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CHAPTER X. 

B I E M A N N ' S THETA FUNCTIONS. GENERAL THEORY. 

173. THE theta functions, which are, certainly, the most important 
elements of the theory of this volume, were first introduced by Jacobi in 
the case of elliptic functions.* They enabled him to express his functions 
sn u, en u, dn u, in the form of fractions having the same denominator, the zeros 
of this denominator being the common poles of the functions sn u, en % dn u. 
The ratios of the theta functions, expressed as infinite products, were also 
used by Abel f. For the case p = 2, similar functions were found by GöpelJ, 
who was led to his series by generalizing the form in which Hermite had 
written the general exponent of Jacobi's series, and by Kosenhain§, who 
first forms degenerate theta functions of two variables by multiplying to­
gether two theta functions of one variable, led thereto by the remark that 
two integrals of the first kind which exist for p = 2, become elliptic integrals 
respectively of the first and third kind, when two branch places of the surface 
for p = 2, coincide. Both Göpel and Rosenhain have in view the inversion 
problem enunciated by Jacobi; their memoirs contain a large number of 
the ideas that have since been applied to more general cases. In the form 
in which the theta functions are considered in this chapter they were first 
given, for any value of p, by Riemann||. Functions which are quotients 
of theta functions had been previously considered by Weierstrass, without 
any mention of the theta series, for any hyperelliptic caself. These functions 
occur in the memoir of Rosenhain, for the case p = 2. I t will be seen that 

* Fundamenta Nova (1829) ; Ges. Werke (Berlin, 1881), Bd. I. See in particular, Dirichlet, 
Gedächtnissrede auf Jacobi, loc. cit. Bd. i., p. 14, and Zur Geschichte der Abelschen Trans-
cendenten, loc. cit., Bd. ., . 516. 

t Œuvres (Christiania, 1881), t. i. p. 343 (1827). See also Eisenstein, Creile, xxxv. (1847), 
p. 153, etc. The equation {b) p. 225, of Eisenstein's memoir, is effectively the equation 

P(tO = 4p(W)-02p(W)-03. 
I Creile, xxxv. (1847), p. 277. 
§ Mém. sav. étrang. xi. (1851), p. 361. The paper is dated 1846. 
|| Creile, Liv. (1857) ; Ges. Werke, p. 81. 
IT Creile, xLvii. (1854); Creile, LII. (1856); Ges. Werke, pp. 133, 297. 
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the Riemann theta functions are not the most general form possible. The 
subsequent development of the general theory is due largely to Weierstrass. 

174. In the case p = 1, the convergence of the series obtained by Jacobi 
depends upon the use of two periods 2 , 2a/, for the integral of the first 
kind, such that the ratio &>'/U> has its imaginary part positive. Then the 

quantity q = e is, in absolute value, less than unity. 
Now it is proved by Riemann that if we choose normal integrals of the 

first kind v^ a,..., v^a,so that v*'a has the periods 0.. .0, 1, 0, ..., 1,..., | , 
the imaginary part of the quadratic form 

= 1
2+ 4- )

 2 + + 2 1)2 1 + + 2 8 8 + 

is positive* for all real values of the p variables nlf ...,np. Hence for all 
rational integer values of %, . . . , npy positive or negative, the quantity ™  
has its modulus less than unity. Thus, if we write s = } s + s, pTtS 

and )8 being real, and aly =b1 + icly ..., apy =bp + icp> be any p constant 
quantities, the modulus of the general term of the jp-fold series 

2 2 2 e<№+ + + 

wherein each of the indices , ..., np takes every real integer value 
independently of the other indices, is e~L, where 

X=-(&!% + +bpnp) + 7r(tCun1
2+ +2tflj2 + ), 

= - ( M i + + bpnp) + ylr, say, 

where / is a real quadratic form in nlt ..., np, which is essentially positive 
for all the values of , ... considered. When one (or more) of nly ...,np 

is large, L will have the same sign as yjr, and will be positive ; and if /J, be any 

positive integer eLlfl is greater than 1 + L/JJ,, and therefore e~L <(l+ -) ; 

now the series whose general term is ( l H—) will be convergent or not 

according as the series whose general term is yfr"^ is convergent or not, for 

the ratio 1 + - : ^ has the finite limit 1/fi for large values of } ..., ; 

and the series whose general term is -^"^ is convergent provided /A be taken 

* The proof is given in Forsyth, Theory of Functions, § 235. If w* a, ..., v% a denote a set of 
integrals of the first kind such that wx,a has no periods at the b period loops except at bri and 

has there the period 1, and <7 r,b...,ff r,pbe the periods of w*>a at the a period loops, the quadratic 
function 

<r11n1
2+ +2ff12n1n2+ 

has its imaginary part negative. 
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>\p. (Jordan, Cours d'Analyse, Paris, 1893, vol. L, § 318.) Hence the 
series whose general term is 

f>axnx+ + + 

is absolutely convergent. 

In what follows we shall write 2mur in place of ar and speak of , ..., up 

as the arguments; we shall denote by un the quantity u1n1 + + upnp, 
and by 2 the quadratic 2 4- + 2 12 1 2 + Then the Riemann 
theta function is defined by the equation 

© (u) = 2e*rfwl+urrt>', 

where the sign of summation indicates that each of the indices n\y ...,np 

is to take all positive and negative integral values (including zero), 
independently of the others. By what has been proved it follows that © (u) 
is a single-valued, integral, analytical function of the arguments %, . . . , up. 

The notation is borrowed from the theory of matrices (cf. Appendix ii.) ; r is regarded 
as representing the symmetrical matrix whose (r, s)th element is rr> 8, n as representing 
a row, or column, letter, whose elements are nlb ..., nPi and similarly, as representing 
such a letter with uXi ..., up as its elements. 

I t is convenient, with © (u), to consider a slightly generalized function, 
given by 

© (u ; q, q'), or © (u, q) = %e2niu <"+<?')+**"- w+qv+^iq (n+q'). 

herein q denotes the set of p quantities qlt ...,qp, and q' denotes the set 
of p quantities g/, ..., qpt and, for instance, ( -f q) denotes the quantity 
un + uq} namely 

+ + upnp + u1qî+ + upqp', 

and T (n + q')2 denotes rn2 + 2rnq + rq'2, namely 

(TU n2 + ... + 2T1J2 1 , + . . . ) + 2 Tr>s nrqs' + (TUJ/8 + ... + 2 1| g/ç/ + . . . ) . 
e = l r = l 

The quantities qlt ..., ^ , g/, ..., g^ constitute, in their aggregate, the 
characteristic of the function © (u ; g) ; they may have any constant values 
whatever; in the most common case they are each either 0 or \. 

The quantities T^J are the periods of the Kiemann normal integrals of the first kind at 
the second set of ! loops. It is clear however that any symmetrical matrix, o-, which 
is such that for real values of kXi kp the quadratic form a-k2 has its imaginary part 
positive, may be equally used instead of r, to form a convergent series of the same form as 
the series. And it is worth while to make this remark in order to point out that the 
Riemann theta functions are not of as general a character as possible. For such a 
symmetrical matrix <r contains ip(p+l) different quantities, while the periods r r ,8 are 
(Chap. I., § 7), functions of only 3 p - 3 independent quantities. The difference ^p(p + l) 
-(3jö-3)=£öt?-2)(f>-3), vanishes for p = 2 or p = 3; for p = 4 it is equal to 1, and for 
greater values of p is still greater. We shall afterwards be concerned with the more 
general theta-function here suggested. 



175] FUNDAMENTAL IDENTITIES. 249 

The function G(u) is obviously a generalization of the theta functions used in the 
theory of elliptic functions. One of these, for instance, is given by 

2U> 

and the four elliptic theta functions are in fact obtained by putting respectively qi q' = 0, £ ; 

=i , i ; =i,0; =o,o. 
175. There are some general properties of the theta functions, imme­

diately deducible from the definition given above, which it is desirable to 
put down at once for purposes of reference. Unless the contrary is stated it 
is always assumed in this chapter that the characteristic consists of half 
integers; we may denote it by \ßl9 ..., \ßPi \aly ..., \OLP) or shortly, by 
\ß> 2a> where ßlt ..., ßp, alf ..., â  are integers, in the most common case 
either 0 or 1. Further we use the abbreviation I2m,m/, or sometimes only Om , 
to denote the set of p quantities 

mi + T^m/H- + Ti)Pmp\ (i = 1, 2, ...,p), 

wherein m1} ..., mp, m/, ..., mp are 2p constants. When these constants 
are integers, the p quantities denoted by £lm are the periods of the p Riemann 
normal integrals of the first kind when the upper limit of the integrals is taken 
round a closed curve which is reducible to mi circuits of the period loop hi 
(or mi crossings of the period loop a^ and to m/ circuits of the period 
loop di, being equal to 1, 2, ...,p. (Cf. the diagram Chap. II. p. 21.) 
The general element of the set of p quantities denoted by I2m, will also 
sometimes be denoted by m^ + Tim', TI denoting the row of quantities formed 
by the ith row of the matrix . When 2, . . . , w / are integers, the quantity 
rrii + Tim' is the period to be associated with the argument . 

Then we have the following formulae, (A), (B), (C), (D), (E) : 

© ( - ; i /3, i a ) = er" © ( ; i/3, Ja), (A). 

Thus ( ; \ß, \ ) is an odd or even function of the variables , ..., up 

according as ßa, =ß1a1 + +ßPap, is an odd or even integer; in the 
former case we say that the characteristic ^/3, %a is an odd characteristic, in 
the latter case that it is an even characteristic. 

The behaviour of the function © (u) when proper simultaneous periods 
are added to the arguments, is given by the formulae immediately following, 
wherein r is any one of the numbers 1, 2, ...,^?, 

&( , . . . , M r + l , ...,up] i A £ ) = **"' ( ; £ £ ), 

( ! + 1| , + 2> > ...,Up + TPtr', \ß)\*) = e-^^rHTrtr)-«ißr®(u] 1 1 ). 

Both these are included in the equation 

© (U + ; 1 / 3 , J « ) = eT*^'<«+**»'> +«i(ma-m>ß) g ^ . ^ ß ^ a^ ( ß ) . 
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herein the quantities , ..., mp, m/, ..., mp are integers, w-f-flm stands for 
the p quantities such as ur + mr -f / > + - / )1?, and the notation 
in the exponent on the right hand is that of the theory of matrices ; thus 
for instance ' ' denotes the expression 

p 

% m/Ov^m/H- +TriPmp'), 

and is the same as the expression denoted by '2. 

Equation (B) shews that the partial differential coefficients, of the second 
order, of the logarithm of ®(u ; %ß, ^a), in regard to , ..., up, are functions 
of , ..., Up with 2jp sets of simultaneous periods. 

Equation (B) is included in another equation ; if each of ß\ a! denotes a 
row of p integers, we have 

to obtain equation ( ) we have only to put ßr' = 2mr, a/ = 2m/ in equation 
(C). If, in the same equation, we put ß' = — /3, ' = — a, we obtain 

® (tt - £ , •; i/3, £a) = e™ <*-*~) © (u ; 0, 0) = e " <*-*™> © (w) ; 

from this we infer 

(t* ; i & i a ) = e™ <»+*+*«> © (ii + J Û A a), (D) ; 

this is an important equation because it reduces a theta function with any 
half-integer characteristic to the theta function of zero characteristic. 

Finally, when each of m, m' denotes a set of p integers, we have the 
equation 

® (u ; \& + m, \OL +m') = ***»• © ( ; £/3, £a), (E) ; 

thus the addition of integers to the quantities \OL does not alter the theta 
function %{u\ \ß, \a), and the addition of integers to the quantities \ß 
can at most change the sign of the function. Hence all the theta functions 
with half-integer characteristics are reducible to the 2^ theta functions which 
arise when every element of the characteristic is either 0 or £. 

176. We shall verify these equations in order in the most direct way. The method 
consists in transforming the exponent of the general term of the series, and arranging the 
terms in a new order. This process is legitimate, because, as we have proved, the series is 
absolutely convergent. 

(A) If in the general term 
giriti (n+è a )+ ( +$ >* -f,r# (tt+£a) 

we change the signs of v^, ..., up, the exponent becomes 

2 ( - n - a+^a) + ( - n - a -f Ja) + niß ( - n — a+\a) + Zirißri+irißa. 
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Sincfe a consists of integers we may write m for -n-a, that is mr— - (w r + a r), for 

r = l , 2, . . . , p ; then, since ß consists of integers, and therefore e2nlßn=l, the general term 

becomes 
irißa -21 ( + | )+ ' ( + )+ /3( + *). 

ti • ti j 

save for the factor ^ , this is of the same form as the general term in the original series, 
the summation integers mly ...,mp replacing nu . . . , np. Thus the result is obvious. 

(B) The exponent 

2ni ( + m+ ') (n+J ) + ' ( + J ) 2 + - / ( + J ), 

wherein m + ' stands for a row, or column, of p quantities of which the general one is 

mr+Trilmi+ +TrtPmp\ 
is equal to 

2niu (n + Ja)+ inr (ft + Jof + niß (n+J a)+27rw/m -f 7Uwia + 2nirmrn + nirm'a 

= 2niu(n + m'+% ) + ( + ' + Ja)2+7rtj3 (n + ?iï + Ja) -2nim'( + \ ') 

-f ni (ma — miß) + 2nimn. 

Replacing e
2lTimn by 1 and writing n for n+m', the equation (B) is obtained. 

