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CHAPTEE XIII. 

ON KADICAL FUNCTIONS. 

240. T H E reader is already familiar with the fact that if suit represent 
the ordinary Jacobian elliptic function, the square root of 1 — sn2 n may be 
treated as a single-valued function of u. Such a property is possessed by 
other square roots. Thus for instance we have* 

V(l — sn u) (1 — sn u) 

I HTU I I I 

1 - 2qm sin ^ + q™ 1 - 2qm~* sin ^ + ç2"1"1 

4 Ä 1-2Ç2—1cosJ + ^ - 2 

where i f is a certain constant, and, as usual, q = e~irK'tK. The single-
valuedness of the function V(l — sn u) (] — k sn u) can be immediately seen 
to follow from the fact that each of the zeros and poles of the function 
(1 — sn u) (1 — k sn u) is of the second order. I t is manifest that we can 
easily construct other functions having the same property. If now we write 
u = ux,a a n ( j consider the square root on the dissected elliptic Biemann 
surface, we shall thereby obtain a single-valued function of the place x, 
whose values on the two sides of either period loop will have a ratio, 
constant along that loop, which is equal to + 1. 

Ex. Prove tha t the function 

N / ( V ^ -T j - >Je2-ex) (JÇu- - ^ r t ) 

is a single-valued function of u. 

Further we have, in Chapter XI., in dealing with the hyperelliptic case 
associated with an equation of the form 

3/2 = (x - ox) ... (x - a^) (x-c), 

* Cf. Cayley, Elliptic Functions (1876), Chap. XI. The function may be regarded as a 
doubly periodic function, with 8K> 2iK' as its fundamental periods. It is of the fourth order, 
with K, 5K, K + iK\ +iK' as zeros, and iK\ 2K+Œ', ÏK+iK', 6K+Œ' as poles. 
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been led to the consideration of functions of the form V(c — Xj)... (c — xp), 
which are expressible by theta functions with arguments uy = ^ > a i + 
+ uxP>aPm These functions are not only single-valued functions of the 
arguments u> but, when the Riemann surface is dissected in the ordinary 
way, also of every one of the places xY, ..., xp. In fact the square root Vc — x 
is a single-valued function of the place x because, being a branch place, 
x — vanishes to the second order at the place, and the point at infinity 
being a branch place, x — is there infinite to the second order. The values 
of the square root Vc — x on the two sides of any period loop will have a 
ratio, constant along that loop, which is equal to ± 1. 

241. More generally it may be proved, for any Riemann surface, that if 
Z be a rational function such that each of its zeros and poles is of the mth 
order, the mth root, W Z, is a single-valued function of position on the 
dissected surface, with factors at the period loops which are mth roots of 
unity. And it is easy to prove this in another way by obtaining an ex­
pression for such a function. For let al9 ..., ar be the distinct poles of Z, and 
ßlf ..., ßr its distinct zeros, so that the function is of order vir. Let z\ c be 
the normal elementary integral of the third kind and vi , ..., vp the normal 
integrals of the first kind. Then when the paths are restricted not to cross 
the period loops we have* equations 

m ( t £ 1 , e 4 + ^ , > ^ + ^ ( 1 + + kp'riiP, (i = l, 2, ...,jp), 

wherein , ..., kp, &/, ..., hp are certain integers independent of i. Hence 
the expression 

m[ILx>a + + > ]-2Trik1'v
x>a- -2wikp

fv^a 

wherein a is an arbitrary fixed place, represents the rational function Z, save 
for an arbitrary constant ; and we have 

Vz=AtA^+ +I4,«r-ur(Mi + +kpV» \ 
where A is a certain constant. This expression defines y/Z on the dissected 
surface as a single-valued function of position. More accurately it defines 
one branch of VZ, the other m - 1 branches being obtained by multiplying 
A by mth roots of unity. So defined, the function \/Z is affected, at the 

period loop -, with a factor e m \ and, at the period loop a/, with the 
2 

factor em l. 

242. We have, in chapters X., XL, been concerned with other functions, 
namely the theta functions which also have the property of being single-

* Chap. VIII. § 155. 
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valued on the dissected Riemann surface, but affected with a factor for each 
period loop. They are also simpler than rational functions, in that they do 
not possess poles. I t is therefore of interest to express such functions as 
y/Z by means of theta functions; and the expression has an importance 
arising from the fact that the theory of the theta functions may be established 
independently of the theory of the algebraic integrals. To explain this 
mode of representation consider the quotient 

,j, = »( -«; g)frQ*-/; r) 
r W *(u-E; Q)Ò(U-F; R) ' 

where the numerator and denominator contain the same number of factors, 
( , q) denotes the function (Chap. X. § 189) given by 

2 2 eauH2hu(n+q') +b(n+tf)*+2Triq(n+q') 

q> r, • • • > Q> • • • denote any characteristics, and e, f. ..., E, F, ... denote any 
arguments. 

Then by the formula (§ 190) 

^ (u + ; q) = &M w+**i(Mq'-M'q) ^ (M . q^ 

where if, i f denote integers, we have ^( + ) /yjr ( ) = eL, where L is 

\M(u-e) + \M(u-f) + -\M(ii-E)-\M(u-F)-
+ 2 (^ + ' + - Q' - R' - ...)-2TTÌM' (q + r + -Q-R-...), 

namely, is 

- M * + / + -E-F-...) + 2iriM(q' + r+ -Q'-R'-...) 

