of two 
matrices, of the same number of rows and columns, is the matrix formed by adding (or 
subtracting) the corresponding elements of the component matrices. Two matrices are 
equal only when all their elements are equal ; a matrix vanishes only when all its 
elements are zero. If f x , . . . , fp be expressible by m quantities Xx,..., Xm by the equations 

fc.=&rfi^i + +br,mXm> ( r = l , 2 , ,p\ 

so that £=bX, where 6 is a matrix of p rows and m columns, then we have 

^ = 4 i ^ i + +cUmXmy ( = 1 , , n), 
or x=cX, where 

, , A'=l» ,?fc\ 
Ci,.=aUlbb, + + < , (^ = 1 ) m), 

* The literature of the theory of matrices, or, under a slightly different aspect, the theory of 
bilinear forms, is very wide. The following references may be given : Cayley, Phil. Trans. 1858, 
or Collected Works, vol. n. (1889), p. 475; Cayley, Grelle, . (1855); Hermite, Creile, XLVII. 
(1854) ; Christoffel, Creile, ISSILI. (1864) and LXVIII. (1868) ; Kronecker, Creile, LXVIII. (1868) or 
Gesam. Werke, Bd. i. (1895), p. 143; Schläfli, Creile, LXV. (1866); Hermite, Creile, LXXVIII. 
(1874) ; Rosanes, Creile, LXXX. (1875) ; Bachmann, Creile, LXXVI. (1873) ; Kronecker, Beri, 
Monatsber., 1874; Stickelberger, Creile, LXXXVI. (1879); Frobenius, Creile, LXXXIV. (1878), 
Lxxxvi. (1879), Lxxxviii. (1880) ; H. J. S. Smith, Phil. Tram., CLI. (1861), also, Proc. Lond. Math. 
Soc, 1873, pp. 236, 241 ; Laguerre, J. d. . Poly., t. xxv., cah. XLII. (1867), p. 215 ; Stickelberger, 
Progr. poly. Schule, Zürich, 1877 ; Weierstrass, Beri. Monats. 1858, 1868 ; Brioschi, Liouville, 
xix. (1854) ; Jordan, Compt. Rendus, 1871, p. 787, and Liouville, 1874, p. 35 ; Darboux, Liouville, 
1874, p. 347. 
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cit 9 being the ( , s)th element of a matrix of n rows and m columns ; it arises from the 
equations = £, £=bX, whereof the result may be written x—abX\ hence we may 
formulate the rule : A matrix a may be multiplied into another matrix b provided the 
number of columns of a be the same as the number of rows of b ; the (i, s)th element of the 
resulting matrix is the result of multiplying^ in accordance with the rule given above, the 
i-th row of a, by the s-th column of b. Thus, for multiplication, matrices are not generally 
commutative, but, as is easy to see, they are associative. 

The matrix whose ( , s)th element is c8tii where c8ti is the (s, i)th element of any 
matrix oî n rows and m columns, is called the transposed matrix of c, and may be 
denoted by ; it has m rows and n columns, and, briefly, is obtained by interchanging the 
rows and columns of c. The matrix which is the transposed of a product of matrices is 
obtained by taking the factor matrices in the reverse order, each transposed ; for example, 
if a, b, be matrices, 

abc=cboZ. 

407. The matrices which most commonly occur are square matrices, having an equal 
number of rows and columns. With such a matrix is associated a determinant, whose 
elements are the elements of the matrix. When the determinant of a matrix, a, of p rows 
and columns, does not vanish, the p linear equations expressed by x=a£ enable us to 
represent the quantities £19..., fp in terms of xly..., xp ; the result is written %=a~1x) and 
or 1 is called the inverse matrix of a ; the ( , 7*)th element of a"1 is the minor of ar> t- in 
the determinant of the matrix a, divided by this determinant itself. The inverse of a 
product of square matrices is obtained by taking the inverses of the factor matrices in 
reverse order ; for example, if a, 6, be square matrices, of the same number of rows and 
columns, for each of which the determinant is not zero, we have 

(abcyi=c-1b-1a-\ 

The inverse of the transposed of a matrix is the transposed of its inverse ; thus 

(*)-»-(Ö. 
The determinant of a matrix a being represented by | a |, we clearly have | ab | = | a | | b |. 