(G) By the work in (B), replacing m, m' by J/37, J a ' respectively, we obtain 

27ri(u + iß'+%Ta')(n+ia) + i7rr(n + %a)2 + 7riß(n + %a) 

= 27 (n + J a' -f Ja) -f ' (ft-fJ a '-fJ a) -f niß (n + J a + J a) - nia' ( + % ' ) 
+ i n i (ß'a- aß) + niß'n, 

and this is immediately seen to be the same as 

2niu(n + $a,+ia) + inT(n+ia+ia)+ni(ß + ß')(n+ia' + Ja)-7rta'(w + J/3 +J/34£ra') . 

This proves the formula (C). 

I t is obvious that equations (D) are only particular cases of equation (C), and the 
equation (E) is immediately obvious. 

I t follows from the equation (A) that the number of odd theta functions contained in 
the formula Q(u; J # , Ja) is 2 ^ _ 1 ( 2 P - 1 ) , and therefore that the number of even functions 
is 2 2 * - 2 P - 1 ( 2 * > - 1 ) , or 2 P - ! ( 2 P + 1). 

For the number of odd functions is the same as the number of sets of integers, 
xn •••> XPI Pteacn either 0 or 1, for which 

#i#i-f- -\-xpyp—Q,n odd integer. 

These sets consist, (i), of the solutions of the equation 

#!#! + +#p_12/p_1=an odd integer, 

in number, say, f{p- 1), each combined with each of the three sets 

{* , ) = , 1), (1, 0), (0, 0), 

together with, (ii), the solutions of the equation 

%\ \ + +#p_1y1 ,_1 = an even integer, 

in number 22*>-2-f(p-1), each combined with the set 

, ) = (1> !)• 
Thus 

^ ) = 3 / ( ~1) + 22 - 2 - / ( - 1 ) = 2 ^ - 2 + 2 / ( ^ - 1 ) 

= 2 2 *- 2 +2{2 2 P- 4 +2/Qo-2)} = etc. 

= = 2 2 - 2 - 2 2 - 3 + 2 2 ^ - 4 + + 2P + 2 P - 1 / ( 1 ) 

= 2P- 1 (2P-1 ) . 

Hence the number of even half periods is 2*>~1 (2» -h 1 ). 
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177. Suppose now that eu ..., ep are definite constants, that m denotes a 
fixed place of the Riemann surface, and x denotes a variable place of the surface. 

We consider p arguments given by ur ••= vr' + er, where v{ , ..., vp' are 
the Riemann normal integrals of the first kind. Then the function © (u) is 
a function of x. By equation (B) it satisfies the conditions 

© (u + k) = © (w), © (ur + rrk') = e~2ldK <W+*T*'> © (w), 

wherein denotes a row, or column, of integers k1} ..., kp and &' denotes 
a row or column * of integers &/, ..., &/. As a function of , the function 

© (v^ m + e) cannot, clearly, become infinite, for the arguments vr' + er are 
always finite ; but the function does vanish ; we proceed in fact to prove the 
fundamental theorem—the function © ( m + e) has always p zeros of the 
first order or zeros whose aggregate multiplicity is p. 

For brevity wTe denote vr* + er by wr. When the arguments , ..., up 

are nearly equal to any finite values Ult ..., Up, the function © (u) can 
be represented by a series of positive integral powers of the differences 

— Uu ..., up — Up. Hence the zeros of the function ®(u), = © (vx> m + e), 
are all of positive integral order. The sum of these orders of zero is there­
fore equal to the value of the integral 

2^. ƒ d log © («)=^ijidu&; (uve («) = ~fdxî(du,/dx) (e;<*)/8(«)), 

wherein the dash denotes a partial differentiation in regard to the argument 
ue, and the integral is to be taken round the complete boundary of the^-ply 
connected surface on which the function is single-valued, namely round the p 
closed curves formed by the sides of the period-pair-loops. (Cf. the diagram, 
p. 21.) 

Now the values of * * -~ at two points which are opposite points on 

a period-loop ar are equal, and in the contour integration the corresponding 
values of dx are equal and opposite. Hence the portions of the integral 
arising from the two sides of a period-loop ar destroy one another. The 

values of * } / at two points which are opposite points on a period-loop br 

differ by — 27 , or 0, according as s = r or not. 

Hence the part of the integral which arises from the period-loop-pair 

(ar> br) is equal to — I dur, taken once positively round the left-hand side of 

the loop br, namely equal to — (— 1) = 1. 

The whole value of the integral is, therefore, p ; this is then the sum 
of the orders of zero of the function © (vx>m + e). 

* The notation + ' denotes the p arguments MJ + TJÄ', ..., + '. 
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178. ID regard to the position of the zeros of this function we are able 
to make some statement. We consider first the case when there are p dis­
tinct zeros, each of the first order. I t is convenient to dissect the Riemann 
surface in such a way that the function log © (if*m + e) may be regarded as 
single-valued on the dissected surface. Denoting the p zeros of © (vx> m + e) 
by zly ..., zp, we may suppose the dissection made by p closed curves such as 
the one represented in Figure [2], so that a zero of © ( m + e) is associated 
with every one of the period-loop-pairs. Then the surface is still p-iplj 
connected, and log © ( ) is single-valued on the surface bounded by the 

Fig. 2. 

a^r— — 

p closed curves such as the one in the figure. For we proved that a com­
plete circuit of the closed curve formed by the sides of the (ar, br) period-
loop-pair, gives an increment of 2iri for the function log © (u) ; when the 
surface is dissected as in the figure this increment of 2 is again destroyed 
in the circuit of the loop which encloses the point zr. Any closed circuit 
on the surface as now dissected is equivalent to an aggregate of repetitions of 
such circuits as that in the figure ; thus if x be taken round any closed 
circuit the value of log © (u) at the conclusion of that circuit will be the 
same as at the beginning. From the formulae 

, . . . ,w r + l, ...,Up) = Q(u), 

© O I + TV,!, ...,Ur+Trtr, ...,up + TrfP) = e-27ri(ur+ì'rr,rì ®(u), 

which we express by the statement that ® (u) has the factors unity and 
e-2iri(ur+%Trr) for th e period loops ar and br respectively, it follows that log©(w) 
can, at most, have, for opposite points of ar, br, respectively, differences of 
the form 2 , — 2iri(ur + J ) — 2irihrì wherein gr and hr are integers. 
The sides of the loops for which these increments occur are marked in the 

figure, ur denoting the value of vr' + er at the side opposite to that where 
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the increment is marked ; thus ur + £ , is the mean of the values, ur and 
ur + ) which the integral ur takes at the two sides of the loop br. 

Since log ® (u) is now single-valued, the integral -—. I log © (u). dus, 

taken round all the p closed curves constituting the boundary of the surface, 
will have the value zero. Consider the value of this integral taken round the 
single boundary in the figure. Let Ar denote the point where the loops 
art br> and that round zrt meet together. The contribution to the integral 

arising from the two sides of ar will be I grdv£m, this integral being taken 

once positively round the left side of ar, from Ar back to Ar. This contri­

bution is equal to > 8. The contribution to the integral =—. I log © (u) dus 

which arises from the two sides of the loop br is equal to 

- I [v? m + er + £ , r + K] dvx
s'

m, 

taken once positively round the left side of the curve br, from Ar back to Ar ; 
this is equal to 

- J ifr m + £Tr, r) dv*' m + (fir + h)fr, s, 

where / ) 8 is equal to 1 when r = s, and is otherwise zero. Finally the part 

of the integral ^—. I log ® ( )̂ duSj which arises by the circuit of the loop 

enclosing the point zr> from Ar back to Ar, in the direction indicated by the 

arrow head in the figure, is I dv*'m where Ar denotes now a definite point on 
J Ar 

the boundary of the loop br. If we are careful to retain this signification we 
may denote this integral by vp r. When we add the results thus obtained, 
for the p boundary curves, taking r in turn equal to 1, 2, . . . , p , we obtain 

, , , ^ Zr, Ar f , x,m 1 v -, xt m \ 

8+giTh8+ +gPTp,s+es= Z \-vs +1 (vr +iTrir)dvs , 
r=l L J àr J 

wherein, on the right hand, the br attached to the integral sign indicates 
a circuit once positively round the left side of br from Ar back to Ar ; and if 
ks denote the quantity defined by the equation 

ks= 2 (vr +iTrir)dvs , 
r = l J br 

which, beside the constants of the surface, depends only on the place m, 
we have the result 

h8 + giTli8 + ...+gpTPìS + es=-vZs'Aì - ...-v?Ap + k8 ( * = 1 , 2, ...,p). 
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179. Suppose now that places mlf...,mp are chosen to satisfy the 
congruences 

v?'A' + +v?tA' = kl; (8 = 1,2,....p); 

this is always possible (Chap. IX. §§ 168, 169) ; it is not necessary for our 
purpose, to prove that only one set* of places , ...,mp, satisfies the con­
ditions ; these places, beside the fixed constants of the surface, depend only 
on the place m. Then, by the equations just obtained, we have 

e8 = -(vs + + vs ) ; ( s = l , 2, ...yp). 

Thus if we express the zero in the function ® (v*>m + e), it takes the form 

e / x, m Zi, m,! Zp,mp -, f ,. 

(vs -vs - -v8 - V - T e s O , 
where #/, ..., gp, A/, ..., hp' are certain integers, and this, by the fundamental 
equation (B), § 175, is equal to 

&(£*-£-»>- -vT™*), 

save for the factor e-2mg> (v*'*»-^™*- -t^-»-!^ T h i g f a c t o r d o e g n o t 

vanish or become infinite. Hence we have the result : It is possible, corre­
sponding to any place m, to choose p places, mly ...ymp, whose position depends 
only on the position of m, such that the zeros of the function, 

(M) fox, m — yzit Wi — — yZp, mP\ 

regarded as a function of x, are the places zly ..., zp. This is a very funda­
mental resultj\ 

I t is to be noticed that the arguments expressed by vx>m — v Z l > m i — . . . — vZp*  
do not in fact depend on the place m. For the equations for miy ..., mp, 
corresponding to any arbitrary position of ra, were 

m\,Al mPiAp , f , x, m , -, -, x> a 

vs + +vs =Jcs, = Z (vr +iTrir)dvs , 
r=l J òr 

a being an arbitrary place. If, instead of m, we take another place p, we 
shall, similarly, be required to determine places y^, ..., /JLP by the equations 

#, , + + vTAp = ks> = Î f («?* + * . ) > ", (e = 1,2, ...,p); 
r=l J br 

* If two sets satisfy the conditions, these sets will be coresidual (Chap. VIII., § 158). 
+ Cf. Riemann, Ges. Werke (1876), p. 125, (§ 22). The places , ..., mp are used by Clebsch 

u. Gordan (Abel. Functionen, 1866), p. 195. In Riemann's arrangement the existence of the 
solution of the inversion problem is not proved before the theta functions are introduced. 
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thus 

£" + +Vs = 2 ; *dv, , = 2 / , , r t £ , ( * = 1 , 2, ...,|>), 
r=lJ br r=l 

wherein fsr = l when r = s, and is otherwise zero, as we see by recalling 
the significance of the br attached to the integral sign. Thus (Chap. VIII., 
§ 158), the places /xlf ..., fip, m are coresidual with the places 1 ..., mp> fi, 
and the arguments 

x, m Zj, zp, mp 

vs -v8 - -vs 

are congruent to arguments of the form 

x, fi zlt Zp,  
Vs -Vs - -Vs . 

The fact that the places fil7 ...,/x^, m are coresidual with the places 
ml9 ..., mp, ft, which is expressed by the equations 

1»»»1 . , Mi»!«? . «iM / i o \ 

vs + +vs +vs =0, (s = l, 2,...,p), 

will also, in future, be often represented in the form 

If the places mly ..., mp are not zeros of a -polynomial, this relation 
determines /^, ..., fip uniquely from the place / . 

Ex. In casep= 1, prove that the relation determining , ..., mp leads to 

Hence the function (V * +J+Jr) vanishes for x—zi as is otherwise obvious. 

180. The deductions so far made, on the supposition that the p zeros of 
the function © (if'm + e) are distinct, are not essentially modified when this 
is not so. Suppose the zeros to consist of a ^-tuple zero at zl9 a p2-tuiple zero 
at 52, ..., and a j^-tuple zero at z^, so that p1 -f +Pk—p- The surface 
may be dissected into a simply connected surface as in Figure 3. The 
function log 0 ( ^ > m + e ) becomes a single-valued function of x on the 
dissected surface ; and its differences, for the two sides of the various cuts, 
are those given in the figure. To obtain these differences we remember 
that log ( m + e) increases by 27 when x is taken completely round 
the four sides of a pair of loops (ar, br). The mode of dissection of Fig. 3, 
may of course also be used in the previous case when the zeros of S {vx>m + e) 
are all of the first order. 