-2<7riM'(q + r + -Q-R-...). 
Thus if 

«*+ƒ* + =Ei + Fi+ , 
and 

4i + + -(Qi +Ri + . . . ) = - # . - , ( = 1,2, . . . ,p ) , 
Tïh 

qi+Ti'+ -(Qi' + Ri' + ...) = ±Ki't 

where Kiy K{ are integers and m is an integer, it follows, for integral values 
of if, if', that 

If now we take = , as in § 192, and put ux>a for u, ò(u—e; q) 
becomes a single-valued function of x whose zeros are (§§ 190 (L), 179) the 
places œu ...,xp, given by 

e — Çlq = uxi' ai + + *^> °P, 
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where a1} ..., ap are p places determined from the place a, just as in § 179 
the places ml9 ..., mp were determined from the place m; hence, in this case, 
-v/r (u) is the mth root of a rational function, having for zeros places 

Xi, . . . , Xp, Zi, . . . , Zp, . . . , 

each m times repeated, and for poles places 

2Llt . . . , JLpy Ztlt . . . , Zip, . . . , 

each m times repeated, these places being subject only to the conditions 
expressed by the equations 

ux"x* + +ti*p>xP + uzi>zi+ +M«P»3>+ = [lK K> (A). 
m 

In this representation we have obtained a function of which the number 
of m times repeated zeros is a multiple of p, and also the number of m times 
repeated poles is a multiple of p. It is easy however to remove this restric­
tion by supposing a certain number of the places x1} ..., xpy zly ..., zp to 
coincide with places of the set Xl9 ..., Xp> Zlf ..., Zpt  

243. A rational function on the Riemann surface is characterised by the 
facts that it is a single-valued function of position, such that itself and its 
inverse have no infinities but poles, which has, moreover, the same value 
at the two sides of any period loop. The functions we have described may 
clearly be regarded as generalisations of the rational functions, the one new 
property being that the values of the function at the two sides of any period 
loop have a ratio, constant along that loop, which is a root of unity. For 
these functions there holds a theorem, expressed by the equations (A) above, 
which may be regarded as a generalisation of Abel's theorem for integrals 
of the first kind; and, when the poles of such a function are given, the 
number of zeros that can be arbitrarily assigned is the same as for a rational 
function having the same poles, being in general all but p of them; this 
follows from the theory of the solution of Jacobi's inversion problem 
(Chap. IX. ; cf. also §§ 37, 93). I t will be seen in the course of the following 
chapter that we can also consider functions of a still more general kind, 
having constant factors at the period loops which are not roots of unity, and 
possessing, beside poles, also essential singularities; such functions may be 
called factorial functions. The particular functions so far considered may be 
called radical functions ; it is proper to consider them first, in some detail, on 
account of their geometrical interpretation and because they furnish a 
convenient method of expressing the solution of several problems connected 
with Jacobi's inversion problem. 

244. The most important of the radical functions are those which are 
square roots of rational functions, and in view of the general theory developed 
in the next chapter it will be sufficient to confine ourselves to these functions. 



3 7 8 ASSOCIATION OF A RADICAL FUNCTION [244 

In dealing with these we shall adopt the invariant representation by means 
of -polynomials, which has already been described*. An integral polynomial 
of the rth degree in the p fundamental -polynomials, , . . . , > will be 
denoted by ( ), or ^ ( r ) , when its 2r (p — 1) zeros are subject to no condition. 
When all the zeros are of the second order, and fall therefore, in general, at 
r(p— 1) distinct places, the polynomial will be denoted by X{r) or Y{r) ; we 
have-f* already been concerned with such polynomials, X(1), of the first degree 
in ..., . 

I t is to be shewn now that the square root VX(r) can properly be associated 
with a certain characteristic of 2p half-integers; and for this purpose it is 
convenient to utilise the places mYi ..., mV) arising from an arbitrary place m, 
which have already;]; occurred in the theory of the theta functions. These 
places are§ such that if a non-adjoint polynomial, , of grade p, be taken to 
vanish to the second order at m, there is an adjoint polynomial, yjr, of grade 
(n — 1) cr-f n — 3 + fi, vanishing in the remaining njj, — 2 zeros of , whose 
other zeros consist of the places m1} • .., mp, each repeated. Take now any  

-polynomial, 0, vanishing to the first order at ra, and let its other zeros be 
A1} ..., J.2p_3; and take a polynomial <3> vanishing to the second order in 
each of Al9 ..., A2p_2 ; then (3> will|| contain 5 (p - 1 ) - 2 (2p - 3), = p + 1, 
linearly independent terms, and will have 6 (p — 1) — 2 (2p — 3), = 2p, further 
zeros. Let X(1) be any -polynomial of which all the zeros are of the second 
order. Consider the most general rational function, of order 2p, whose poles 
consist of the place m, this being a pole of the second order, and of the zeros 
of X{1). This function will contain 2p—p + l,.=p + l, linearly independent 
terms and can be expressed in either of the forms {3)/ 0

2 {1), { / {1), where  
/r is any polynomial of grade (n — l)a -\-n — 3 + /-& which vanishes in the 

Tifju — 2 zeros of other than m. Since nowl" yfr can be chosen, = -v/r, so that 
the zeros of this function are the places mlt ..., mp, each repeated, it follows 
that (3) can be equally chosen so that this is the case. So chosen it may be 
denoted by X{3). Thus the places mlf ..., mp arise as the remaining zeros of a 
form X® (with S (p — 1), =p + 2p — 3, zeros, each of the second order), whose 
other 2p — 3 separate zeros are zeros of an arbitrary -polynomial, 0> which 
vanishes once at the place m. 

If now /ij, ..., ? _! be the places which, repeated, are the zeros of X{1), it 
follows, since m, n1} ..., np-l, each repeated, are the poles, and mly ..., mp, 
each repeated, are the zeros of a rational function, {3)/ 0

2 {1), that, upon the 
dissected surface, we have 

mP, m nì,ml - -i 1 / 7 , 7 ' , , 7 / \ 
Vi -Vi - -Vi = - t W + &iTi,i+ +kpTitP)9 

* Chap. VI. § 110 £f., and the references there given, and Klein, Math. Annal, xxxvi. p. 38. 
t Chap. X. § 188, p. 281. J Chap. X. § 179. 
§ Chap. X. § 183, Chap. VI. § 92, Ex. ix. 
|| Chap. VI. § 111. 1[ Chap. X. § 183. 
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where k1} ..., kP) fc/, ..., kp' are certain integers. Hence, as in § 241, it 
immediately follows that the rational function / 0

2 {1), save for a constant 
factor, is the square of the function 

+ + 11 +11 + Tri (« v, + + „ v ^ 
e »»„w, mP-i,nP-i nip,m v ! l P /> ) 