408. Finally, the following results are of frequent application in this volume : (i) If a 
be a matrix of n rows and p columns, and £ a row of p quantities, the symbol a£ denotes 
a row of n quantities ; if rj be a row of n quantities, the product of these two rows, or 
(a£)(v)> *s denoted by a£rj. When n—p this must be distinguished from the matrix 
which would be denoted by a. &—this latter never occurs. We have then 

n p 

i=l r=l 

and this is called a bilinear form ; we also clearly have the noticeable equation 

£ != 1$ ; 

(ii) if b be a matrix of n rows and q columns, the product of the two rows a£, brj> wherein rj 
is now a row of q quantities, is given by either ) Çrj or (ab) TJ£, so tha t we have 

a£.bri = bagrj = äbrjg. 

The result of multiplying any square matrix, of p rows and columns, by the matrix ß, 
of p rows and columns, wherein all the elements are zero except the diagonal elements, 
which are each unity, is to leave the multiplied matrix unaltered. For this reason the 
matrix E is often denoted simply by 1, and called the matrix unity of p rows and 
columns. 
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409. Ex. i. If a bilinear form axy, wherein x, y are rows of p quantities, and a is a 
square matrix of p rows and columns, be transformed into itself by the linear substitution 
x=Ri-, y=Srjy where R, JS are matrices of p rows and columns, then aRj-. Sr}=a£ri ; hence 

SaR=a. 

Ex. ii. If k be an arbitrary matrix of p rows and columns, such that the determinants 
of the matrices a + A do not vanish, and the determinant of the matrix a do not vanish, 
prove tha t 

(a+h)a~l ( a - h ) =a-ha~xh— {a — h)a'1 (a+h) ; 
hence shew that if 

R = a-1(a-h)(a+k)-1a, S=a (a-h)-1 {a+h)a~\ 

the substitutions x=R£, y=Srj transform axy into aÇrj. 

For a substitution in which R=S see Cayley, Collected Works, vol. n . p. 505. Cf. also 
Taber, Amer. Journ., vol. xvi. (1894) and Proc. Lond. Math. Soc, vol. xxvi. (1895). 

Ex. iii. The matrices, of two rows and columns, 

HI ?)• '-<? -1 
give E2 = E, J2— —E ; and the determinant of the matrix 

vanishes, for real values of x, y, only when x — 0, y = 0 . 

Ex. iv. The matrices, of four rows and columns, 

(
1 0 0 0 \ / 0 1 0 0 v / 0 0 1 0 v / 0 0 0 1 \ 

o i o o V , - 1 0 0 ° ) , H ° ° 0 1 ) , jÂ o o - i o ] ,  
i / I o o o - i / l - i o o o / I o i oo) 

0 0 0 1 ' ^ 0 0 1 0 7 ^ 0 - 1 0 0 - 1 0 0 0 ' 
give j2=j2=j2=-e, =~ = , Jz3i=-kk=k> ^~ =~€-

Hence these matrices obey the laws of the fundamental unities of the quaternion 
analysis. Further the determinant of the matrix 

Xi # 2 / 

I 1 *^ 3 2 

^ - Xn Xn X — X-t I 

I Xo Xn X-i X 

which is equal to (x2+x1
2+x2

2+x3
2)2, vanishes, for real values of x, xly x21 x3t only when 

each oî x, xu x2, x3 is zero. (Frobenius, Creile, LXXXIV. (1878), p. 62.) 

410. In the course of this volume we are often concerned with matrices of 2p rows 
and 2p columns. Such a matrix may be represented in the form 

wherein a, b, c, d are square matrices with p rows and columns ; if / / be another such 
matrix given by 

» (a' b'\ 
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the ( , r)th element of the product fifi, when and r are both less than p + 1 is 

a'it l «l, r + +<,*> S r + '̂i, 1 ch r + + &'i, p ep, r> 

and this is the sum of the ( , r)th elements of the matrices a'a, b'c ; similarly when and r 
are not both less than p+l ; hence we may write 

fa' \ fa b\ _ f a'a + b'c, a'b + b'd\ 
\c' d') \c d) ~ \c'a+rfcy c'b + d'd) ' 

the law of formation for the product matrix being the same as if a, by c, d, a', b', c', d' were 
single quantities. 