The integral ^—. I log © {vx'm + e) dv*'m, taken along the single closed 

boundary constituted by the sides of all the cuts, has the value zero. Its 



1 8 0 ] ARE NOT DISTINCT. 257 

value is, however, in the case of Figure 3, 

prf-A' + +№?' * 

+ gj dv'r-hi dv*r-f (^m + el + ir1,1)dvTm-(p-l)vi'Al 

+ ff.f dvïm-hj dvx
s-

m-f (vx
2-

m + e, + br^)dv:'m-(p-2)vt"A-
J a2 J b2 J b2 

+ 
+9P dvs ~-hp\ dvs - / (vp + ep + \rPiP)dvs , 

J Op J bp J bp 

wherein the first row is that obtained by the sides of the cuts, from A1} 

excluding the zeros zl9 ..., zk, and the second row is that obtained from 
the cuts Oi, bly d, and so on. The suffix Oj to the first integral sign in 

the second row indicates that the integral is to be taken once positively round 
the left side* of the cut al9 the suffix indicates a similar path for the 
cut bly and so on. If, as before, we put ks for the sum 

7 & f / x>m , i \ j x*m 

fcs, = z (vr +iTr)r)dvs , 
r=l J br 

we obtain, therefore, as the result of the integration, that the quantity 

hs + giTSti+ +gPTSiP+es 

* By the left side of a cut , or , is meant the side upon which the increments of log 9 {u) 
are marked in the figure. The general question of the effect of variation in the period cuts is 
most conveniently postponed until the transformation of the theta functions has been considered. 

. 17 
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is equal to 

7 Zu Av zfc, Ax , I N A2i Ax , 3, A2 APt Ap-i 

and this is immediately seen to be the same as 

h — V
Z1 » Al _ — Ti^l' APx _ of^ AP&* — — y2*' APi+P2 _ - _ V

Zk> AP 
s s s s s s 

We thus obtain, of course, the same equations as before (§ 179), save that 
zY is here repeated times, ..., and zk is repeated pk times. And 
we can draw the inference that %( + e) can be written in the form 
( H ) ( / , W - Î ; Z I , W I - - vz

s
p'mp — hs - Tsg), which, save for a finite non-vanish­

ing factor, is the same as B ( ^ , w - ^ 1 , W l - -v^mp)\ the argument 

vx; m - / " ™' - - vZp'mp does not depend on the place m. 

181. From the results of §§ 179, 180, we can draw an inference which 
leads to most important developments in the theory of the theta functions. 

For, from what is there obtained it follows that if zu ..., zp be any places 

whatever, the function © (>*'w - <y*» ̂  _ -v**"*) has zlt . . . , zp for 
zeros. Hence, putting zv for x we infer that the f unction 

@ ( ^ > ™ _ ^ . ™ i _ _ _ ^ - L » % - I ) ( F ) 

vanishes identically f or all positions ofzlf ..., zv_x. Putting 

/» Zi*m>i . Zp-2,mp-2 , m 

fs=Vs + + < * -V8 

for s= 1, 2, . . . , ^ , this is the same as the statement that the function 
( ) ( ,7 ~ +/) vanishes identically for all positions of x and for all values 
of/i, ...,fp which can be expressed in the form arising here. W h e n ^ , ...,fp 

are arbitrary quantities it is not in general possible to determine places 
zlt ...yZp-2 to express/i , ...,fp in the form in question. Nevertheless the 
case which presents itself reminds us that in the investigation of the zeros 
of © ( w -f e) we have assumed that the function does not vanish identically, 
and it is essential to observe that this is so for general values of e1} ..., ep. 
If, for a given position of xy the function © (V -m + e) vanished identically for 
all values of el} ..., ep> the function © (r) would vanish for all values of the 
arguments ru ..., rp. We assume* from the original definition of the theta 
function, by means of a series, that this is not the case. 

Further the function © (v*>m + e) is by definition an analytical function of 
each of the quantities elt ..., ep ; and if an analytical function do not vanish 

* The series is a series of integral powers of the quantities e2mr\ ..., e2inrp. 
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for all values of its argument, there must exist a continuum of values of 
the argument, of finite extent in two dimensions, within which the function 
does not vanish*. Hence, for each of the quantities ely ...,ep there is a 
continuum of values of two dimensions, within which the function © (if>m + e) 
does not vanish identically. And, by equation (B), § 175, this statement 
remains true when the quantities ß\f • • • » ßp a r e increased by any simultaneous 
periods. Restricting ourselves then, first of all, to values of el9 ..., ep lying 
within these regions, there exist (Chap. IX. § 168) positions of zly ..., zp to 
satisfy the congruences 

es^vz;>m> + + <""* , (s=l,2,...,p); 

and, since to each set of positions of zlt ..., zp, there corresponds only one set 
of values for elf ..., ePt the places zlt ..., zp are also, each of them, variable 
within a certain two-dimensionality. Hence, within certain two-dimensional 
limits, there certainly exist arbitrary values of zlf..., zp such that the function 
© ( ^ ™ __-y*i>w> _ -y***™«) does not vanish identically. For such 
values, and the corresponding values of , ..., ep, the investigation so 
far given holds good. And therefore, for such values, the function 
© (v™p> m-v*t>m*- _ i^- ^ - ^ vanishes identically. Since this function 
is an analytical function of the places "f* zly ..., zp_lt and vanishes identically 
for all positions of each of these places within a certain continuum of two 
dimensions, it must vanish identically for all positions of these places. 

Hence the theorem (F) holds without limitation, notwithstanding the 
fact that for certain special forms of the quantities el9 ..., ep, the function 
@ ( ™ _|_ e) vanishes identically. The important part played by the theorem 
(F) will be seen to justify this enquiry. 

182. I t is convenient now to deduce in order a series of propositions in 
regard to the theta functions (§§ 182—188); and for purposes of reference 
it is desirable to number them. 

(I.) If Ji, ...,Çp be p places which are zeros of one or more linearly 
independent -polynomials, that is, of linearly independent linear aggregates 
of the form \ (#)+ + \p£lp(œ) (Chap. I I § 18, Chap. VI. § 101), then 
the function 

< H ) ( / ' ™ _ / " W I - -&«*) 

vanishes identically for all positions of x. 

For then, if T 4-1 be the number of linearly independent -polynomials 
which vanish in the places fl3 ..., Çp, we can, taking -t-1 arbitrary places 

* E.g. a single-valued analytical function of an argument z, =x+iy, cannot vanish for all 
rational values of x and without vanishing identically. 

t By an analytical function of a place on a Riemann surface, is meant a function whose 
values can be expressed by series of integral powers of the infinitesimal at the place. 

17—2 
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zlt ..., zT+lt determine p — — 1 places zT+2y ..., zpy such that (zly ..., zp) 
= ( £ , . . . , ? ) (see Chap. VI. § 93, etc., and for the notation, § 179). Then the 
argument 

v*,m_v<l,m1_ _vbtmP) (S = lt2,...,p), 

can be put in the form 

s s s ' 

save for integral multiples of the periods ; thus (§§ 179, 180) the theta 
function vanishes when x is at any one of the perfectly arbitrary places 
zly ..., zT+1. Thus, since by hypothesis 4-1 is at least equal to 1, the theta 
function vanishes identically. 

It follows from this proposition that if z2'y ..., zp be the remaining zeros 
of a </>-polynomial determined to vanish in each of z2y ...,zpy and neither 
x nor zx be among z2y ..., zpy then the zeros of the function 

© ( ^ • ™ _ / . > ™ i _ - i f » " * ) , 

regarded as a function of zly are the places xy z2y ..., zp. 

From this Proposition and the results previously obtained, we can infer 

that the f unction ® (vx>m-vZl>1ïli - _ / » ' m p ) vanishes only (i) when x 
coincides with one of the places zly . . . ,%, or (ii) when z1} ..., zp are zeros of 
a ^-polynomial. 

(II.) Suppose a rational function exists, of order, Q, not greater than p, 
and let + 1 be the number of -polynomials vanishing in the poles of this 
function. Take + 1 arbitrary places 

bl> • * • ? bq> ®\y • • • » ^V+l—q  

wherein q = Q — p + +1 and suppose zly ..., zq to be a set of places core-
sidual with the poles of the rational function, of which, therefore, q are 
arbitrary. Then the function 

(«1 ' + /1,*1 + +/«'*«-/1'™1-
_ yVr+i-q, +1-q _ ^ Q + i , W T + 2 - g __ __ ^Q, -q^ 

vanishes identically. 

For if we choose Çq+ly ..., ÇQ such that (Ci, ..., fQ) = (zlt . . . , zQ), the 
general argument of the theta function under consideration is congruent 
to the argument 

,m __vx1,m1_ _ +1-q, wT+1_g _ ^q+lt mT+2_g __ _ {Q, mp-q 

This value of the argument is a particular case of that occurring in 
(F), § 181, the last q-\ oî the upper limits in (F) being put equal to the 
lower limits. Hence the proposition follows from (F). 
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(III.) If r denote such a set of arguments , ...yrp that © (r) = 0, and, 
for the positions of z under consideration, the function % (vx>z + r) does not 
vanish for all positions of #, then there are unique places zly ..., zp_x, 
such that 

r = vmp*m —v*1'™1 — ... — vZp~u mp~1 

In this statement of the proposition a further abbreviation is introduced 
which will be constantly employed. The suffix indicating that the equation 
stands as the representative of p equations is omitted. 

Before proceeding to the proof it may be remarked that if ra', m/, ..., mp 

be places such that (cf. § 179) 

(m', mu ..., mp)=(m} m/, ..., mp) 

and therefore, also, 

vm', m _ ^m,', mi __ _ ^ \ mp ^ Q 

then the equation 
r ^ vmp, m_vzì,mì _ _ ^ - i , mP-i 

is the same as the equation 

r = vmp'm' — vZl*m' — — v**'1' m'p_1. 

This proposition ( I I I . ) is in t he na tu re of a converse to equation (F) . 
Since the function © ( z + r) does not vanish identically, its zeros, zlt ..., zp, 
are such that 

V
X>Z+r=V

X>m—V
Z>> Wi _ _ , * »™ . 

now we have 

so that the zeros zlt ..., zp may be taken in any order ; since © (r) vanishes, 
z is one of the zeros of © ( z 4- r) ; hence, we may put zp = z> and obtain 

r = vx'm - vZl'mi - —if**7"*—V 'Zp, 

which is the form in question. 

If the places zlt ...^z^ in this equation are not unique, but, on the 
contrary, there exists also an equation of the form 

r _ vmP, m _ v*{9 ml _ _ ^ p - i , mP-i^ 

then, from the resulting equation 



262 A PARTICULAR FORM [182 

we can (Chap. VIII. § 158) infer that there is an infinite number of sets of 
places Zi, ..., z'p-l9 all coresidual with the set zlt . . . , zp-1; hence we can put 

/> * + r = v
x > m _ v

z" w» _ — -y**-1 » W P - I _ ^ ™* 

wherein at least one of the places z(> ..., z'p^x is entirely arbitrary. Then the 
function © ( z + r) vanishes for an arbitrary position of x, that is, it 
vanishes identically ; this is contrary to the hypothesis made. 

I t follows also that whenever it is possible to find places zly ..., zp_1 to 
satisfy the inversion problem expressed by the p equations 

vlitni+ + fl2p-bWp-1=w, 

t h e funct ion © (vmp'm — u) vanishes ; conversely, when is such that this 
function vanishes we can solve the inversion problem referred to. 

(IV.) When r is such that © (r) vanishes, and © ( z + r) does not, 
for the values of z considered, vanish identically for all positions of x, the 
zeros of © ( z + r), other than z> are independent of z and depend only on 
the argument r. 

This is an immediate corollary from Proposition (III.) ; but it is of 
sufficient importance to be stated separately. 

(V.) If © (r) = 0, and © (vx> z + r) vanish identically for all positions 
of x and z, but © ( z + $ -f r) do not vanish identically, in regard to x, 
for the positions of z, £, f considered, then it is possible to find places 
z1} ..., zp-2 such that 

r = vmp*m — vZx 'Wl — — vZp~*' mp~2 — v** mp~1 

and these places zlt ..., Zp__2 are definite. 

Under the hypotheses made, we can put 

z + / ^ + r = v*> * _ . *i _ _ v**> ** 

wherein zu ..., zp are the zeros of © ( z + £ f + r) ; now £ is clearly a zero ; 
for the function © ( ^-f r) is of the same form as © (tf*> + r), and vanishes 
identically; and fis also a zero; for, putting f for x, the function ©(f l^+f l^+r) 
becomes © (v*>z + r), which also vanishes identically. Putting, therefore, f, z 
for <Sp_! and zp respectively, the result enunciated is obtained, the uniqueness 
of the places zl9 ..., Zp__2 being inferred as in Proposition (III.). 

We may state the theorem differently thus : If ©( ^>* + ) vanish for 
all positions of x and zy and © (tf*> -f-^ ^ + r) do not in general vanish 
identically, the equations 

r = vmp'm — vZl> Ml — — vZp'2' mp~2 — vZp~u Mp'1 
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can be solved, and in the solution one of zly ..., Zp^ may be taken arbitrarily, 
and the others are thereby determined. Hence also we can find places 
/, ..., z'p_li other than zly ..., zp_1) such that 

vZl't2x+ +/"-1>z*-1 = 0, 

one of the places #/, ..., zp_1 being arbitrary. Hence by the formula 
Q- q=p — — 1, putting Q=p — 1, # = 1 , we infer + 1 = 2 , so that a  

-polynomial vanishing in zly ..., zp^ can be made to vanish in the further 
arbitrary place z. Thus, when © ( z + r) vanishes identically, we can write 

v
x>z + r = v

x>m _v
zi>mi _ _vzP-i,mp-i___vz,mp 

wherein the places zly ..., zp_l) z are zeros of a -polynomial (cf. Prop. I.). 