» 
and therefore that the expression \/ {3)/ 0^

 {1) may be regarded as a single-
valued function on the dissected Riemann surface, whose values on the two 
sides of any period loop have a ratio constant along that loop. These constant 
ratios are equal to e"4'**' and e~mkr for the rth loop of the first and second kind 
respectively. When the places mlt ..., mp are regarded as given, these 
equations associate with the form v l ( 1 ) a definite characteristic 

2 ki • • • Ì 2*' ) 2^*1 j • • • , 2 kp • 

Also, if F(3) be any polynomial which, beside vanishing to the second 
order vanishes to the second order in places ?/ / , ..., mp , 
Y{3)jX{3} is a rational function, and we have equations of the form 

V + + t>t-
p =i(X£ + X1

/Tisl+ +VT*M»)» 

, _ , , * '? + + l l a 7 ' " - 7 T J ( V T M + + V ^ J 

V F<3> / V Z <3> = Ae Wl 'Wl Wp 'm p , 

where X1? ..., X/ are integers, J. is a constant, and the paths of integration 
are limited to the dissected Riemann surface. These equations associate 
VF«3' with the characteristic |X1? ..., ̂ \p, ^ / , .,., JX/. 

And, as in § 184, Chap. X., we infer that every odd characteristic is 
associated with a polynomial* X{1), and every even characteristic with a 
polynomial Y(3), which has J.ly ..., ^2p_3 for zeros of the second order; and it 
may happen that the polynomial F(3) corresponding to an even characteristic 
has the form 0

2 {1)> in which case the places m/, ..., mp consist of the place 
m and the zeros of a form F(1). 

245. Let now X{2v+1) be any polynomial whose zeros consist of 
(2v + 1) (p — 1) places, zlt z2i ..., each repeated ; let 0 be as before, vanishing 
in ra, Aly ..., Azp-d> and X(3) be as before, vanishing to the second order in 
Aly ..., -äsp- , wh» •••» wip. Then if (,,) be any «/»-polynomial whose zeros 
are d, c2, . . ., the function 

2 ^+1)/[ (3) 

* Or in particular cases with a lot of such polynomials, giving rise to coresidual sets of 
places. 
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is a rational function of order 2(2v + l)(p — 1) + 2, whose zeros are m, zx, z2i ..., 
and whose poles consist of the places m^ ..., mp> and the zeros of , each 
repeated. Hence as before <f>0*JX(2v+1)/<i>(vWX® is a single-valued function on 
the dissected surface, and the form A/X(2H_1) is associated with a characteristic 
| g i , . . . , ^ , ^qi, ..., \qp , such that, on the dissected surface, 

+ + ^ +Vi + = i ( ? i + 2iT* f l+ -rqpTi,p), 

( = 1, 2 , . . . , p ) ; 

and if, instead of , we had used any other polynomial > ( ), the character­
istic could, by Abel's theorem, only be affected by the addition of integers. 

Suppose now that F(2/x+1) is another polynomial, and take a polynomial ^(/A) ; 

then if the characteristic of the function < £ 0 V F < 2 * + 1 7 ^ W \ / 2 > differ from that 

of 0^
 {2 +1)/ {^ VX(3) only by integers, we have when xly #2, ... denote the 

zeros of \/Y^+1\ and 1? d2, ... denote the zeros of ^ ) , the equation 

^ + +i\ +^i + = î W + ?iT*,i + +qPTi}P) 

+ MÌ + M1'TÌ>1 + + Mp' rp, 4, 

where Mlt ..., , / / , ..., i f / denote integers; by adding this to the last 
equation we infer* that 0^ ^ ^ 7 ^ ^ / ^ ¥<"> X® is a rational function. 
Hence*f, since there exists a rational function of the form 0

2 ^/ ^ we 
infer, when \/X{2v+1\ VF (2M,+1) have characteristics differing only by integers, 

there exists a form <&^+v+v whose zeros are the separate zeros of VX('2v+1} and 

V F ^ 1 » , and we have \/X<^+1>VF^+1> = + -«. 

Hence, all possible forms VF ( 2 ^ + 1 ) , with the same value of /J,, whose 
characteristics, save for integers, are the same, are expressible in the form 
(frif+v+D/b/xv+v, where < -»+« is a polynomial of the degree indicated, 
which vanishes once in the zeros of */X{2v+1K All such forms VF { 2 ^ + 1 ) are 
therefore expressible by such equations as 

V F = X 1 V 1 1 + +\2 ( -1)* *2 ( -1), 

where v7{ 2 , i + 1 ) , . . . , ^ ^ 2 (
+-i) a r e sPe°ia^ polynomials, and \ ..., X2fi(jp-i) are 

constants. The assignation of 2/ (p — 1) — 1, = (2/ + 1) (|? — 1) — p, zeros of 
\/ (2̂ +i) will determine the constants \ , ..., X2/i(i>-i), and therefore determine 
the remaining p zeros. When = 0 there may be a reduction in the number 
of zeros determined by the others. 

I t follows also that the zeros of any form VF ( 2 / X + 1 ) are the remaining zeros 
of a polynomial ^+2> which vanishes in the zeros of a form \/Xm having 

* Chap. VIII. § 158. f Chap. VI. § 112. 
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the same characteristic as VF (^+ 1 ) , or a characteristic differing from that of 

yfjr^+ij o n iy by integers. When the characteristic of VX(3) is odd, and 

V]P> = « VZw, we may take <*+2> to be of the form <̂ +1> *1*. 

I t can be similarly shewn that if X(2/A) be a polynomial of even degree, 2/JU, 
in the fundamental -polynomials, of which all the zeros are of the second 
order, and (/1) be any polynomial of degree JA, the quotient V X ^ / may 
be interpreted as a single-valued function on the dissected surface, and the 
form VX (2/ ) may be associated with a certain characteristic of half-integers. 
Further the zeros of VZ(2/1) are the remaining zeros of a form *̂1* which 
vanishes in the zeros of a form VX(2) of the same* characteristic as VX(2^. 
Also if \/X(1), VF*1» be two forms whose (odd) characteristics have a sum 
differing from the characteristic of VX(2) by integers, the ratio V X ^ / V X ^ F ^ 
is a rational function ; and if we determine (p — 1) pairs of odd characteristics, 
such that the sum of each pair is, save for integers, equal to the character­
istic of VX<2), and VXX

(1), VF!*1*, VX2
(1), VF/*, ..., represent the corresponding 

forms, there exists an equation of the form 

As a matter of fact every characteristic, except the zero characteristic, can, 
save for integers, be written as the sum of two odd characteristics in 
2P-2 ( 2 * - i - 1) ways . 