Ex. Denoting the matrices ( ) , ( ] respectively by 1 and j , the matrices of 

Ex. iv. can be denoted by 

•"(S?)' i l=(~oi)' >«-(-îi)* = ( - " ) ' 
411. We proceed now to prove the proposition* assumed in § 333, Chap. XVIII. 

Retaining the definitions of the matrices Aki B, C, D there given, and denoting 
Ak-\ B~\ C~\ D~l respectively by ak9 6, c, d, we find 

ak—Aki so that Âk
2=l, 

and 
b=( 0 1 ) , c=( 1 1 ) , d=( 1 01 ) 

1 0 I I 1 0 j 1 10 I 
1 0 1 0 1 0 

1 0 1 0 1 0 

- 1 0 0 1 0 1 

0 1 0 1 0 1 
0 1 0 1 0 1 

I o i l l o i l l o i ! 
so that 6, c, d differ respectively from B, C, D only in the change of the sign of the 
elements which are not in the diagonal. It is easy moreover to verify such facts as the 
following 

*=1, {BCf=\, BA2=A2D, AkBAkB=BAkBAki B^DB^A^A^BB2, 

which are equivalent respectively with 

6 4 =1 , (cb)3=ly a2d=da2i bakbak=akbakby a2b
2db2=b2db2a2 ; 

but such results are immediately obvious from the interpretations of the matrices ak, 6, c, d 
which are now to be given. 

Let A denote any matrix of 2p rows and columns, and let the four products 

Aak, Ab, Ac, Ad 

* For a shorter proof of an equivalent result the reader may consult C. Jordan, Traité des 
Substitutions (Paris, 1870), p. 174. The theorem was first given by Kronecker, "Ueber bilineare 
Formen/' Monatsber. Beri. Akad. 1866, Creile, LXVIII. or in Werke (Leipzig, 1895), Bd. i. p. 160 ; 
the proof here given follows the lines there indicated. 
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be formed ; the resulting matrices will differ from A in respects which are specified in the 
following statements : 

(i) ak interchanges the first and &-th columns (of A), and, at the same time, the 
(£? + l)th and (p+k)th columns (1<£<£>-H). For the sake of uniformity we introduce 
also al9 = 1 . 

(ii) 6 interchanges the first and (jt? + l)th columns, at the same time changing the 
signs of the elements of the new first column. 

(iii) adds the first column to the (jo-f-l)th. 
(iv) d adds the first and second columns respectively to the (jt? + 2)th and 

the Qt> + l)th. 

Hence we have these results : if the matrices denoted by the following symbols be 
placed at the right side of any matrix A, of 2p rows and columns, so that the matrix 
A acts upon them, the results mentioned will accrue :— 

1 — 2 changes the signs of the £-th and (p+k)th columns (of A), 
tk—akbak, interchanges the £-th and (p+k)th columns (of A), giving the new £-th 

column an opposite sign to that it had before its change of place, 
? = 3 , interchanges the &-th and (p +£)th columns, giving the new (p+k)th 

column a changed sign.   
= 2 2 adds the £-th column to the (p+k)th. 

' = 3 3 = 2 ~1 2 , subtracts the &-th column from the (p+k)th.   

— 2 — ~ b3ak, adds the (p+k)th column to the /fc-th. 

nr
k—akb

3cbaki subtracts the (p+k)th column from the -th. 

gTt 8=ara2a8a2b?dba2a8a2ar, subtracts the s-th column from the r-th, and, at the same 
time, adds the (p + r)th column to the (p+s)th. 

g'r8=ara2a8a2bdb3a2a8a2ari adds the 5-th column to the r-th, and, at the same time, 

subtracts the (p + r)th from the (p+s)th column. 

frt8=h9rt/8t a(ids the (p+r)th and (p+s)th columns respectively to the s-th and 
r-th columns. 

/ / ,8=^ 5 ' , > subtracts the (p + r)th and Qo+s)th columns respectively from the s-th 
and r-th columns. 