(VI.) The propositions (III.) and (V.) can be generalized thus : If 

® (vXi 'Zl -f 4- vXq'Zq -f r) be identically zero for all positions of the places 

œ1,zl9...,œq,zq, and the function © (vx'z + vZl,Zl + - ' ^ + ) do not 
vanish identically in regard to xy then places £i, ..., Çp_1 can be found to 
satisfy the equations 

r = vmpt m — v^1'Wl — — v^p~lf ~1 

and, of these places, q are arbitrary, the others being thereby determined. 

These arbitrary places, £i, ..., Çq, say, must be such that the function 

® (vXt z + vil' Zl + + Vs" Zq + r) does not vanish identically. 

For as before we can put 

^>* + /»*'+ + ̂ ** + r = />™_./"^_ -J»«*, 

wherein Ci,..., Çp are the zeros of the function © ( / ' z + vXl'Zl + . . . + fl*9'Zg + r). 
I t is clear that is one zero of this function ; also putting zx for x the function 

becomes © (v*1'z + v*2' *" + + w*9'z* + r), which vanishes, by the hypothesis. 
Thus the places zy zly ..., zq are all zeros of the function 

®(vx'z + vXl'Zl+ + t/B"* + r). 

Putting then zly ..., 7, -2? respectively for Ci, ..., Çqy Çp in the congruence 
just written, it becomes 

v*'* + rfb'*i+ +v**>b + v**'m' + + 1f*.™* + vb+Lm*+i+  

and this is the same as 

r = Vmp,m — VXl'mi—... — ifb* mq _ v(a+um4+i __ __ <y*~u ~1 • 

replacing ?!, ..., xq by f2, ..., Çq w e have the result stated. 
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Hence also, we can find places £i', ..., fp_i, other than £i, ..., Çp_lt such 
that 

t£''fl + +^-1 '&-1 = 0, 
g of the places fi', ..., %v-\ being arbitrary. Therefore a -polynomial can 
be chosen to vanish in f i, . . . , Ç ^ and in # (= 2? — 1 — (Q — q), when Q = p — 1) 
other arbitrary places. Thus the argument 

tf'* + if»* + + t^-1'*-1 + r, 

for which the theta function vanishes identically, can be written in the form 

wherein^, ..., - Çq, ..., fp_i, 2 are zeros of q+1 linearly independent  
-polynomials. 

(VII.) If the function © (vXl '* + +1^ '* 9 + r) be identically zero for 
all positions of the places œli zly œ2, z2, ..., xq, zq, and, for general positions of 

œl9 zly ..., œq, zq, the function % (vx'z + vXl,Zl + + , 2 + ) be not 
identically zero, as a function of x, for proper positions of z, and be not 
identically zero, as a function of z, for proper positions of x> then we can find 
places Ci, ..., £ _!, of which q places are arbitrary, such that 

r . E / p ' m - ^ ' m ' _ __ 0&-1» «>P-I 

and can also find places ft, ..., ft^, of which q places are arbitrary, such 
that 

— r = vmp,m — v*1'™1 — _ 0 & - I » * * P - I # 

This is obvious from the last proposition, if we notice that 

e(tf»* + tf'»*' + + t ^ ^ - r ) = e ( t^ z + t/ri,*k+ + /9 '** + r). 
We can hence infer that 

2„«**m + />» ^ + v
w - & + + ^ - &-* + ^-*> **-» = 0, 

and this is the same (Chap. VIII. § 158) as the statement that the set of 
1p places constituted by ft, ..., ft^, fi, ..., Ç ^ and the place m, repeated, is 
coresidual with the set of 2p places constituted by the places , ..., , each 
repeated. This result we write (cf. § 179) in the form 

(m2, ft, ..., &>_!, fi, ..., f p - O ^ K m2
2, ..., mp

2). 

(VIII.) We can now prove that if £i, ..., Çp_j be arbitrary places, places 
ft» •••> ft>-i can be found such .that 

(m2, ft, ... , ft^, £ , ..., £,-!) = ( Ws2, . . . , m/). 

Let r denote the set of p arguments given by 

r = V
WP> m _ ?/i» mi _ _ v<p-u ™*-i 
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Si» ••• y Çp-i being quite arbitrary. Then, by theorem (F), (§ 181), the function 
© (r) certainly vanishes. I t may happen that also the function © (vx> z + r) 
vanishes identically for all positions of x and z. I t may further happen that 
also the function %{ -\- ^ ^-\- ) vanishes identically for all positions of 
xy zy #!, . We assume* however that there is a finite value of q such that 

the function © (vx> z + vXl,Zi + + vXç" + r) does not vanish identically for 
all positions of x, z> xlt zlt ..., xq, zr Then by Proposition VII. it follows 
that we can find places £l9 ..., fjp_lf such that 

— r=vmp'rrl — v*l>mi — — v*p~u mp~l ' 

comparing this with the equations defining the argument r, we can, as 
in Proposition (VII.) infer that the congruence stated at the beginning of 
this Proposition also holds. 

(IX.) Hence follows a very important corollary. Taking any other 
arbitrary places f/, ..., f'p-i> we can find places (•/, ..., %'p-x such that 

(m2, f/, ..., r*-i> ?/, ..., ^ - ) = > mf, - , wip1); 

therefore the set £ , ..., ^ _ b Ci, . . . , ^ 1 is coresidual with the set £/, ...,£'p_1) 

£i', ..., S"p_i. Now, of a set of 2p — 2 places coresidual with a given set 
we can in general take only p — 2 arbitrarily ; when, as here, we can take 
p — 1 arbitrarily, each of the sets must be the zeros of a -polynomial 
(Chap. VI. § 93). Thus the places £x, ..., f^, £i, ..., ^ _ are zeros of a  

-polynomial. 

Therefore, if aly ..., aw_2 be the zeros of any -polynomial whatever, 
that is, the zeros of the differential of any integral of the first kind, the 
places m^ . . . , mp are so derived from the place m that we have 

(m2, a1, ..., a2p-2) = ( m2
2, ..., (G) ; 

in other words,if cu ..., cp denote any independent places, the places mly ...}mp 

satisfy the equations 

2[vmx,Cl + +v
m»>cp] = 2vm'Vp + vai'Cl + va2'Ci+ + < - > + <*2 -2> ^ 

for 5 = 1, 2, ..., p. Denoting the right hand, whose value is perfectly definite, 
by A8, and supposing gly ..., gp, h1} ..., hp to denote proper integers, these 
equations are the same as 

C C l + + C , * s * ^ + HÄ»+fl№,i + + , . | ), (G'), 

where s = l , 2, ...,_p. 

* It will be seen in Proposition XIV. that if 6 (v
x*z + vXl>z* + +v*i>*i + r) vanishes 

identically, then all the partial differential coefficients of 9 (w), in regard to , ..., up, up to and 
including those of the {q + l)th order, also vanish for u = r. 
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There are however 22^ sets of places 7? ,̂ ...,mp, corresponding to any 
position of the place ra, which satisfy the equation* (G). For in equations 
(G') there are 2^ values possible for the right-hand side in which each 
of^!, . . . , gp> , ..., hp is either 0 or 1, and any two sets of values gl9 ..., gpt 

hly ..., hp and gx\ ..., gp', A/> ..., hp', such that gugldiffer by an even integer, 
and hi, h( differ by an even integer, for i = 1, 2, . . . , | ) , lead to the same 
positions for the places mlt . . . , mp. (Chap. VIII. § 158.) 

We have seen (§ 179) that the places mlt ..., mp depend only on the place 
m and on the mode of dissection of the Riemann surface. We are to see, 
in what follows, that the 2^ solutions of the equation (G) are to be associated, 
in an unique way, each with one of the 22p essentially distinct theta functions 
with half integer characteristics. 

183. The equation (G) can be interpreted geometrically. Take a non-
adjoint polynomial, A, of any grade //,, which has a zero of the second order 
at the place m ; it will have n/j, — 2 other zeros. Take an adjoint polynomial 
yfr, of grade (n — 1) a + n— 3 + /x, which vanishes in these other nji — 2 zeros 
of . Then (Chap. VI. § 92, Ex. ix.) } will be of the form \ / 0 + , 
where yfr0 is a special form of | , X is an arbitrary constant, and is a 
general -polynomial. The polynomial ty will have 2p zeros other than 
those prescribed ; denote them by klt..., kw. If ' be any -polynomial, with 
Oi,... , a2j>-2 as zeros, we can form a rational function, given by ( | 0+ )/ ', 
whose poles are the places a1} ..., a21?_2, together with the place m repeated, 
its zeros being the places klt ..., k^. Hence (Chap. VI. § 96) we have 

(m , of-j, ..., a-2p_2) = (A?!, A?2, ..., ic^p—i, A»jp)> 

and therefore, by equation (G), 

( . . . , mp*) = (klyk2,...y b , ^ , kw) (G") ; 

hence (Chap. VI. § 90) it is possible to take the polynomial yfr so that 
its zeros klt ..., consist of p zeros each of the second order, and the 
places , ..., mp are one of the sets of p places thus obtained. 

There are 2^ possible polynomials yfr which have the necessary character, 
as we have already seen by considering the equation (G'); but, in fact, 
a certain number of these are composite polynomials formed by the product 
of the polynomial and a -polyuomial of which the 2p—2 zeros consist of 
p — 1 zeros each repeated. To prove this it is sufficient to prove that there 
exist such -polynomials having only p — 1 zeros, each of the second order ; 
for it is clear that if denote such a polynomial, the product is of grade 

* If for any set of values for glt ..., gp, hly ..., ftp the equations (G') are capable of an infinity 
of (coresidual) sets of solutions, the correct statement will be that there are 2^ lots of coresidual 
sets, belonging to the place m, which satisfy the equation (G). The corresponding modification 
may be made in what follows. 
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(w — l)a +n — 3 + /U, and satisfies the conditions imposed on the polynomial yfr. 
That there are such -polynomials is immediately obvious algebraically. 
If we form the equation giving the values of x at the zeros of the general  

-polynomial, 
^i0i + 4- . , 

the p — 1 conditions that the left-hand side should be a perfect square, will 
determine the necessary ratios \x : X2 : ... : \py and, in general, in only a 
finite number of ways. (Cf. also Prop. XL below.) 

It is immediately seen, from equation (G"), that if mly ..., mp be the 
double zeros of one such polynomial yfr as described, and m/, . . . , mp of 
another, both sets being derived from the same place ra, then 

tP1'' w , + + vmp'*Mp = i- , . , (H) 

where Up, a stands for p quantities such as 

A + *iTJfl+ +«PT«,P» 

«i, ..-, «p, ßi> ..., /8p being integers. 

We may give an example of the geometrical relation thus introduced, which is of great 
importance. It will be sufficient to use only the usual geometrical phraseology. 

Suppose the fundamental equation is of the form 

C+ to .y)i+to \ + to y)z + ( » )4 = °> 

representing a plane quartic curve (p = 3). Then if a straight line be drawn touching the 
curve at a point my it will intersect it again in 2 points A, B. Through these 2 points 
A, B, oo 3 conies can be drawn ; of these conies there are a certain number which touch 
the fundamental quartic in three points P, Q, R other than A and B. There are 22*=64 
sets of three such points P, Q, R; but of these some consist of the two points of contact 
of double tangents of the quartic taken with the point m itself. 

In fact there are (Salmon, Higher Plane Curves, Dublin, 1879, p. 213) 28, =2*- 1 (2 p - l ) , 
double tangents ; these do not depend at all on the point m ; there are therefore 
36, = 2 P - 1 ( 2 P + 1 ) , proper sets of three points P, Q, R in which conies passing through 
A and touch the curve. One of these sets of three points is formed by the points 
mx, m2, m3. It has been proved that the numbers 2*> ~ (2? - 1 ), 2^~J (2*> +1 ) are respectively 
the numbers of odd and even theta functions of half integer characteristics (§ 176). 

184. (X.) We have seen in Proposition (VIII.) (§ 182) that the places 
mly ..., mp are one set from 22^ sets of p places all satisfying the same 
equivalence (G). We are now to see the interpretation of the other 2^ — 1 
solutions of this equation. 

Let «i/, ...ymp be any set, other than ml} ...ympy which satisfies the 
congruence (G). Then, by equations (G'), we have 

2( ' ' + + / ' - ^ = o, ( S = l , 2, ..., p), 
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and therefore, if flßt a denote the set of p quantities of which a general one is 
given by 

Ä + «iTe,i + +apTs,p, 0 = 1 , 2, ...,p), 

where <z1} ..., ap, ft, ..., ßp are certain integers, we have 

% + +ve = ^ , ; 

hence the function 

< H ) ( / > ™ _ V » < _ -vZp'mp'; i/8, Ja), 

= e"*ee(t^»",14 + ^'^'-/'w;£ft,Ja), 

where 

= », + + tf/ - » , (* = 1, 2, . . . , p ) ; 

the function is therefore equal to 

by equation (C), § 175; thus the function ®{vx" m-vZl'm< - - ^ ' W p ' , J ft \a) 
vanishes when x is at either of the places , ..., zp. 

We can similarly prove that 

© ( ^ * « v**> *•' _ « /*> **') = - ««+* +4«) (_ . Jf t la). 

It has been remarked (§ 175) that there are effectively 2^ theta functions, 
corresponding to the 22p sets of values of the integers a, ft in which each 
is either 0 or 1. The present proposition enables us to associate each of 
the functions with one of the solutions of the equivalence (G). When the 
function © (vx> m ; \ß, \Q) does not vanish identically in respect to x, its 
zeros are the places m/, ..., nip. Therefore, instead of the function ( ), 
we may regard the function S(u; ^ft, ^a) as fundamental, and shall only be 
led to the places m/, . . . , mp, instead of mu ..., mp. 