246. In illustration of these principles we consider briefly the geometrical 
theory of a general plane quartic curve for which p = 3. We may suppose 
the equation expressed homogeneously by the coordinates X-±, X%, X$ and take 
the fundamental -polynomials to be <f>i=x1) 2= 2, 3 = #3. There are 
then 2 ^ ( 2 ^ - 1 ) = 28 double tangents, J w , of fixed position. There are 
2^, = 64, systems of cubic curves, X(3), each touching in six points. Of these 
six points of contact of a cubic, X(3), of prescribed characteristic, three may be 
arbitrarily taken ; and we have in fact 

Vx^ = x, \/X^> + \2 Vx/> + x2 Vz7> + \4 Vx/>, 

where \ b X>, \3 , X4 are constants, and V X ^ , \/X2
{3),..., are special forms of 

the assigned characteristic. The points of contact of all cubics X(3) of given 
odd characteristic are obtainable by drawing variable conies through the 
points of contact of the double tangent, Z), associated with that odd 
characteristic. Let 0 be a certain one of these conies and let X0 denote the 
corresponding contact-cubic ; then the rational function 02)/ 20

2 has, clearly, 
no poles, and must be a constant, and therefore, absorbing the constant, we 
infer that the equation of the fundamental quartic can be written 

4X 0 D-XV = 0. 

* Or a characteristic differing from that of v l ^ ' by integers. 
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Three of the conies through the points of contact of D are xJD = 0, x2D = 0, 
# 3 i ) = 0 ; the corresponding forms of X{s} are x^D, ?2

2 x3
2D. Hence all 

contact cubics of the same characteristic as Vi) are included in the formula 

VXw = ( X ^ + X A + X A ) *J~D + VZ0, 
or 

Z<3>=Z0 + f20P+i)P2 , 

where P = X ^ + \po2 + X3#3, 1} X2, X3 being constants ; the conic through the 
points of contact of D which passes through the points of contact of Z<3) is 
given by n = 2 V D X ( 3 ) , or (1 = 2PD -f ,; and the fundamental quartic can 
equally be written 

4Z<3>D - 2 = 4 (Z0 + ß 0 P + DP2) D - (fl0 + 2PZ>)2 = 0. 

If then we introduce space coordinates X, F, Z, T given by 

X=xu Y=x2, Z=x3, T=-*/XjD) 

so that the general form of VZ(3) with the same characteristic as Vi) is given 

_ 
VX » = VD (\,2T + 2 Y+\3Z - T), 

we have 
4X0 (X, Y, Z) D (X, Y, Z) = IV (Z, F, Z), 

2TD (X, Y, Z) + > {X, Y, Z) = 0, 

where X0 (X, Y, Z) is the result of substituting in X„, for 
respectively X, F, etc. ; by these equations the fundamental quartic is 
related to a curve of the sixth order in space of three dimensions, given 
by the intersection of the quadric surface 

22!D(Z, F , ^ ) + X20(Z, Y,Z) = 0 

and the quartic cone 

4Z0 (Z, F, ) D (Z, F, Z) = tt0
2 (Z, F, Z) ; 

the curve lies also on the cubic surface 

( , F, Z) + m0(X, F, Z) + X0(X, F, £ ) = 0, 

which can also be written 

(T-PyD(X} Y,Z) + (T-P)Çl(X} Y>Z) + X^(X> Y,Z) = 0, 

where P denotes \X + X2F+ X^, = 2PZ> + >, and Z<3> = DP2 + 0 + Z 0 , 
as above. 

I t can be immediately shewn (i) that the enveloping cone of the cubic 
surface just obtained, whose vertex is the point Z = 0 = F = Z, is the quartic 
cone whose intersection with the plane T = 0 gives the fundamental quartic 
curve, (ii) that the tangent plane of the cubic surface at the point 
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X = 0 = Y = Z is the plane D(X, Y,Z) = 0, (iii) that the planes joining 
the point X = 0 = F = Z to the 27 straight lines of the cubic surface 
intersect the plane = 0 in the 27 double tangents of the fundamental 
quartic other than D, (iv) that the fundamental quartic curve may be 
considered as arising by the intersection of an arbitrary plane with the 
quartic cone of contact which can be drawn to an arbitrary cubic surface 
from an arbitrary point of the surface. 

Thus the theory of the bitangents is reducible to the theory of the right 
lines lying on a cubic surface. Further development must be sought in geo­
metrical treatises. Cf. Geiser, Math. Annal. Bd. I. p. 129, Giselle Lxxii. (1870); 
also Frahm, Math. Annal, vil. and Toeplitz, Math. Annal, xi.; Salmon, Higher 
Plane Curves (1879), p. 231, note; Klein, Math. Annal, xxxvi. p. 51. 

247. We have shewn that there are 28 double tangents each associated 
with one of the odd characteristics ; the association depends upon the mode 
of dissection of the fundamental Riemann surface. We have stated moreover 
(§ 205, Chap. XL), in anticipation of a result which is to be proved later, that 
there are 8.36 = 288 ways in which all possible characteristics can be repre­
sented by combinations of one, two, or three of seven fundamental odd 
characteristics. These fundamental characteristics can be denoted by the 
numbers 1, 2, 3, 4, 5, 6, 7, and in what follows we shall, for the sake of 
defmiteness, suppose them to be either the characteristics so denoted in the 
table given § 205, or one of the seven sets whose letter notation is given at 
the conclusion of § 205. Thus the sum of these seven characteristics is the 
characteristic, which, save for integers, has all its elements zero ; or, as we 
may say, the sum of these characteristics is zero. 