To this list we add the matrix ak, whose effect has been described, and the matrix 62, 
which changes the sign both of the first and of the (p + l)th columns; then it is to be 
shewn that a product, P, of positive integral powers of these matrices, can be chosen such 
that, if A be any Abelian matrix of integers, given by 

= ("£)> w h e r e aß=ßä, a!ß? = pä'9 aß'-ßü' = l, 

the product AP is the matrix unity—of which every element is zero except those in the 
diagonal, each of which is 1. Hence it will follow that ^ = P - 1 ; namely that every such 
Abelian matrix can be written as a product of positive integral powers of the matrices 
Ak7 Bf C, D. Up to a certain point of the proof we shall suppose the matrix A to be 
that for a transformation of any order, r. 

In the matrices aki arj ae, each of k, r, s is to be <p + l ; and in general each of 
k, r, s is > 1 ; but for the sake of uniformity it is convenient, as already stated, to 
introduce a matrix 0̂  = 1 ; then each of k9 r, s may have any positive value less than p +1. 
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412. Of the matrix we consider first the first row, and of this row we begin with 
the p-th and 2p-th elements, altP, ßlt p; if the numerically greater of these elements be 
not a positive integer, use the matrix lp to make it positive*—form, tha t is, the product 
ùXp. Then, let y be the greater, and 8 the less of these two elements ; if 8 is positive, 
use the matrix m'p or the matrix n'py as many times as possible, to subtract from y the 
greatest possible mult iplet of 8 (i.e. if v be the matrix upon which we are operating, = 
or = £ , form one of the products { ' ) , v (n'p)

8) ; if 8 is negative, use mp or np to add 
to the greatest possible multiple of 8 ; so that , in either case, the remainder, y, 
from y, is numerically less than 8 and positive. Now, by the matrix lP9 take the element 
8 to be positivej ; then again, by application of mp or np or m'p or rìp replace 8 by a 
positive quanti ty numerically less than y. Let this process alternately acting on the 
remainder from y and 8, be continued until either y or 8 is replaced by zero. Then use 
the matrix tp or fp to put this zero element a t the 2p-th place of the first row of the 
matrix, A', which, after all these changes, replaces . 

Let a similar process of alternate reduction and transposition be applied to ', until 
the (1, 2p — l ) th element of the resulting matrix is zero. And so on. Eventually we 
arrive, in continuing the operation, a t a matrix instead of , in which there is a zero in 
each of the places formerly occupied by ßlt l9 , / 3 b P . 

Now apply the processes given by b2, lp, ghpy gPtli and eventually ap, if necessary, to 
reduce the (1, p)ih element to zero. Then the processes b2, lP-i, ghP-i, gp-bU ^19 as 
far as necessary, to reduce the (1, p — l)th element to zero; and so on, till the places, 
which in the original matrix were occupied by a1>2, . . . , altp, are all filled by zeros. 

Consider now the second row of the modified matrix. Beginning with the (2, p)th and 
(2, 2p)th elements, use the specified processes to replace the latter by a zero. Next 
replace, similarly, the (2, 2 p - l ) t h element by a zero; and so on, finally replacing the 
(2, p + 2)th element by a zero. The necessary processes will not affect the fact tha t all 
the elements in the first row, except the (1, l ) t h element, are zero. Next reduce the 
elements occupying the (2, p)th> . . . , (2, 3)th places to zero. 

Proceeding thus we eventually have (i) the (r, s+p)th element zero, for every r<p and 
every s<p, in which s>r, (ii) the (r, s)th element zero, for every r<p and every s<p} in 
which s>r. In other words the matrix has a form which may be represented, taking p = 4, 
by the matrix p, 

p = ( a u 0 0 0 0 0 0 0 ) ; 

«21 «22 0 0 ßtl 0 0 0 

a31 a32 a33 0 ß31 32 0 0 

»41 «42 «43 «44 041 ß*2 #43 ° 

«'il «'l2 «'l3 «'l4 ß'll ^12 ß'l3 ß'l4 

I «'41 «'42 «'43 «'44 '41 ^42 ^43 ß'u I 

since now the original matrix is an Abelian matrix, and each of the matrices aki 6, c, d is 
an Abelian matrix, it follows (Chap. XVI IL , § 324) tha t aß=ßä ; if the original matrix be 

* The changes of sign of the other elements of the same column which enter therewith do not 
concern us. 

t The simultaneous subtractions, effected by the matrix m'p, of the other elements of the 
column, do not concern us. Similar remarks apply to following cases. 