(XL) The sets of places m{, ..., mp which are connected with the places 
mly ..., mp by means of the equations 

C'Ml + +v™*>m» = inßta, (H), 

wherein al3 ..., ap, ft, ..., ßp denote in turn all the 2^ sets of values in which 
each element is either 0 or 1, may be divided into two categories, according 
as the integer ft«, = ft^ + + ßpap, is even or odd. We have remarked, 
in Proposition (IX.), that they may be divided into two categories according 
as they are the zeros, of the second order, of a proper polynomial ^0 + , 
or consist of the p — 1 zeros, each of the second order, of a -polynomial 
together with the place m. When the fundamental Riemann surface is 
perfectly general these two methods of division of the %& sets entirely agree. 
When ßa is odd, m/, ..., mp consist of the place m and the p — 1 zeros, 
each of the second order, of a -polynomiaL When ßa is even, m/, ..., mp' 
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consist of the zeros, each of the second order, of a proper polynomial yfr. In 
the latter case we may speak of the places ra/, ..., mp as a set of tangential 
derivatives of the place ra. 

For by the equations (D), (A), (§ 175), we have 

eniau @ ß£2 f t a + U)/e-niau <R) ß f l ^ e - tt) = e~^a ; 

hence, when ßa is odd, e1"*" © ( ^ , a + w) is an odd function of u, and 
must vanish when is zero; since then © ( J f ì ^ ) vanishes, there exist, by 
Proposition (VII.), places nly ..., np-lt such that 

- £ ,« = ' - ' 1 - ^ « F - L « * - ^ (K), 

or 
2 ( '™' + + ^ - 1 . ^ - 1 + ^ ^ = , , = 0 . 

Hence (Chap. VIII. § 158) we have 

(m2, nx\ ..., nVi) = ( ..., mp% 

so that,by equation (G), the places nly ..., _ are the zeros of a -polynomial, 
each being of the second order. 

When ßa is even, the function e™aU © (%£lß, a + v) is an even function, and 
it is to be expected that it will not vanish for = 0. This is generally the 
case, but exception may arise when the fundamental Biemann surface is of 
special character. We are thus led to make a distinction between the general 
case, which, noticing that © (%£lßta + ) is equal to e-™«(«+*0-i™> ® (u - £ l ^ 
may be described as that in which no even theta function vanishes for zero 
values of the argument, and special cases in which one or more even theta 
functions do vanish for zero values of the argument. 

Suppose then, firstly, that no even theta function vanishes for zero values 
of the argument. Then if n-[, ..., rip_x be places which, repeated, are the 
zeros of a -polynomial, we have 

(m2, '2, ..., ri\-.x) = (mi2, mi, ..., rap
2) ; 

hence the argument 

is a half-period, = — \£lpy a', say. Thus, by the result (F), © ( i ^ > ' ) is zero ; 
therefore, by the hypothesis ß'd is an odd integer. So that, in this case, 
every odd half-period corresponds to a -polynomial of which all the zeros 
are of the second order, and conversely. 

Further, in this case it is immediately obvious that the places mi} ,..,mp 

do not consist of the place m and the zeros of a -polynomial whose zeros are 
of the second order ; for if mu ...,mp were the places nx, ..., nï^.1, m, then, by 

the result (F), the function @(vZl'Wl + + ^-1» *-1) would vanish for all 
positions of 2], ..., Zp_j, and therefore © (0) would vanish. 
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185. If, however, nextly, there be even theta functions which vanish 
for zero values of the argument, it does not follow as above that every  

-polynomial with double zeros corresponds to an odd half-period; there 
will still be such -polynomials corresponding to the 2*-1 (2? — 1) odd half-
periods, but there will also be such -polynomials corresponding to even 
half-periods. 

For if alf ..., ap, ßl9 . . . , ßp be integers such that ßa is even, and 
®(u + %n,Pia) vanishes for u = 0, the first differential coefficients, in regard 
to , ...,up, of the even function e7rtatt ®(u + ^Qßt «), being odd functions, 
will vanish for = 0. By an argument which, for convenience, is postponed 
to Prop. XIV., it follows that then the function © (v*>z + \£lßt a) vanishes 
identically for all positions of x and z. Therefore, by Prop. V., there is at 
least a single infinity of places z1} ..., zp^ satisfying the equations 

-\Cißta = vm»'m-vz"m*- _ ^ - 1 . « - 1 ; 

these equations are equivalent to 

(m\ * ..., *Vi) = (m^ m2\ ..., m / ) ; 

hence there is a single infinity of -polynomials with double zeros corre­
sponding to the even half-period ^Clß, a, and their p — 1 zeros form coresidual 
sets with multiplicity at least equal to 1. 

By similar reasoning we can prove another result*; the argument is 
repeated in the example which follows ; if for any set of values of the 
integers ßlt ..., ßp, a1} ..., ap, it is possible to obtain more than one set of 
places , ..., Wp_! to satisfy the equations 

then it is, of course, possible to obtain an infinite number of such sets. Let 
oo be the number of sets obtainable. Then ßa = q + 1 (mod. 2). And this 
may be understood to include the general cases when (i) for an even value 
of ßa, no solution of the congruence is possible (q = — 1), (ii), for an odd value 
of ßa, only a single solution is possible (q = 0). 

As an example of the exceptional case here referred to, consider the hyperelliptic 
surface ; and first suppose p = 3 , the equation associated with the surface being 

y2=(x-al) (#-<%); 

then we clearly have [ j = 2 8 = 2*>~1(2*)— 1) -polynomials, each of the form (% - a^ (x - a,), 

of which the zeros are both of the second order. We have, however, also, a -polynomial, 
of the form (x-c)2, in which is arbitrary, of which the zeros are both of the second 
order ; denote these zeros by and ; then if \Qo a be a proper half-period 

- %Q.ß a = vma>m-vc> m*-vd> m*; 

* Weber, Math. Ann. xm. p. 42. 
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but, since, if e be any other place, the function (x-c)/(x—e) is a rational function, it 
follows that (c, c)=(e, ê), and therefore that in the value just written for %Qß a, may 
be replaced by e, and therefore, regarded as quite arbitrary. By the result (F), the 
function 0 ( ) vanishes when is replaced by \Qß a , and therefore 0 (v***- Jû« e), which 

is equal to e(v*' m- ve' mi-vc'm% — if* m*\ vanishes when x is at ; since is arbitrary the 
function G (V*'*-£OÄ a) vanishes identically in regard to x, for all positions of z. If the 

function e ^ ^ + ^ ' ^ - t o « e) vanished identically, it would, by Prop. VI., be possible, 
in the equation 

to choose both % and % arbitrarily. As this is not the case, it follows, by Prop. XIV. 
below, that the function G(u+%Qß J , and its first, but not its second differential 
coefficients, vanish for u=0. Hence ^Qß a is an even half-period. (See the tables for 
the hyperelliptic case, given in the next chapter, §§ 204, 205.) 

There is therefore, in the hyperelliptic case in which p = S, one even theta function 
which vanishes for zero values of the argument. 

In any hyperelliptic case in which p is odd, the equation associated with the surface 
being 

-polynomials with double zeros are given by 

(i) the ( * ) polynomials such as ( - ) (#-ap_i) . As there is no arbitrary 

place involved, the q of the theorem enunciated (§ 185) is zero, and the half-period given by 
the equation 

— to =27^» m — vnu Wl — - ?^-1»7 -1 

where 2, ..., \_ are the zeros of the -polynomial under consideration, is consequently 
odd. 

(ii) the (^ j polynomials such as (x— ) (# -a P - 3 ) (x-c)2
9 wherein is 

arbitrary. Here #=1 and /3a = 0 (mod. 2). 

(iii) the I ^ J polynomials such as (x - at) (x - ap _ 5) (x - c)2 (x - e)2, for which 

9 = 2, j9a=l (mod. 2) ; and so on. And, finally, 

the single polynomial of the form (x-ct)
2 (x-Cp^)2, in which all of cly ..., cp-i 

v) — \ £)-b 1 

are arbitrary ; in this case q— —^- , ß a = ^ — (mod. 2). 

On the whole there arise 

(TXX-> *'• - (TXT-> •CT") 
-polynomials corresponding to odd half-periods, according asp= 1 or 3 (mod. 4). 

Now in fact, when p= 1 (mod. 4) 
1 + (* 2) + + ( ^ - l ) ' = (1+̂ )2 + ( 1 - ^ + 2 + (1+ > ^ + 2 + ( 1 - >)2 + 2] =1) 
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is equal to 

i f&p + 2+2P + 2 c o s a t i or &P-1-2P-1 or ZP-i^-l), 

while, when p=3 (mod. 4) 

(?n<*:> •(£!)• 
= | [ ( l + ^ ) 2 p + H ( l - ^ ) 2 p + 2 - ( l + ^ ) 2 p + 2 - ( l - W 7 ) 2 p + 2]x = l, 

is equal to J f 22* + 2 - 2 * > + 2 cos £ ± _ ? , and therefore, also to 2*> - x (2*> - 1 ). 

Thus all the odd half-periods are accounted for. And there are 

(V-XV> 
even half-periods which reduce the theta function to zero. This number is equal to 

- * ( 2 ^ i ) + { 2 8 p " 2 P " 1 ( 2 P " 1 ) } ' 

namely to 2p~1(2p + l)-( * J. This is the number of even theta functions which 

vanish for zero values of the argument. I t is easy to see tha t the same number is 
obtained when p is even. For instance when jo=4, there are 10 even theta functions 
which vanish for zero values of the argument. They correspond to the 10 -polynomials 
of the form (x - cf (x - ax), wherein is arbitrary, and a^ is one of the 10 branch places. 

There are therefore I * ) even theta functions which do not vanish for zero values of 
\ P J 

the argument. 

In regard to the places m1? . . . , mp in the hyperelliptic case the following remark may 
conveniently be made here. Suppose the place m taken at the branch place a2p+2 ; using 
the geometrical rule given in § 183, we may take for the polynomial A, of grade ft, the 
polynomial # - a 2 p + 2 , of grade 1; its remaining / i /x-2, = 0 , zeros, give no conditions for 
the polynomial ^ of grade (n— \)a+n — 3+^t, = ( 2 - 1 ) ;p + 2 - 3 + l , —p. Since <r + l , the 
dimension of y, is p+l9 the only possible form for ^ is tha t of an integral polynomial 
in x of order p. This is to be chosen so that its 2p zeros consist of p repeated zeros. 
When j9 = 3, for example, it must, therefore, be of one of the forms (#-«*) (x — a$)(x—ak), 
(x -Oi) (x — c)2, where is arbitrary. I t will be seen in the next chapter tha t the former 
is the proper form. 

186. Another mat ter* which connects the present theory with a subject afterwards 
(Chap. XIII . ) dealt with may be referred to here. Let £ û be a half-period such that 
the congruence 

4 = / , - / 1 ' m i - - / H . % - i 

can be satisfied by oo« coresidual sets of places zly ..., zp_1 (as in Proposition VI.). Then 
we have 

(m2,^2, . . . ,^_1) = K2 , ...,V)> 
so that (Prop. IX.) zu . . . , 0p_1, each repeated, are the zeros of a -polynomial ; denote 
this polynomial by . If z/, ... ^ _ be another set, which, repeated, are the zeros of a  

-polynomial ', and are such that 

J u = v m p ' w - v Z l ' ' w l 1 - - / P - L ™ * - ! , 

* Cf. Weber, Math. Annal, xiii. p. 35 ; Noether, Math. Annal, xvii. 263. 
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then we have 
0 = 2 # W p ' m - 1* * —i?i> mi— _ qfp-i} vKp-i _ yïp-i* -i 

so that %,..., %_!, s/, ..., z'p_1 are the zeros of a -polynomial; denote this polynomial 
by i/r. 

The rational functions yfr/ , ' /^ have the same poles, the places z19 ,„yzp_u and 
the same zeros, the places 2/, ..., zf

p_1. Therefore, absorbing a constant multiplier in ^ , 
we have 

+*= ', and '/ = (№)\ 

and thus the function \/ '/ may be regarded as a rational function if a proper sign 
be always attached. The function has zl9 ..., zp_x for poles and / , ..., '^.! for zeros. 
Conversely any rational function having zl9 ..., zp_x for poles can be written in this form. 
For if /', ..., ^'p-i be the zeros of such a function, we have 

vz"'Zl + +0*"*,-1'Zj,-1 = O, 

and therefore, by the first equation of this §, also 

hQ = vmp'm- W ' W l - _ / >- % - 1 . 

thus <? of the zeros can be taken arbitrarily ; and if be any -polynomial whose zeros 
&> ••• 1 6>-i are all of the second order, and such that 

û = vmpi m — v^umi- - v^p~li mp~x 

we can put 

V r ^ V f + +^N/|' 
where 1? ..., are particular polynomials such as ' or , andX, \lt ..., \q are constants. 
In other words, corresponding to the oc « sets of solutions of the original equation of this 
§, we have an equation of the form 

Vï=X\/tfH-AiVtfTi + + \/ ,̂ 
wherein proper signs are to be attached to the ratios of any two of the square roots, and 
any two of the q + l polynomials , 1? ..., , are such that their product is the square of 
a -polynomial. There are therefore %q(q + I) linearly independent quadratic relations 
connecting the -polynomials. (Cf. Chap. VI. §§ 110—112.) 