A double tangent whose characteristic is denoted by the number will be 
represented by the equation ^ = 0. A combination of two numbers also 
represents an odd characteristic (§ 205, Chap. XI.), so that there will also be 
21 double tangents whose equations are of such forms as Uij = 0. The three 
products VW%, */u2u31, *Jn3u12 will be radical forms, such as have been denoted 
by 's/X^, each with the characteristic 123. Hence if suitable numerical 
multipliers be absorbed in ult u3y we have (§ 245) an identity of the forms 

V̂ iWgg + *Ju2u31 + ^u3u12 = 0, ( 31 + u3u12 — ^ )2 = 4} 3 31 2 ; 

this must then be a form into which the equation of the fundamental quartic 
curve can be put. Further, each of the six forms 

\ 2££12, VU3U13, VU4UU, *Ju5Uib) VU6U16, WU7U17 

has the same characteristic, denoted by the symbol 1. Thus, if suitable 
numerical multipliers be absorbed in n2) u4, the equation of the quartic can 
also be given in the form 

(u2uu + — 13)
2 = 4> 2 2 1 . 
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If therefore 

ƒ = u2u3l + u3u12 — ^, = u2ii12 + 4 4 — 13, 
we have 

( / - ) ( / + ) = 4w2^i2 (^3^13 - *)-

Now if/— were divisible by w2, and ƒ+<ƒ> divisible by 2 the common 
point of the tangents = , 2 — 0 would make ƒ = 0, and therefore be upon 
the fundamental quartic, ƒ 2 = 2 31 2 ; this is impossible when the quartic 
is perfectly general. Hence, without loss of generality, we may take 

ƒ — = 2Xu2u12, 

2 

ƒ + = ^ O3W13 - tt^), 

X being a certain constant, and therefore 

u4uu = ii3n13 — X / + ^2u2u12, = 13 — X (w2^31 -f w3w12 — Wî as) + \*u2u12. 

Therefore, when the six tangents , u2ì u3> u^, u3U ul2 are given, the tangents 
u4} uu can be found by expressing the condition that the right-hand side 
should be a product of linear factors ; as the right-hand is a quadric function 
of the coordinates this will lead to a sextic equation in X, having the roots 
X = 0, X = oo ; if the other roots be substituted in turn on the right-hand, we 
shall obtain in turn four pairs of double tangents ; these are in fact (u4, 4), 
{ > ^is), (u6> ) , ( , Uu)- We use the equation obtained however in a 
different way; by a similar proof we clearly obtain the three equations 

U4U14 = 3 — (u2U31 + U3Ul2 — ^) + ^ ^ 

tl4U24 ^~ ^1^21 "** ^ 2 \^3^*l2 • /^l±U23 ~~" U2lX3\j -f- »2 U3U23y \ / 

= 32 — X3 ( ^ + u2u3l — 12) + 3
2
 31, 

and hence 

^(S+1;)= W23 ( + £ ) +Wl ( + ^ "2w23) ' 
from this we infer that the common point of the tangents ult u4 either lies on 

u23 or on X2w3-|--
? = 0; as the fundamental quartic may be written in the 

X3 

form \lAii4uu + */ 23 + ^ 13 = , it follows that if , 4, u^ intersect, 
they intersect on the quartic, which is impossible. Hence u4 must pass 

through the intersection of ^ a n d \2u3 + -? = 0 ; now we may assume that 
X3 

the tangents tt-j, u2 y u3 are not concurrent, since else, as follows from the 

equation ^ ^ -f \/u2u31 -f ^u3u12 = 0, they would intersect upon the quartic ; 
thus may be expressed linearly by uly u2i u3i and we may put 

u4 = + a2u2 + a3u3 = aYuY + j-i X2u3 + — ), 
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and so obtain X2 = A1a3, \ 3 = 1/A1a2, hx being a certain cons tan t ; then the 
equation under consideration becomes 

(Uu U%\ 1 , /U21 \ 

I + ~\ ) = tl23 ( ~~ a - + Ul l + A l "" ^j ' 
or 

(W04 «34 7 \ / «21 -v 7 \ 

r^- + — Ul«23 J = «1 ( >- + V ' % — 2t*23 — «A«23J , 
so that , if denote a proper constant, 

•~~ -f- —— — % **23 7 " l > 
Ag A3 /ii 

- = — 4- — - Ai«23 (2 + o A ) . 
d2 

We can similarly obtain the equations 

- 2 = — + — - h2u3ì (2 + a2h2), 
Œ3 Cti 

- k3u4 = h — - 1 12 (2 + a3h3), 
dl Q/2 

where h2, h3, k2i k3 are proper constants ; therefore, as «23, u31, u12 are not 
concurrent tangents, since else they would intersect on the fundamental 
quartic, we infer, by comparing the r ight-hand sides in these three equations, 

Ä?i K2Qj\ IC3(X/\ K2 K3Ct2 j 

3 / 7 \ 

?3 i 1X3 /2 ^ 3 

and hence, = k2 = k3, — , say, and 1 + 2 /1^ ! -f afhf = 0 or Ax = , 

h2 = , 3 = . 
a2 a3 

Thus 

aj a2 a3 

or 

— + —• + — + ( , + 2 + 3 ) = 0. ( ) 
Cti &2 ^ 3 

Fur ther we obtained the equation 

A 2 A 3 Hi 

thus we have 

«24 . «34 , «23 j «34 . «14 , «31 7 ai
 UU , U24 «12 _ 7, 

T - + — H = ^ « 1 , - + —t = to2«2, — 4- — + ~ r = # « > 
A2 A3 1 A3 Ai Cl2 Ai A2 cl3 