X It is not absolutely necessary to use the matrix lp in this or in the former case ; but it con­
duces to clearness. 
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for greater generality supposed primarily to be associated with a transformation of order r, 
the value r=\ being introduced later, the determinant of the matrix is +** (§ 324, Ex. i.) 
and is not zero ; hence comparing in turn the 1st, 2nd, . . . , rows of the matrices aß and ßä 
we deduce that in the matrix p the elements ß21, ß31, ß32i ... of the matrix ß which are on 
the left side of the diagonal are also zero ; thus, in p, every element of the matrix ß is zero. 
Apply now to the matrix p the relation 

aß'-ßa=r, 

which in this case reduces to aft=r. Then it is immediately found that the elements of 
the matrix ß' which are on the left side of the diagonal are also zero—and also that 

a i i / 3 / n = =<*ppß'pp=r-

The resulting form of the matrix p may then be shortly represented by 

If now to the matrix a- we apply the processes given by the matrices glt 2 or g\t 2 and l2i 

we may suppose a21 numerically less than a^, and a^ positive ; if then we apply the 
processes given by the matrices glt 3 or gf

b 3 and l3, and the processes given by the matrices 
9% 3 o r 92,3 a n d hf w e suppose a31, a32 numerically less than 033, and may suppose a^ 
to be positive. Proceeding thus we may eventually suppose all the elements of any row of 
the matrix a which are to the left of its diagonal to be less than the diagonal elements of 
that row—and may suppose that all the elements of the diagonal of the matrix a are 
positive ; this involves that the diagonal elements of ft are positive, and in particular 
when r is a prime number involves that these elements are each 1 or r. 

Further we may reduce the elements of the matrix a which are in the diagonal of 
a, and those which are to the left of this diagonal, by means of the diagonal elements of 
the matrix ft. We begin with the elements of the last row of d; by means of the 
processes given by the matrices np or n'p we may suppose dpp to be numerically less than 
ß,

pp ; by means of the processes given by the matrices fp,p-i or / ' p , p - i w e suppose 
a'p,p-i t° be numerically less than ftPtP; in general by means of the processes given by 
/ s or / A « w e suppose dPi8 to be numerically less than ftp,p. Similarly by the 
processes given by np^l or n'p_1 we may suppose dp-ltP-1 numerically less than ftP-hP-i, 
and by the processes/p_1 > e orf'p_lt8, where s<p — 1, we may suppose a'p_b8 numerically 
less than ß,

p_hp_1. The general result is that in every row of the matrix d we may 
suppose the diagonal element, and the elements to the left of the diagonal, to be all 
numerically less than the diagonal element of the same row of the matrix ft. 

413. If then we take the case when r = 1 we have the result that it is possible to form 
a product Q of the p + 2 matrices ak, b, c, d, such that the product AÛ has a form which 
may be represented, taking p=3, by 

= ( 1 0 0 0 0 0 ) , 

l o i 0 oo I 
0 0 1 0 0  

0 '12 '13 1 ft12 ft13 

0 0 '23 0 1 ft23\ 

1 0 0 0 0 0 1 I 

wherein all the elements of each of the matrices a and ft to the left of the diagonals are 
zero, and all the elements of the matrix d both in the diagonal, and to the left of the 



415] ABELIAN MATRIX. 673 

diagonal, are zero. Applying then the condition aß'=l> we find that the elements of the 
matrix ß to the right of its diagonal are also zero, so that fi=a=1. Then finally, applying 
the condition aß'=ftä', equivalent to a' = ä\ we have a'=0. Thus the reduced matrix is 
the matrix unity of 2p rows and columns, and , = û _ 1 , is expressed as a product of 
positive integral powers of the p+2 matrices Aki B, Cy D, as desired. Since the determinant 
of each of the matrices Ak, , , D is + 1 , the determinant of the linear matrix is also 
+ 1. 