For example in the hyperelliptic case in which jt?=3, the vanishing of an even theta 
function corresponds to the existence of a -polynomial =( — )2, such that 

\/ = - \/ + \ / ^ , = - \/ ^+ \ / , 

where , =(#)2, = <?> 

Ex. i. Prove, for p=3, that if an even theta function vanishes for zero values of the 
arguments the surface is necessarily hyperelliptic. 

Ex. ii. Prove, for jo=4, that if two even theta functions vanish for zero values of the 
arguments the surface is necessarily hyperelliptic ; so that, then, eight other even theta 
functions also vanish for zero values of the arguments. The number, 2, of conditions thus 
necessary for the fundamental constants of the surface, in order that it be hyperelliptic, is 
the same as the difference, 9 — 7, between the number, 3jo-3, of constants in the general 
surface of deficiency 4, and the number, 2p-l> of constants in the general hyperelliptic 
surface of deficiency 4. 

B. 18 
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187. (XII.) If r denote any arguments such that © (r) = 0, and such 
that ®(vx>z + r) does not vanish identically for all positions of x and z, 
the Riemann normal integral of the third kind can be expressed in the form 

For consider the function of x given by 

_ux,z ® ( ^ , « - f . r ) ® ( ^ P + r ) e 
6 a' @ ( ^ e + r ) © ( ^ e + r ) ' 

(a) it is single-valued on the Riemann surface dissected by the a and b 
period loops ; 

(ß) it does not vanish or become infinite, for the zeros of © ( z + r), 
other than z, do not depend upon z (by Proposition IV.) ; 

(7) it is unaffected by a circuit of any one of the period loops. At 
a loop ai it has clearly (Equation B, § 175) the factor unity ; at a loop 
hi it has the factor 

-**iv*ß -2™>*' a + ri + K i ) 2 ( ^ + + ) 
e . e . e l , 

which is also unity. Thus the function is single-valued on the undissected 
surface ; 

(S) thus the function is independent of x ; and hence equal to the value 
it has when the place x is at z} namely 1. 

A particular case is obtained by taking 

r = vmp'm — vZl'mi — — if9"1' >~1 

where zly ..., zp^ are any places such that ®(vx>z-\-r) does not vanish 
identically. Then by the result (F) the function © (r) vanishes. 

Hence we have 

a>ß °^ L © ( / , m - / i , m i - — ̂ - i ' w * - i _ . / ' m p ) 

/ ®(ve,m — vZl'mi— _ ^ - %-1_/»% 
/ © ( / ' m - / l ' m ' - _ t ^ - b W p - i _ v A w p ) J # 

Another particular case, of great importance, is obtained by taking 
7* = Jfì^f, , ' denoting respectively p integers hu ..., kp, &/, ..., hpy such 
that is odd, the assumption being made that the equations 

£nfcf v = „«*• ™ _ / - *. _ - / - «P-I 



188] EXPRESSED BY THETA FUNCTIONS. 275 

are not satisfied by more than one set of places £i, ..., _ (cf. Props. III., V.). 
Then the function 0 { z +1 Qk) #) does not vanish identically, and we have 

1 V ß °Z®(^,ß + in*, v) © (*• « + JU*, v) • 

(XIII.) Suppose equal to or less than p ; consider the function given 
by the product of 

e i » 0 i «2,02 afc»Pfc 

and 
© (^ , m _ i^ i , «»! — _ vak1 mk _j_ r ^ I <H) (^Z , m __ ^ , wij __ __ y«^, mfc _̂_ r ) 

© (A*, m _ vßu m , _ _ ^0 f r, mk + r y Q ^ . m . ^ . w , _ __ ^ , mk + ry 

wherein r denotes arguments given by 

r = _ ( ^ + i > ™ * + i + + ^ , m " ) , 

and each of the sets alt ..., ak) yk+1, ..., 7^, , ..., ßk> yk+lt ..., 7^ is such 
that the functions involved do not vanish identically in regard to x. 

This function is single-valued on the dissected Riemann surface, does not 
become infinite or zero, and, for example, at the period loop - it has the factor 
e1-, where 

Z , = - 2 ( *» + + Vak> h) - 2iri ( m-Va"m* ~ -Vak>mk) 

+ 2iri (va> m - »m* - - ^ . ,), 

is zero. Thus the function has the constant value, unity, which it has when 
x is at z. Therefore 

x z XfZ © (jf, m _ vax, m, _ # # # _ va fc, m* _ v y H 1 , w H 1 _ _ __^ , m p ) 
1 1 « i , 1 "*" • * ' + «*. ftt ~~ ° S | _ @ ( ^ , *» — flPi, *»i __ # # e _ ^ f c l wfc _ v y f c + 1 , w 4 + 1 _ # . . — V y P . i»p) 

/ © (^> w — flai> W l — — Vab> mk — flY*+i» m*+i — — vyp> W P ) ~ | 

/ © ( ^»™—fl0i»»»i __ —yßk,mk —vyk+i,mk+1__ — v b » m j » ) J ' 

the places 7*+1, ..., being arbitrarily chosen so that alt ...,a*, 7jt+i> ..., yp 

are not zeros of a -polynomial, and , ..., , 7^+1, . . . ,7p are not zeros of a  
-polynomial. 

Thus, when h=p, we have the expression of the function considered in 
§ 171, Chap. IX. in terms of theta functions. For the case where al9 ...,<** 
are the zeros of a -polynomial, cf. Prop. XV. Cor. iii. 

188. (XIV.) We return now to the consideration of the identical vanishing 
of the © function. We have proved (Prop. VIL), that if («*»*+ 
+ ^ ' z 4 ^ ) be identically zero for all positions of X\, . . . , tJOq f Z\ f • . . , Zq, but 
© ( , , z _j_ vxt, , _|_ ¥ _|_ vxq, zq _|_ r^ \ye n o^ identically zero for all positions of 

18—2 
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x and s, then there exist oo « sets of places Ci,..., Ç"^, and oo 9 sets of places 

£i, .-.,£i»-i, suchthat 

^ __ vmp, m _ yfii, m, __ __ < y ^ p _ 1 ' W p _ 1 

and 
r __ ^ m p , ?* y f ] , m , -y£p-i» % - i ( 

Now, if in the equation ®(vx*>Zi + + ^«.^ + ) = 0, we make #g 

approach to and coincide with zq> we obtain 

I ©/(^>*> + + ^ - sa-i + r) fii(^) = 0, 
= 1 

wherein @/(w) is put for r—©(w), (#) for 2iriDxVi a, a being arbitrary; 

and this equation holds for all positions of xlf zlf ..., a?^ , ^_!. Since, how­
ever, the quantities fìj {zq), ..., fìg(^Q) cannot be connected by any linear 
equation whose coefficients are independent of zq, we can thence infer that 
the first differential coefficients of © (u) vanish identically when is of the 
f o r m ^ ' ^ - f _|_flag-ii*«-i + y. I t follows then in the same way that the 
second differential coefficients of © (u) vanish identically when has the 
form V *> 2i + + v^-2'z«-2 4- r ; in particular all the first and second differ­
ential coefficients vanish when = . Proceeding thus we finally infer that 
© (u) and all its differential coefficients up to and including those of the qth 
order vanish when = . 

We proceed now to shew conversely that when © (u) and all its differential 
coefficients up to and including those of the gth order, vanish for u — ry 

then ®(vXuZi+ + ^ ' + ) vanishes identically for all positions of 
x1} zlt x2, z2i ..., xq, zq. By what has just been shewn ®(vx>z + vXi>Zi + 
+ ^> *» + /•) will not vanish identically unless the differential coefficients of 
the (q + l)th order also vanish. 

We begin with the case q=l. Suppose that © (u), ©/ (u), . . . , ©p' (u), all 
vanish for = r ; we are to prove that © (V ' z + r) vanishes identically for all 
positions of x and z. 

Let e, f be such arguments that ©(e) = 0, © ( ƒ ) = ( ) , but such that 
©/(e) are not all zero and © / ( ƒ ) are not all zero, and therefore © (if^+e), 
© (ìf>z-\-f) do not vanish identically; consider the function 

© (e + if**z) © (e - z) m 

(/+^*) (/-^«) ; 

firstly, it is rational in x and z ; for, considered as a function of x} it has, 
at the period loop br, (Equation B, § 175) the factor 
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whose value is unity ; and a similar statement holds when the expression is 
considered as a function of z, for the expression is immediately seen to be 
symmetrical in x and z ; secondly, regarded as a function of x, the expression 
has 2 (p — 1) zeros, and the same number of poles, and these (Prop. IV.) 
are independent of z. Similarly as a function of z it has 2 (p — 1) zeros and 
poles, independent of x ; therefore the expression can be written in the form 
F(x)F(z), where F(x) denotes the definite rational function having the 
proper zeros and poles, multiplied by a suitable constant factor, and F (z) is 
the same rational function of z. 

Putting, then, x to coincide with z, and extracting a square root, we infer 

ie/(e)Oi(x) 

£ 0 / ( / ) *) 

where O* (x) = 2iriDxVi a
y for a arbitrary, is the differential coefficient of an 

integral of the first kind ; thence we have 

© { * + e ) © { z-e) = [SQ/ (e ) SU (x)] [S©/ (e ) fl< (z)] 
< > (p. z + f ) e {v*, _ƒ ) [2< )/ ( ƒ ) fl, (*)] [S©/ (/) , (5)] " 

In this equation suppose that e approaches indefinitely near to r, for which 
© (r) = 0, @/ (r) = 0. Then the right hand becomes infinitesimal, inde­
pendently of x and z. Therefore also the left hand becomes infinitesimal 
independently of x and z ; and hence © (vx> z-\-r) vanishes identically, for 
all positions of x and z. 

We have thus proved the case of our general theorem in which q = l. 
The theorem is to be inferred for higher values of q by proving that if the 
function © (vXi>Zi + +1^-1»Zm-1 + r) vanish identically for all positions of 
xly zlf . . . , % 4 , 2m_!, and also the differential coefficients of ®(u), of order 
m, vanish for = r, then the function © (vXi >Zi -f 4- ̂ Wj Zm + r) vanishes 
identically. For instance if this were proved, it would follow, putting m = 2, 
from what we have just proved, that also © ( ^ ^ -f ^> 2 + r) vanished 
identically, and so on. 

As before let ƒ be such that © ( ƒ ) = 0, but all of ©/ ( / ) are not zero ; so 
that © ( z + ƒ ) does not vanish identically in regard to x and z. Let 
e be such that ®(vXi>Zi + + ^m-i, «m-i + e) vanishes identically for all 
positions of x1} zlt ..., #m_i, zm-l} but such that the differential coefficients of 
®(u) of the first order do not vanish identically for = vXi »Zi +... + tf*»1-1' *»*-i + e; 
so tha t the function © ( * 2l + + ifm>Zm + e) does not vanish identically. 
Consider the product of the expressions 

IT© (tfo» ** + ƒ ) © (vxk> ** - ƒ ) IT© (tfo»g* + ƒ ) © (fk>z* - ƒ ) 
© (vxb>z* +f) © ( ^ . ̂  - ƒ ) 



278 OF THE IDENTICAL VANISHING [188 

wherein h, in the numerator denote in turn every pair of the numbers 
1, 2 , . . . , m, so that the numerator contains 4 . \m (m — 1) -f 2 = 2 (m2 — m +1) 
theta functions, and \ , JJL in the denominator are each to take all the values 
1, 2, ..., ra, so that there are 2m2 theta functions in the denominator. 

Firstly, this product is a rational function of each of the 2m places 
xl} zlt ..., xm, zm. Consider for instance #T; it is clear that if the product 
be rational in x1} it will be entirely rational. As a function of xi} the 
product has at the period loop br a factor e~27dK where 

and this expression is identically zero. 

Secondly, considering the product as a rational function of xly the 
denominator is zero to the second order when xY coincides with any one of 
the m places zl9 ..., zmy and is otherwise zero at 2m (p — 1) places depending 
on ƒ only ; of these latter places 2 (m — 1) (p — 1) are also zeros of the 
factors i r e (fl**» **+/) ( >* >**-ƒ); there are then 2 ( ^ — 1) poles of the 
function which depend on ƒ only. The factors IT© (tf1*» ** + ƒ ) ®(i?h> -f) 
have also the zeros x2 • • • > *^m > 

each of the second order. The factors 
© (^i^i + . ^ + ^ - ^ + e)® (t̂ i> 1 + ... + vXm>Zm — e) have, by the hypothesis 
as to e, the zeros Zi, z2) ••., zmj each of the second order, as well as 2(p— ) 
other zeros depending on e only. On the whole then, regarded as a function 
of xx, the product has 

for zeros, 2 (p — m) zeros depending on e, as well as the zeros x2, ..., Xyn  
each of the second order, 

for poles, 2 (p — 1) poles depending o n / ; 
the function is thus of order 2(p — 1) ; and it is determined, save for a 
factor independent of x1} by the assignation of its zeros and poles. I t is 
to be noticed that these do not depend on zl9 z2, ..., zm. 

I t is easy now to see that the product, regarded as a function of zu 

depends on z2i ..., zm> e, ƒ in just the same way as, regarded as a function 
of xlt it depends on x2, ..., xm, e,f. 

The expression is therefore of the form F(xlt x2} ..., xm) F(z1}z2) ..., zm), 
wherein F denotes a rational function of all the variables involved. 