. 25 
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and therefore, as X2 = ~> \* = ~> a n d similarly \ = — - , we have, by 
CL] (X2 ^ 3 

the equation (C), 

uu = — + ( 2 + a3u3), 

uu = — + ( 3 + ttxO, 
&3 a2 

= — + AT (a^ij + a2u2). 
ttj Cl3 

But if we put 

= bj + 2 + 3 3̂, W6 = + C2W2 + C3U3, U7 = + d2U2 + <£$W3, 

we have also three other equations such as (C), differing from (C) in the 
substitution respectively of the coefficients b1} b2, b3 cl} c2i c3 and dly d2i d3 in 
place of dj, a2, a3, and of three constants, say I, m, n, in place of k. As the 
tangents u5, u6i are not concurrent (for the fundamental quartic can be 
written in a form *Ju5u15 + \/ 6 1 + *Ju7u17 = 0) we may use these three last 
equations to determine u^, u31, u12 in terms of u1} u2, u3; the expressions 
obtained must satisfy the equation (C). Thus there exist, with suitable 
values of the multipliers Ay , , the six equations 

G D 
1- - + - + ; 7 = 0 , AkaY + Blbx + Gmc1 + Dnd1 = 0, 

Ch\ 0\ C\ (Jb\ 

D 
— + + - + — = 0, 2 + Blb2 + 2 + Dnd2 = 0, 
(l2 02 2 &2 

D 
— + - + -- + - = 0, 3 + Blb3 + 3 + Dnd3 = 0. 
^ 3 ^3 ^3 ^ 3 

From these equations the ratios of the constants , ly m, n are determinable; 
suppose the values obtained to be written pk', pi', pm', pri, where p is undeter­
mined, and k', l', ra', n' are definite ; then, if we put for o» VF, ßi for 
bivi', ji for Ci*Jm\ bi for dis/rì, v^ for w^/p, v31 for 31/ , and v12 for 12//>, the 
equations obtained consist of 

(i) four of the form 

Ü» + 0*L + .^2 + Ä l ^ + a 2 ^ 2 + = 0 ( ) 
ÄJ 2 ot3 

in which t h e r e occur in t u r n t h e sets of coefficients (aly a2i a3), (ßlt ß 2 , ß3), 
(ji, 7 , 7 )> (Si, S2, S3) ; from a n y t h r e e of t he se v^ , v31, v12 m a y b e expressed i n 
t e r m s of ult u2, u3; 

(ii) four sets of the form 

« 3 ^23 , , « i v31 a 2 v™ 
""^"Vl4=:^~ + 2̂ 2 + 3^ ? v24 = — + a3u3-\-a1u1, vu = — - f a^ i -f a2u2y a2 «i a3 a2 ax a3 

where vu = ? 14/ V F , v24 = 24/ V F , vM = uujp V F . 
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I t will be recalled that in the course of the analysis the absolute values, 
and not merely the ratios of the coefficients in , u2> u3> u5} u6, u7i have 
been definitely fixed. Thus when these seven bitangents are given the 
values of aly a2, a3> b1} b2y b3i etc. are definite ; therefore the equations of the 
15 bitangents v23> v31y v12, vUìv^, vUì are now determined from the seven 
given ones in an unique manner, and there is an unique quartic curve 
expressed by 

vVv23 + */u2v31 + *Ju3vl2 = 0, 

which has the seven given lines as bitangents. 

It remains now to determine the remaining six double tangents whose 
characteristics are denoted by 

45, 46, 47, 56, 57, 67. 

If the characteristics 1, 2, 3, 4, 5, 6, 7 be taken in the order 1, 4, 5, 2, 3, 6, 7 
it is clear that as we have determined the double tangents u23y u31f u12 in 
terms of , u2y u3y so we can determine the tangents U&, u51y uu in terms 
of , , u5. Thus the tangent u^ can be found by substitutions in the 
foregoing work. For the actual deduction the reader is referred* to the 
original memoir, Riemann, Ges. Werke (Leipzig, 1876), p. 471, or Weber, 
Theorie der Abel1 sehen Functionen vom Geschlecht 3 (Berlin, 1876), pp. 98—100. 
Putting a1u1 = œy a2'u2 = y, (x3u3 = z, i'23/«i = £ Vsi/** = V> W a a = ? » ßilcti=Ai> 

ji/^i = Bi, hi J ai = Ci (i = 1, 2, 3), the quartic has the form 

V#£ + \lyv + \/zÇ = 0, 

and the 28 double tangents are given by the following scheme, where the 
number representing the characteristic is prefixed to each 

(1) * = 0 , (2) y = 0, (3) * = 0 , (23) f = 0, (31) 77 = 0, (12) f = 0 , 

(4) x + y+z = 0t (5) A1œ + A2y+A3z = 0, (6) + B2y + B3z = 0, 

(7) O ^ + O ^ + OSÄ^O, 

(14) £ + y + ,z = 0, (24) v+z + œ = 0, (34) f + a? + y = 0, 

(15) -|- + + ^ = 0> (25) - | -+ ^ + =0, (35) - f + * + 4 8 = 0, 
Al - -2 -«-3 

(16) J - + , + B3z = 0, (26) J - + Bäz + B,x =0, (36) | + + , = 0, 

(17) | + % + C3z = 0, (27) g- + G3z + G,x = 0, (37) ^ + Gxm + 0, = 0, 

* For the theory of the plane quartic curve reference may be made to geometrical treatises ; 
developments in connection with the theta functions are given by Schottky, Grelle, cv. (1889), 
Frobenius, Grelle, . (1885) and ibid. cm. (1887) ; see also Cayley, Grelle, xciv. and Kohn, 
Grelle, cvii. (1890), where references to the geometrical literature will be found. 

25—2 
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/ x / z  

ê v  
(45) z^ï-" ^3)+ 1 -~ ^)+2. ( ^ )=°' 

(75) J -_g~Bs +
 + 52

 = °' 

(46) (1 - 2 3)
+ , (1 - 3

 + ^ ) = °' 

v5b) 1 _ 2 3
 + 1 - + I -   

? v  
(47) ,(1 - ")+

 2(1 - + 0,(1 - 1(72)
=0' 

Here the six quantities , y, z, £, r), Ç are connected by the equations 

£ + *7 + f + œ + y + z = , 

^+*L + ^+A1x + A2y + A3z = 0, 
^ 1 ^ 2 ^*-3 

^ + ̂ + | + « + + 8^ = 0, ( D ) 

jf- + ^ + J- + ^ ? + G2y + 035 = 0. 