414. In the particular case p=l the only matrices of the p+2 matrices Ak, B, C, D 
which are not nugatory are the two matrices and ; we denote these here by U and V 
and put further 

w=^7_1=( J, v=V~1=( J, v1=uvu3vu3
f w=uvu\ w1 = u2vu3vu2 ; 

then we immediately verify the facts denoted by the following table 

I I u2 j v? I v I vx I w I w1 I 

(&•*) [(-frfll (-&-?) j (?,-a 1 (feiy+fl-1 (feiy- I tf-m) 1 «+?,?) 1 

of which, for example, the first entry means that if = (a, **, j be any matrix of 2 rows 

and columns, and we form the product then the columns £, rj of the matrix are 
interchanged, and at the same time the sign of the new first column is changed ; we have 
in fact 

hence it is immediately shewn, as in the more general case, that every matrix = ( , ^,] , 

for which the integers a, ß, ', ß> satisfy the relation aßf -aß=l, can be expressed as a 
product of positive integral powers of the two matrices 

"-G-ö-'-G"!)-
415. Combining the final result for the decomposition of a linear Abelian matrix with 

the results obtained for any Abelian matrix of order r we arrive at the following statement, 
whereof the parts other than the one which has been formally proved may be deduced from 

that one, or established independently : let = ( , 'T, J be any Abelian matrix of order r ; 

then it is possible to find a linear matrix û expressible as a product of positive integral 
powers of the (p + 2) matrices Aki B, C, D, which will enable us to write A = AiQ, where ^ 
is an Abelian matrix of order r having any one, arbitrarily chosen, of the four forms repre-
sentable by 

*-(W- )- *-(&)• *•-("©' 
and it is also possible to choose the linear matrix Q to put into the form = ,̂ where 
A4 is also any one, arbitrarily chosen, of these same four forms. It follows that the deter­
minant of the matrix A is +*#. In virtue of the equations # « = ( = 1, ...,/>), which 
hold for any one of the matrices 1} 2, 3, 4, and the inequalities which may also be 
supposed to hold among the other elements, as exemplified, § 412, for the case of Au it is easy 
to find the number of different existing reduced matrices of any one of these forms. For 
instance when p = 2, the number when r is a prime number is 1 + r+r2 + r3 ; for p = 3, and r 

. 43 



674 LEMMAS IN REGARD TO GENERAL - [415 

a prime number, it is 1 -f- r+r2-f2 3+r4+r6+r6 ; for details the reader may consult Hermite, 
Compì, Rendus, t. XL. (1855), p. 253, Wiltheiss, Creile, xcvi. (1884), pp. 21, 22, and the 
book of Krause, Die Transformation der Hyperelliptischen Functionen (Leipzig, 1886), 
which deal with the case p — 2 ; for the case jo=3, see Weber, Annali di Mat. Ser. 2a, t. ix. 

(1878), p. 139, where also the reduction to the form A = û ( ) Q', in which Q, Q' are 

linear matrices, is considered. Cf. also Gauss, Disq. Arith., § 213 ; Eisenstein, Creile, xxviii. 
(1844), p. 327; Hermite, Creile, XL., p. 264, XLI. (1851), p. 192; Smith, Phil Tram, CLL 
(1861), Arts. 13, 14. 

416. Considering (cf. § 372) any reduction, of the form 

' = '-')( ' 8 = <" 
where , , J is a linear matrix, we prove that however this reduction be effected, (i) the 

determinant of the matrix B' is the same, save for sign, (ii) if fi be a row of p positive 
integers each less than r (including zero), the rows determined by the condition, 

- 'fi—integral, are the same. For any other reduction of this kind, say = ' '0, must 

be such that 

where ( % *, J is a linear matrix ; the condition that the matrix a of the matrix '0 should 

vanish, namely p'A = 0, requires (since | ^ | | 5 ' | = ^ and therefore \A\, the determinant of 
A, is not zero) that jt?'=0 ; thus the reduction = ' '0 can be written 

fa ß\ = (p9', - 4 + < \ (pA,pB+qB'\ 
\a /37 W , - + < ' ) ' \0 , q'B' J' 

Now pqf = l ; therefore |q'| = +1 ; thus |q'B'| = ± | '\, which proves the first result. Also, 

if /i be a row of integers such that -B 'p is a row of integers, —m say, then - q'B'p, ^q'm, 

is also a row of integers ; while if -q'B'p be a row of integers, =n say, then -pqfB'fi, 

which is equal to -B'p, is equal to pn, and is also a row of integers; since q'B' is the 

matrix which, for the reduction A=Q'A'Q, occupies the same place as that occupied, for the 
reduction = 0, by the matrix B', the second result is also proved. 