The form of F can be determined by supposing xly ...,xm to approach 
indefinitely near to zl9 ..., zm respectively; then we obtain 

1 P 
ATTI i=i 

where tm is the infinitesimal for the neighbourhood of the place zm, 

%i{vx"Zi + + v*™-1' tnr-i + e) 

Œ èri tm~i ^ ®'*>j ̂  ' *'+ + vXm~Xi Zm~l+e) ° j ̂ m-i)> 
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where tm-l is the infinitesimal for the neighbourhood of the place zm-ly and 
so on, and eventually, 

Similarly 

( ^+/)= ' ( *»^+/) (^^- / ) \ ^£ ! «'(/) <(* 
L \Z7rl) / .=1 =1 J 

where , & refers to all pairs of different numbers from among 1, 2, ..., m. 

Therefore, dividing by a factor 

(-)'<* '@* (t*. ». + ƒ ) 6* (t* - - ƒ ) [ ^ ^ J , 

which is common to numerator and denominator, and taking the square root, 
we have 

Î...Î ®'iuÌ2,...,im(e) n^Cl^z,) ... nm(zm) 
F(*,, ..., zm) = ^ l A = i m~n> . 

S 9 / ( / ) ß i W 
jtA=i L * = i J 

On the whole therefore we have the equation 

® ( ^ ' 2 i + +ifbntZn + e)®(tfBl>Zi + + ^ ' » - ) 

'© (tf*k* + ƒ ) © ( **» 4 - ƒ ) IT© ( > h + ƒ ) © ( »> ** - ƒ ) 

' © (vXx' ZK- -f ƒ ) © 0* ' ^ - / ) ~~ 

x ( ?!, ..., x m e) Mr (Zi ..., .gyn,, 6 ) 

( ^ , / ) ( ^ , / ) 
1 1 

where 

( , /)=i@/( / ) ,( )( 
= 1 

"9{œu...9œmié)= S ... 2 © ^ -2, ...|if№ (e) « ^ ) ... ^-mOm). 
, = 1 i i = l 

Suppose now that - is made to approach to Ti ; then the conditions we 
have imposed for e are satisfied, and there is added the further condition 
that the differential coefficients of order m, ©^l5 2̂j ..., > also vanish. Hence 
it follows that © (vxi » zi + 4- vXm>Zm + r) vanishes identically. 

The whole theorem enunciated is thus demonstrated. 
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(XV.) The remarkable investigation of Prop. XIV. is due to Riemann ; 
it is worth while to give a separate statement of one of the results obtained. 
Using q instead of m — 1, we have proved that if the equations 

ß = ?, m y/Ci, Wj _ yCp-i, mp-i 

are satisfied by sets of places £i, ..., Çp_1} so that also the equations 

— e = vmp » m — -y î > m i — — <yÇp-i> mP-i 

are satisfied by x « sets of places £ , ..., £p-i, then their exists a rational 
function, which has (i) for poles, the 2(p— 1) places tl9 ..., tp-lt zlt ..., zp-ly 

which satisfy the equations 

/*== 9jW*Pi W* — l)t\i W*i ^ftp-It >-1 

— ƒ = -y1"^»m — ^1» m> — —|^p-i i W P - I 

ƒ being supposed such that these equations have one and only one set of 
solutions, and has (ii) for zeros, the arbitrary places xlf ...,xqy each of the 
second order, together with 2 (p — 1 — q) places f9+1, ..., _ fg+1, ..., £ _  
satisfying the equations 

= ÎJW^' W î ^ l » m l t^0 » m « #&+*» 1 +1 yCp-1* % - l 

ß = < , »> m — 0*1» W l -y*9i ^ — •ylff+li «» +1 0&-1» % - l 

and the function can be given in the form 

4r(œl9 x2, ..., xqt x, e) - (#,ƒ), 

the notation being that employed at the conclusion of Proposition (XIV.). 
The expressions 4?, occurring here have the zeros of certain -polynomials, 
to which they are proportional. 

Corollary i. If we take p —1 places Ci, ..., £p_i, so situated that only 
one -polynomial vanishes in all of them, and define e by the equations 

Q = ymP) m __ yCii »»i — — I)CP-I> % - i 

there will be no other set Ci, ..., Çp_b satisfying these equations, or q=0. 
If ?i> •••> êp-i be the remaining zeros of the -polynomial which vanishes in 
Ci, . . . , Kp-\y w e bave (Prop. IX.) 

(m2, gi, ..., f^i , £i, ..., |_p_i) = (mj2, . . . , m/) , 
and therefore 

— e = ;**1?» , , — v^1 *mi —• — ifip-1 » W P - 1 . 

Similarly if ^, ..., tp_x be arbitrary places which are the zeros of only one  
-polynomial, we can put 

f = vmP* m 7/1 > ntl T /P - I» >-1 

ƒ*= ^m,j, « i)Zly ml yZp-i, mp-i 
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Then the rational function having tly ..., tp_ly z1} ..., zp_x for poles, and 

fi, ..., ( -i , £,••• , &-i for z e r o s i s g i v e n by > ) + ( > ƒ)• T l m s the  
-polynomial which vanishes in £i, ..., J ^ , &, ..., ^ ^ is given by 

2 / ( t f W p ' W - ^ ' T O » - -î^p- *-1) *( ), 
= 1 

where 2 ( ), ..., (#) are the -polynomials occurring in the differential 
coefficients of Riemann's normal integrals of the first kind. 

Hence if rii, ..., ftp-i be places which, repeated, are all the zeros of a  
-polynomial, the form of this polynomial is known. Since, then, we have 

(Prop. XL p. 269) 
ÌX1 = x^*m—vni>mi — — vnfi"1'mp-\ 

we can write this polynomial 

2e/(iß)fc(*), 
= 1 

JU being an odd half-period. 

If another -polynomial than this one vanished in nu ..., ?ip_1} there 
would be other places / , ..., n'p-u such that 

i l l = Vmp> m — Vn" — — Vn'v-1 ' mp-\ 

and therefore (Prop. VI.) the function © (v*> + | ) would vanish identi­
cally; in that case (Prop. XIV. p. 276) the coefficients ® / ( | ) would vanish. 

We can express the -polynomial in terms of any integrals of the 

F OG Tib OC Tìt 

l > •••» Vp be any linearly independent integrals of 

the first kind, expressible in terms of the Riemann normal integrals 

£' , ..., Vp by linear equations of the form 

•î"-4.Ff'+ + , "> (i = l,2,...,p), 
and the function ®(u) be regarded as a function of U1} ..., Up given by 

t*i = 4 i ^ i + + 4 * UP> ( = 1> 2> —>P), 

and, so regarded, be written (U), the -polynomial which has zeros of the 
second order at nly ..., n^-j can be written 

= 1 

where ^ ( ), ..., yfrp (œ) are the -polynomials corresponding to V± ' , ... , 

F^' r a , and J U denotes a set of simultaneous half-periods of the integrals 

V*'m, ..., Vp' . If j n stand forp quantities of which a general one is 

£(&l- + &i/Tt-|1+ + kpTi)P), ( = 1,2, ...,jp), 
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and ( )8) û/ r,s be 2p3 quantit ies given by 

==2\, !(*>!,s + 2\if2co2fS + +2\itPcùP)S, (i, 8=1, 2, . . . , p ) , 

Tit 8 = 2Xit i « i, § -h 2A^ a G)'2i s+ + 2\i}p œ Pì 8t 

where, in the first equation, we are to take 1 or 0 according as = s or =f= s, 

then ^ will stand for p quantities of which one is 

hm, i+ +kpù>iiP + k1'ù)'iil+ +kpo>'i>p, ( = 1, 2, ...,jp). 

For example when the fundamental Eiemann surface is that whose 
equation may be interpreted as the equation of a plane quartic curve, every 
double tangent is associated with an odd half-period and its equation may 
be put into the form 

œ%' (£ Q) + jfo' ( iß ) + %' (* ) = 0. 

Corollary ii. If the equations 

e = vmp*m tF1 •mi v^2 * — v^p~1> mp-1 

can be satisfied with an arbitrary position of xx and suitable positions of 
&> ..., fp-i, and therefore, also, the equations 

ß = ymv, m yXï, mx __ £ , 2 y£p—i> mp—i 

can be satisfied, then a -polynomial vanishing at œ1 to the second order, and 

otherwise vanishing in Ç"2, . . . , Çp-Yi £2, • ••> £p-i> is given by 

I Oi (x) I ®\ j (e) Clj fa) = 0. 
= 1 j=l 

Ex. In the case of a plane quintic curve having two double points, this gives us the 
equation of the straight lines joining these double points to an arbitrary point xx, of the 
curve. 

Corollary iii. We have seen (Chap. VI. § 98) that any rational function 
of which the multiplicity (q) is greater than the excess of the order of the 
function over the deficiency of the surface, say, q — Q — ̂  + + 1, can be 
expressed as the quotient of two -polynomials. If the function have 
Si» •••> KQ f° r zeros, and £ , ..., £Q for poles, and the common zeros of the  

-polynomials expressing the function be zly ..., zRi where R=2p — 2 — Q, 
the function is in fact expressed by 

f /( ) * (*)*£©/(ƒ)!!<(*), 
= 1 = 1 

where (cf. § 93, Chap. VI.) 

e _ > m _ vzv Wj _ _ ^ - > mR-T _ yïi> ™ - +1 _ ^ __ vU> mP-i 

ƒ _ , m _ yZ19 nij _ ^ _ VZR-T> mR-T _ ^ i > ™R-r+i _ # _ _ ^V - \ 
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189. Before concluding this chapter it is convenient to introduce a 
slightly more general function * than that so far considered ; we denote by 
^ (u ; q, q'), or by ^ (u, q), the function 

( ; <7, # 0 = 24a>u*+2hu(n+q')+b(n+q')*+tiirq(n+q')f 

wherein the summation extends to all positive and negative integer values of 
the p integers , ..., np) a is any symmetrical matrix whatever of p rows and 
columns, h is any matrix whatever of p rows and columns, in general not 
symmetrical, b is any symmetrical matrix whatever of p rows and columns, 
such that the real part of the quadratic form bm? is necessarily negative 
for all real values of the quantities mly ..., mp> other than zero, and q, q 
denote two sets, each of p constant quantities, which constitute the character­
istic of the function. In the most general case the matrix b depends on 
%p(p+ 1) independent constants ; if however we put for , being the 
symmetrical matrix hitherto used, depending only on Sp — 3 constants, and 
denote the p quantities hu by U, we shall obtain 

( ; q')=e?u*®(U; qyq'). 

We make consistent use of the notation of matrices (see Appendix ii.). 
If denote a row (or column) letter of p elements, and h denote any matrix 
of p rows and columns, then hu is a row letter ; we shall generally write 
huv for hu.v; and we have huv = hvu, where h is the matrix obtained from 
h by transposition of rows and columns. Further if be any matrix of p rows 
and columns, hu.kv= hkvu = khuv. For the present every matrix denoted by 
a single letter is a square matrix of p rows and columns. 

Now let », a/, ij, i{ be any such matrices, and P , P ' be row letters of 
elements P1? ..., Pp, P / , ..., Pp. Then, by the sum of the two row letters 
o)P + G / P ' we denote a row letter consisting of p elements, each being the 
sum of an element of coP with the corresponding element of œP'. This 
row letter, with every element multiplied by 2, will be denoted by , 
so that 

Up = 2Û)P + 2 Û / P ' ; 

in a similar way we define a row letter of p elements by the equation 

HP = 2VP + 2V'P'; 

then -f Xîp will denote a row letter of p elements, like u. 
The equation we desire to prove, subject to proper relations connecting 

e», U/, rj} 7j\ is the following, 
^ ( + > q) = effp(u+40i-)-irfP^+2-» W-Pq) e-**iPq><$ (u, P + q\ (L), 

which is a generalization of some of the fundamental equations given for 
0 (u). 

* Schottky, Abriss einer Theorie der AbeUchen Functionen von drei Variabein, Leipzig, 1880. 
The introduction of the matrix notation is suggested by Cayley, Math. Annul, (xvii.), p. 115. 
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In order that this equation may hold it is sufficient that the terms on the 
two sides of the equation, which contain the same values of the summation 
letters nlt ..., np, should be equal ; this will be so if 

a(u + )2 + 2h( + fìP) (n + q') + b(n + q'f + 2iriq(n + q) 

= HP(u + inp) - ' ' - 2-rriP'q + au2 + 2hu (n + q' + P') + 6 (n + j ' + P')2 

+ 2m'(-P + ?)(» + î ' + P ' ) ; 
picking out in this conditional equation respectively the terms involving 
squares, first powers, and zero powers oînu ..., npj we require 

A (^ + ) + bq' + mq = / + 6 (g' + P') + ( + g), 
and 

a ( + )2 + 2 ( * + ) g' + ?'2 + 2mqq' = ( + £ ) - ' ' - 2 ' 

+ 2 + 2/ (?' + ') + (q + ')2 + 2 ( + ç) (q' + F). 

190. In working out these conditions it will be convenient at first to 
neglect the fact that a and b are symmetrical matrices, in order to see how 
far it is necessary. 

The second of these conditions gives 

= + ', 

and therefore gives the two conditions hœ = \ hœ = ^6, whereby >, &>' 
are determined in terms of the matrices h, b. In particular when h =  
and — as in the case of the function S(u)y we have 2<w = l, 2U>' = , 
namely 2 , 2co' are the matrices of the periods of the Riemann normal 
integrals of the first kind, respectively at the first kind, and at the second 
kind of period loops. 