Conversely, if we take arbitrary constants Alf A2, A3, , B2, Bs, whose 
number, 6, is, when p = 3, equal to Sp — 3, namely equal to the number 
of absolute constants upon which a Riemann surface depends when p = 3, 
and, by the first three of the equations (D) determine £, 77, f in terms of the 
arbitrary lines œ, y, z, the last of the equations (D) will determine Clt C2y 03 

save for a sign which is the same for all ; then it can be directly verified 
algebraically that the 28 lines here given are double tangents of the quartic 
curve *Jx% + slyt) + "JzÇ= 0. 

248. Before leaving this matter we desire to point out further the 
connection between the two representations of the tangents which have been 
given. Comparing the two equations of the fundamental quartic curve 
expressed by the equations (§§ 246, 247) 

0
2 = 4 0 (x£ + yv-zÇy = 4>Çvxy, 

and putting, in accordance therewith, 

D (xly x2, x3) = £, n 0 (xly x2i x3) = zÇ-xÇ- yrj, X0 (x1} x2) x3) = xyrj 

and (cf. p. 382) replacing the fourth coordinate T by T + u, where 
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is an arbitrary linear function of x, y, z or , x2> x3j the equation of the 
cubic surface 

( 2 4 uf D + ( + ) 0 + Z 0 = 0, 
becomes 

T2£ + T(zÇ- x% - yv + 2uÇ) + u^ + u(zÇ-yv- af) + ^ = 0, 
or 

(T+uyÇ + (T+u)(zÇ-xÇ-yv) + xyv = 0, 

which will be found to be the same as 

(T+ii)(T + u-x-z)(T + u-x-C)-(T+u-x)(T+u + y)(T+ii + v) = 0. 

Write now 

y — — x — z, w= u — x— ' = u — x, v' = u + y, w' = 4- ; 

then we obtain the result, easy to verify, that if u, v, w, u', v', w' be arbitrary 
linear functions of the homogeneous space coordinates X, Y, Z, and T be 
the fourth coordinate, the tangent cone to the cubic surface* 

(T+u)(T + v)(T + w)-(T + u')(T + v')(T + w') = 0 (i) 

from the vertex X = 0 = F = Z can be written in the form 

V(P - ' ^ 7) + *J(u - v') (u -"«/) + V(V - v) (V - w) = 0, 

where P — P' =u + v + w — v! — v' — w ' ; we have in fact 

X= U — ', =v' — U, Z = u' — V, 7] =w' — II, Ç—U-— W, 

Çt=-(x + y+z + v + Ç),=P-P'. 

Now the 27 lines on the cubic surface (i) can be easily obtained f ; and 
thence the forms obtained in § 247, for the bitangents of the quartic, can be 
otherwise established. 

249. Ex. i. Prove that when the sum of the characteristics of three bitangents of the 
quartic is an even characteristic, their points of contact do not lie upon a conic. 

By enumerating the constants we infer that it is possible to describe a plane quartic 
curve having seven arbitrary lines as double tangents. By the investigation of § 247 
it follows tha t only one such quartic can be described when the condition is introduced 
tha t no three of the tangents shall have their points of contact upon a conic. By the 
theory here developed it follows that for a given quartic such a set of seven bitangents can 
be selected in 8 . 36 = 288 ways. 

Ex. ii. We have given an expression for the general radical form \JX$) of any given 

odd characteristic. Prove that a radical form \ / <3) whose characteristic is even, denoted, 

suppose, by the index 123, can be written in the form 

X(3)==X \A^i V 3 + *l V%W12
W13 + *2 V ^ 2 % A l + X 3 V 4 A I % 2 > 

* Any cubic surface can be brought into this form, Salmon, Solid Geometry (1882), § 533. 
t See Frost, Solid Geometry (1886), § 537. The three last equations (D) of § 247 are deducible 

from the equations occurring in Frost. The three equations correspond to the three roots of the 
cubic equation used by Frost. 
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where X, \l9 X2, ^ 3 are constants, and , u{j denote double tangents of the characteristics 
denoted by the suffixes, as in § 247. 

Ex. iii. If (J^, \q'), ( i^ j \r') denote any two odd characteristics of half-integers, 
express the quotient 

algebraically, when jt? = 3. 

Ex. iv. Obtain an expression of the quotient of any two radical forms \/X$\ \ YW, 
of assigned characteristics and known zeros, by means of theta functions, p being equal to 3. 

250. Noether has given* an expression for the solution of the inversion 
problem in the general case in terms of radical forms, which is of importance 
as being capable of great generalization. 

Using the places m1} . . . , mpy associated as in Chap. X. with an arbitrary 

place m, and supposing them, each repeated, to be the remaining zeros of a 

form X(3), which vanishes to the second order in each of the places Alf . . . , A2p_3 

in which an arbitrary -polynomial, 0) which vanishes in m, further vanishes, 

as in § 244, let VF*3' be any radical form, and (1) any -polynomial whose 

zeros are a l 5 . . . , a22?_2. Then (§ 241) the consideration of the rational function 

<f>Q
2Y®l[<&w]2X® leads to the equations 

[ t ^ * + * ? ' * + + ^ - ^ - a + ^ ^ - 2 ] __ [ t £ * _ vCu»H_ _ ^ ^ j 

= — i(o"f + CTiTit ! +• + a-pTit p), 

wherein the places 
, . . . , <2 — j Ci, . . . , Cp 

are the zeros of VF ( 3 ) , all of cr1? . . . , ap, <J/, . . . , <Tp are integers, and z is an 

arbitrary place; and, as follows from these equations, the places #i , . . . ,# 2p-3 

may be arbitrarily assigned, the places cly . . . , cp and the form VF*31 being 

determinate, respectively, from these equations and the equation 

l 0 g ÌxV2^> = C O n s t a n t + ns..«. + + »,«2„.2 + 1.», + + UcP,m„ 

. , x, a f x, a-, 
+ 7Tl[(T1V1 + +<TpVp J, 

wherein the place a is arbitrary. Hence if we speak of 

( i ^ i , •••> i<rP, b^i* •-> 2 e r / ) 

as the characteristic of VF*3*, it follows, if VfZ{3) be another radical form with 
the characteristic 