417. Considering any rectangular matrix whose constituents are integers, if all the 
determinants of (£+1) rows and columns formed from this matrix are zero, but not all 
determinants of I rows and columns, the matrix is said to be of rank I. The following 
theorem is often of use, and is referred to § 397, Chap. XXII. ; In order that a system of 
simultaneous not-homogeneous linear equations, with integer coefficients, should be capable 
of being satisfied by integer values of the variables, it is necessary and sufficient that the 
rank I of, and the greatest common divisor of all determinants of order I which can be 
formed from, the matrix of the coefficients of the variables in these equations, should he 
unaltered when to this matrix is added the column formed by the constant terms in these 
equations. For the proof the reader may be referred to H. J. S. Smith, Phil. Trans, CLI. 
(1861), Art. 11, and to Frobenius, Creile, LXXXVI. (1879), pp. 171—2. 

418. Consider a matrix of n+l columns and n+1 or more rows, whose constituents 
are integers, of which the general row is denoted by 

tCi, 1%, 6$ ; 
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let A be the greatest common divisor of the determinants formed from this matrix with 
n+\ rows and columns; let A' be the greatest common divisor of the determinants 
formed from this matrix with n rows and columns ; then, since every determinant of the 
(n + l ) th order may be written as a linear aggregate of determinants of the n-th order, 
the quotient A/A' is integral, —M, say. Then the n+1 or more simultaneous linear 
congruences 

Ui=aiX+biy+ +k^+lit + e^u=0 (mod. M) 

have just A incongruent sets of solutions, and have a solution whose constituents have unity as 
their highest common divisor. Frobenius, Creile, LXXXVL (1879), p. 193. 

Also, if in the m linear forms ( m < = or >n+l) 

Ui=ai$+biy+ +hz+ht+eïu> (*=1, . . . , m), 

the greatest common divisor of the m{n + l) coefficients be unity, it is possible to determine 
integer values of x,y, . . . , t, u, such that the m forms have unity as their greatest common 
divisor; in particular, when n=l, if the 2m numbers ai9 bi have unity as their greatest 
common divisor, and the ^m(m—l) determinants afa —afa be not all zero, it is possible to 
und an integer x so that the m forms aiX+bi have unity as their greatest common divisor. 
Frobenius, loc. cit., p. 156. 

419. The theorem of § 418 includes the theorem of § 357, p. 589 ; it also includes the 
simple result stated § 383, p . 637, note. I t also justifies the assumption made in § 397, 
tha t the periods Q, Q' may be taken so tha t the simultaneous equations axr-a'x=l9 

bx'-b'x=0 can be solved in integers in such a way that the 2p elements rx-b, rx'-b' 
have unity as their greatest common divisor; assuming that r is not zero so that the 
p (2p — 1) determinants afa-afa, afa' — a/bi, afa'-a/b/ are not all zero, and tha t Q! has 
been taken so tha t the 2p integers % , . . . , ap, a{, . . . , ap' have no common divisor other 
than unity, the necessary and sufficient condition for the solution of the equations 
oaf - a'x=l, bxf -b'x=0 is (§ 417) that the greatest common divisor, say M, of the p (2p - 1 ) 
binary determinants spoken of should divide each of the 2p integers bl9 . . . , bp'; if this 
condition is not already satisfied we may proceed as follows : find two coprirne integers 
(§418) which satisfy the 2p congruences 

\bi+paj=09 \bi+fiai=0 (mod. M), (*=l> -~>p), 

and thence two integers p, o- such tha t \o--pp = l ; pu t Q/=\0,'+p.Q, Q^pQ' + o-Q, 
Bi = bi\-\-aifi, Ai^bip+aio; Bi=bi\ + aifi, /^ / + / -; then 

biQ,-aiQ,, = Bi Qx - Ai Q/, b/Q - ajQ'= / — AjQ,/, 

and the greatest common divisor of the p(2p — 1) binary determinants A^-AjBi, 
AiBj'-A/Bi, Ai'Bj'-A/Bi, which is equal to M, divides the 2p integers Bl9 . . . , Bp'; 
thus M is the greatest common divisor of these 2p integers; next put Q2=MQ1, Q^Q/, 
hi=BJM, hi=Bi/M, SLi=Ai, a,i=Ai'; then the greatest common divisor of thep(2p-l) 
binary determinants afa - àfa, etc., is unity, and this is also the greatest common divisor 
of the 2p integers h19 . . . , bp'. Now let (x, x1) be any solution of the equations a a / - a ' . r = l , 
haf -b'x=0, so that {rx-b, rx'-b') is a solution of the equations a £ ' - a ' £ = 0 , b £ ' - b ' £ = 0 ; 
let (£, £') be an independent solution of these latter equations (Smith, Phil. Trans., CLI. 
(1861), Art. 4) so that the p{2p-Y) binary determinants oc^-x^i, etc., are not all zero, 
so chosen tha t the 2p elements Çi9 {•/ have unity as their highest common divisor ; then if 
h be any integer, the 2p elements {+ .£ # / + h£/ form a solution of the equations 

' — ' ?=1, ' - ' ^ ; let h be chosen so tha t the 2p elements /v^- fy + h r ^ , 
rxj-bi+hrgi have no common factor greater than unity (§ 418). Putt ing X=x+h%9 
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X'=x,+hÇi the first column of the matrix in § 39*7 will consist of the elements of (a, a'), 
the (p + l)th column will consist of the elements of (b, b'), the second column will 
consist of the elements of rX- , rX'— h'; and since these latter have unity as their 
greatest common factor, it is possible to construct the (p + 2)th and all other columns 
of this matrix (§ 420). 

420. A theorem is assumed in § 396, which has an interest of its own—If of an 
Abelian matrix of order r there be given the constituents of the first r columns, and also the 
constituents of the (p + l)th, ,.., (p+r)th columns (r<p), it is always possible to determine 
the remaining 2(p — r) columns. For a general enunciation the reader may refer to 
Frobenius, Creile, LXXXIX. (1880), p. 40. We explain the method here by a particular case ; 
suppose that of an Abelian matrix of order r, for ?̂ = 3, there be given the first and (p-hl)th 
columns ; denote the matrix by 

( a x t I b ) ; 

I a' of f J ' I 

the elements of the given columns will satisfy the relation ab' — db—r; it is required to 
determine in order the second, the fifth, the third and the sixth columns ; the relations 
arising from the equations 

âa ' -â 'a = 0, ßß?-ß'ß=0, äß-ä'ß=r 

so far as they affect these columns respectively, are as follows : ^ 

ax'-a'x—Qii . ay'-a'y^O^ af-a't=0\ au'-afu—0\ 
bxf-b'x^o] W ' by'-b'y=0V (ii), M-b't=o\ ... 6w'-6%=0 

xy'-x'y=r) xtf-x't=o\ ' u l " xu'-a/u^OY (iv); 
yt'-y,t=0) yu'-tfu^oi 

tu' -tu = r) 

now let (x, xf) be a solution of equations (i) in which the 2p constituents have no common 
factor other than unity ; determine 2 rows of p elements £, f' such that xg —af(=l, and 
denote ag - a'g by A and b% - b'£ by ; then it is immediately verified that the values 

y=r$-(Ab-Ba), tf=r%-(AV-Ba!\ 

satisfy equations (ii) ; next let (£, t') be a solution of equations (iii) in which the 2p 
constituents have no common factor other than unity ; determine 2 rows of p elements, 
v, i/, such that tv — tfv = l, and denote av—a'v, bv' — b'v, xv—xfv> yv—y'v respectively by 
A, By X, Y; then it is immediately verified that the values 

u=rv-(Ab-Ba)-(Xy- Yx), u'=rv'- (Ab'- Ba') - (Xy1 - Yx*) 

satisfy the equations (iv). 