(sr/>i> — > > ••> ÌPp) 
and the zeros 

00ly . . . , X.2p—3, » ! , . . . , dp, 

* Math. Annal, xxviii. (1887), p. 354, "Zum Umkehrproblem in der Theorie der Abel'schen 
Functionen." 
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tha t the quotient VF^/VZ*3*, which is equal to 

- -r-rX, a , . -i- ;, , • r/ / t\ x. d i i />. x. a-, 

4 e
n c i , d , + + ; , + 7 ^ 1 - / ) ^ ' + + « - P / ) V ] 

wherein A is a quanti ty independent of x, is (§ 187, Chap. X.) also equal to 

C*il(*i'-Pi')v?a + + « - P > ? g i e ( ! f ' w 4 ) < " W t - - » ' * ) 

é^/ ' w - / i < W i - . . . . . . - ^ ^ ^ ) > 

where is a quanti ty independent of x\ bu t by the equations here given 
this is the same as 

„«[(<Ti'-Pi')*f ,e + + « - p / K ' a l 
ve 

(H)^,a2p-2-f.^i,ai -f -f ^2p-3,a22)-3 + ^ ç i ^ > 

where ^fla denotes p such quantities as | ( o ^ + e"\Tit i + + ^ , j») ; thus, 
if we pu t 

# = if a2p - 2 -f vxi > «i -f- - j - ̂ 2 p - 3, «2p-3 

and recall the formula (§ 175) 

© (v + £ ) = e - ^ ' ^ + ^ + W ) Q (v . La> La')f 

we infer tha t 

where ^ is a quanti ty independent of x. 

Now in fact (§ 245) the general radical form v F (3 ) , of assigned charac­
teristic (4<r, Jo-'), is given by 

^ 1 ^ 1 "l T ' - -» 2p - 2 J 

/ (3Ì / (3) 

where v ? ! , . . . , * Y ^ - 2 are special forms of this characteristic, and X a , . . . , X2^-2 

are constants. If we introduce the condition tha t VF*3* vanishes at the 

places a?!, ...,#2p_3
 w e infer tha t VF*3* is equal to ( , xlf . . . , ^ - ), where 

F is independent of and A^ (x, xly . . . , 2 - ) denotes the determinant 

! JY™ (x), , Vl^U (x) I 

J ^ f (* )> yyju(* i ) 

in which is to be taken in turn equal to 1, 2, . . . , 2p — 3. Hence we have 

Aff (x, xu . . . , #2J?-3) = g ( ; ; \< , \ ) 

Ap3) (#, , . . . , a%,_3) % (v ; J/o, J/)') 
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where, from the symmetry in regard to the places x, x1} ..., x2p_Z) G is 
independent* of the position of any of these places, and v is given by 

2) = lp* 2 - 2 - j - | ^ i » «i . j - -f- ifbp - 31 a2p - 3. 

To apply this equation to the solution of the inversion problem expressed 
by p such equations as 

V * ' Pi + + ifp » **P = W, 

where /^, ..., fip denote p arbitrary given places, we suppose the positions of 
the places a^+i, ..., xw_3 to be given ; then instead of A(r(xf xly . . . , x^s) we 
have an expression of the form 

A1JWÏ*)+ +i^,^Sw, 
where v 1^ (x\ ..., v Fp'+i(*) denote forms VF(3) ( ) vanishing in the given 
places xp+1, ..., xw_Zi and -41 ..., Ap+1 are unknown constants. Since the 
arguments are given, the arguments v are of the form if' a^p~2 + w, where w 
is known. If then in the equation 

J Y? {x)+ + Ap+1 J ' («) = ( >; ì«r, i<r') 

Jz[S) (œ)+ + Bp+1 Jz(X (x) (» ; èp, * ') 

we determine the unknown ra t ios .^ : J.2
 : : ^ + i : Bi : : Bp+1 

by the substitution of 2p + 1 different positions for the place x, this equation 
itself will determine the places xu ..., xp. They are, in fact, the zeros of 
either of the forms 

A1J~YÌ')(x) + + AP+1^YPJ^), 

BJW(X)+ +B„lJzj*+1(x) 
other than the given zeros xp+1} ..., xw_3. If the first of these forms be 
multiplied by an arbitrary form V F ( 3 ) (x)y of characteristic (Jo-, Jcr'), the 
places xly ..., xp are given as the zeros of a rational function of the form 

*?'(*)+ + +1 <%( !), 
of wh ich 4 p — 6 zeros a r e k n o w n , cons i s t ing , n a m e l y , of t h e p l aces xp+1, . . . , xw_3 

a n d t h e zeros of V F ( 3 ) (#) . 
In regard to this result the reader may consult Weber, Theorie der A bePschen Functio­

nen vom Geschlecht 3 (Berlin, 1876), p. 157, the paper of Noether {Math. Annal, xxviii.) 
already referred to, and, for a solution in which the radical forms are mth roots of rational 
functions, Stahl, Creile, LXXXIX. (1880), p. 179, and Creile, cxi. (1893), p. 104. I t will be 
seen in the following chapter tha t the results may be deduced from another result of 
a simpler character (§ 274). 

251. The theory of radical functions has far-reaching geometrical applications to 
problems of the contact of curves. See, for instance, Clebsch, Creile, LXIII. (1864), p. 189. 
For the theory of the solution of the final algebraic equations see Clebsch and Gordan, 
AbeVsche Functnen. (Leipzig, 1866), Chap. X. Die Theilung; Jordan, Traité des Sub­
stitutions (Paris, 1870), p. 354, etc.; and now (Aug. 1896), for the bitangents in case p = 3, 
Weber, Lehrbuch der Algebra (Braunschweig, 1896), II. p. 380. 

* For the determination of G see Noether, Math. Annal, xxviii. (1887), p. 368, and Klein, 
Math. Annal, xxxvi. (1890), pp. 73, 74. 