The third condition gives 

2 + a£l2p + 2h£lPq' = ( + £ ) 

- ' ' - 2TTÌFq + 2/ ' + b (2^P r + P'2) + 2 ' (qP' + Pq' + PP ' ) , 
that is 

(2 - HP - 2hP') + ( - i f fP ) - ' ' - & '2 

+ 2 (AOp-7 r iP -6P ' )g ' = 0 ; 

in order that this may be satisfied for all values of , ..., upy we must have, 
referring to the equation already obtained from the second condition, 

= 2 - 2 ', 
and 

(< - \HP) = ( ' + ÒP') P ' ; 

from the first of these, by the equation already obtained, we have 

( - i # p ) fìp = hPfnp = M1PP' = ( ' + ') ; 
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subtracting this from the second equation, there results 

( ä - a ) ß 2
P = ( 6 - o ) P ' 2 , 

and in order that this may hold independently of the values assigned to 
P , P ' it is necessary that ä = , b = b ; when this is so, these two equations 
give, in addition to the one already obtained, only the equation 

HP=2anP-2hP', 
leading to 

7} = 2a©, 97' = 2aœ' — 2A, 

which express the matrices rj and rf in terms of the matrices a and h. These 
equations, with 

hnP = TriP+bP', 
or 

are all the conditions necessary, and they are clearly sufficient. When they 
are satisfied we have 

^ (u + ftp, q) = ekp<*> -^ip'<* ( ; q + P) , (L), 
where 

XP (u) = HP (u + i f ì P ) - '. 

Ex. Weierstrass's function au is given by 

( =2 2 

where A is a certain constant. 

The equations obtained express the 4/)2 elements of the matrices <w, co', ij, vf 
in terms of the p2+p(p 4-1) quantities occurring in the matrices ayhtb; 
there must therefore be 2p2 — p relations connecting the quantities in w, œ', 
), rf. The equations are in fact of precisely the same form as those already 
obtained in § 140, Chap. VIL, equation (A), and precisely as in § 141 it 
follows that the necessary relations connecting , /, 77, rf may be expressed 
by either of the equations ( ), ( ) of § 140. Using the notation of matrices 
in greater detail we may express these relations in a still further way. 

For 

} (tfpQQ - HQnP) = ( - ') nQ - (a,nQ - hP')   

= -hP'nQ + hQ'np 

= hnP.Q'-hD,Q.P' 
= ( + ') q - (TTÌQ + bQ') P', 

so that 

HpnQ - HQnP = 2 {Pq - P'Q) ; 

this relation includes all the 2p2 — p necessary relations ; for it gives 

(<nP + if I*) (coQ + o'Q) - (VQ + V'Q') («P + w'P') = ^ (PQf - P'Q), 
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or (using the matrix relation already quoted in the form hu.kv= hkvu — khuv) 

(ëv - 7J(o) PQ + («V - 4»') PQ + (v'v - V'°>) + (» V - V'°>') P'Q' 

= iiri(PQ'-FQ), 

and expressing that this equation holds for all values of P , Qt P', Q', we 
obtain the Weierstrassian equations ((B) § 140). 

Similarly the Eiemann equations ((C) § 140) are all expressed by 

{2w'P + 2rj'Q) {2â>P' + 2vQ) - (2œP + 2rjQ) (2 ' ' + 2^ ,Q ,)= 2 (PQ' - PQ). 

Ex. i. If we substitute for the variables in the ^ function linear functions of any p 
new variables v, with non-vanishing determinant of transformation, and LF be formed from 
the new form of the ^ function, regarded as a function of v, just as HP was formed from 
the original function, prove that LPv = HPui and that AP (u) remains unaltered. 

Ex. ii. Prove that 

\P (u + QM) + \M (U) - 2 ' = \Q (u + QN) + XjV (u) - 2TTŒ'Q, 
provided 

M+P=tf+Q. 

The equation (L) is simplified when P , P' both consist of integers. For 
if M, M' be rows of integers, it is easy (putting a new summation letter, 
m, for n + M', in the exponent of the general term of S- (u ; q+ M, q' + M')>) 
to verify that 

( \ q + M, q' + M^^e^^biu; q, q'). 

Therefore, if m, m' consist of integers, we find 

^ (U + > q) = *M«) +21 ( ' - '3) ^ ( ^ ^ 

and in particular 

where Sr ( ) is written for ^ ( ; 0, 0). The reader will compare the equations 
obtained at the beginning of this chapter, where a = 0, rj = 0, 9/ = — 27 , 
Û, = J, a/ = 4 T , Op = P + , =-2 , \ ( ) = - 2 ' ( + J P + ^ 7) 
- '. 

One equation, just used, deserves a separate statement ; we have 

ò(u; q + M) = e2lrìM*ò(u; q), 

where M stands for a row of integers Mu ..., Mpy if/, ..., Mp\ 

191. Finally, to conclude these general explanations as to the function 
^ ( ), we may enquire in what cases Sr ( ) can be an odd or even function. 

When m, m' are rows of integers the general formula gives 

^ ( - + flm, q) = e*» <-«)+*«'(*•*-«'«) ^ ( - , q) ; 
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hence when ^ (u, q) is odd, or is even, since \ m (— ) = \_ m ( ), we have 

ò{u- > q) = eA-w («)+2« w-^'3) ^ (^ ? ) ; 

therefore, by equation (L), 

u (U + , g), = Ä (w - , Ç) . eA2m(t*-iQm)+4,n(^~m'3)) 

= ^ ( ) ^- ( +^2 [ —$0m) + eirt(mg'— m'q) 

while also, by the same equation, 

ò(u + nm,q) = ò ( , q) ex™(«)+a«W-i»'g>. 

Thus the expression 

Xtmiu-i n w ) + \ _ w ( ) - ™ ( ) + 47 (ra</ - m'g) 

must be an integral multiple of 2iri. This is immediately seen to require 
only that 2 {mc[ — m'q — mm') be integral for all integral values of m, m'. 
Hence the necessary and sufficient condition is that q and q' consist of half-
integers. In that case we prove as before that ^ ( , q) is odd or even 
according as 4<qq' is an odd or even integer. 

192. In what follows in the present chapter we consider only the case in 
which = , being the matrix of the periods of Biemann's normal 

integrals at the second kind of period loops. And if ' , ..., £' denote 
any p linearly independent integrals of the first kind, such as used in §§ 138, 
139, Chap. VIL, the matrix h is here taken to be such that 

2irivï'a = hiilul'a + +hi)Pv%a, ( = 1, 2, ...,p), 

so that A is as in § 139, and 

^ (ux* a, q) = &* © ( ?> , q\ 
where = > . 

From the formula 

- ( * + O m ) = <A(«+à«m)-imnm' ^. ( ^ 

wherein m, m' denote rows of integers, we infer, using the abbreviation 

that 

&( + ) - & ( ) = 2(%-,1 1 + + Vît p mp + v \ x ra/ + +v'i,p™>p')', 

particular cases of this formula are 

& ( + 2œh r , ...,Up + 2CÙP) ) = & ( ) + 2 ^ r> 

& ( + 2(o'h » •. •, Up + 2U/PJ ) = & ( ) + 2i/», . 
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Thus if us be the argument 

* » - « * ' " » , - -W*'"* 
s s s ' 

where *!* , ..., ^p ' are any p linearly independent integrals of the first 
kind, and the matrix a here used in the definition of a- (u) be the same as 
that previously used (Chap. VII. § 138) in the definition of the integral 

Li'a, so that the matrices ??, 77' will be the same in both cases, then it 
follows that the periods of the expression 

ft (u) + Li'a, 

regarded as a function of x, are zero. 

193. And in fact, when the matrix a is thus chosen, there exists the 
equation 

- ft ( - 1> *- - ux*> » m*>) + ft ( ua> m - ^ » w > - - ux*> • ™p) 

= If? a + % vr, i [(xry x) - (xr> a)] -^~ , 

wherein vTi - denotes the minor of the element fit (xr) in the determinant 
whose (r, i)th element is fii(xr)t divided by this determinant itself; thus 
Vrti depends on the places œly ..., xv exactly as the quantity vTj i (Chap. VII. 
§ 138) depends on the places c1} ..., cp. 

For we have just remarked that the two sides of this equation regarded as 
functions of x have the same periods; the left-hand side is only infinite 

at the places xlf ...,xp; if in L? , which does not depend on the places 
d, ..., cp used in forming it (Chap. VII. § 138), we replace clt ..., cp by 
xlt . . . , xp> it takes the form 

^, + + ^ , ~ 2 ( a i , 1 ^ 1 + +ai)Pup ), 

and becomes infinite only at the places xlf ...,xp. Hence the difference 
of the two sides of the equation is a rational function with only p poles, 
xly ..., xp, having arbitrary positions. Such a function is a constant (Chap. 
III. § 37, and Chap. VI.) ; and by putting x = a, we see that this constant is 
zero. 

194. I t will be seen in the next chapter that in the hyperelliptic 
case the equation of § 193 enables us to obtain a simple expression for 
ft (ux> m — uXi>mi — — UXP> mp) in terms of algebraical integrals and rational 
functions only. In the general case we can also obtain such an expression* ; 

* See Clebsch und Gordan, Abels. Functnen. p. 171, Thomae, Creile, LXXI. (1870), p. 214, 
Thomae, Creile, ci. (1887), p. 326, Stahl, Creile, cxi. (1893), p. 98, and, for a solution on different 
lines, see the latter part of chapter XIV. of the present volume. 
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though not of very simple character (§ 196). In the course of deriving that 
expression we give another proof of the equation of § 193. 

The function of x given by ( > ; J/3, \ot) will have p zeros, unless 
^ ( ' m + ^üßt a) vanish identically (§§ 179, 180) ; we suppose this is not the 
case. Denote these zeros by ra/, ..., mp'. Then (Prop. X. § 184) fche function 
S- (ux, m __ uxlt w/ __ _ uxp, mp'. i ^ i a ^ wjij vanish when x coincides with 
xlt x2t ..., or xp. Determining ml9 . . . , mp so that 

«™ «h' + + wwp, mp' _ ± ß ^ a j 

and supposing the exact value of the left-hand side to be \ £lßi a + £lkj h> 

where , h are integral, this function is equal to 

*( t t* 'T O -w*»«t - - %>™/> - i f ì P ) a - *, ; 1/3. J a ) , 

and this, by equation (L) is equal to 

where = *> ™ — *1» "»i — — w**» "^ - X2Aj A. 

Therefore (§ 190) the expression 

_Sr(u*»™-t t a ? " w > i ' - - ^ * ; 1/3, fra) 
' "" -( * » - *1.™|'- - **»™*/; 1/3, l « ) 

/ ^ ^ ^ - ^»™*'- -iifp,™p' ; 1 lq) 

/ b(ur>m-vr»mi- -u^P'™*'; £/8, £ a ) ' 
is equal to 

à ( «̂ »TO — *»» m» - —U*P*
 mv) I ( . m - 1 - -unp,mP) ' 

we may write this in the form 

( - ) ! * ( F - ~ e ) ' 

the expression is therefore equal to 

(H) (qjX> ™> — qft\ i m\ — — -y^p. % ) ƒ © (*?c, m _ vm, m1 _ _ v^p, wip\ 

© ( ^ , w _ 1} mx_ _ - , mp\ J ( ) / ^ , m _vn1,m1 _ _- <y^p> ™p) ' 

where 
L, = a (U- r)2- a(V- r)2- a(U- s)2 + a(V- s)2, 

is equal to 
- 2aU(r -s) + 2aV(r-s), 

or 
- 2 a ( E T - 7 ) ( r - « ) , 

that is 
- 2aux>fl(uxi>^ + - **»»'*), 

. 19 
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which denotes 

r = 1 i , j 

Hence, by Prop. XIII. § 187, supposing that the matrix a, here used, is the 
same as that used in § 138, Chap. VII., and denoting the canonical integral 

UZfC-2 2< 2, }8 Us , 
r = l s = l 

which has already occurred (page 194), by Rz\c, we have 

iC„+ + %:„ =1 . 
195. From the formula 

P p*r. * r , ( > — Ux»mi-...-UxP>mp) / (U»> m -- llx*> m* - . . . - UxP>ml>) 

3i " * = ° ^ ̂  (ux> m - u^ w i - . . . - u*p> mp) I ( * >m - *" " - ... - №> > 

since 
O ^ r . Mr ^ « r » Mr , £ > Mr , ft 

i=l 
we obtain 

where 
Ü" =M^»m» + + uxp>mp, 

U0 = ufli>mi+ H-^P'7^, 
and therefore 

U- U0= 2 ^ > ^ . 

Hence, differentiating, 

2 | g [(*„ x) - (œr, /,)] + L*r = - &(**. - - U) + £ (w*m - ff), 

where 

but, from 
dt7i = i>M*'-m \^1 + + Du^mp.dxp, 

where dxt, ..., dxp denote the infinitesimals at xlt ..., xp, we obtain 

>*1 '> 
thus 

- & («ft « - 17) + & («f. » - f7) = X? m + vr, i [(xr, x) - (xr, f,)] ^ , 

which is the equation of § 193. 
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196. From the equation 

nt:„+ +iC*,=i°g*, 
differentiating in regard to x, we obtain an equation which we write in 
the form 

I F? * = I fir (x) [f, (u*> »-CT)-ÇV ( *. - - J70)], 
r = l r = l 

where J7 = ^ » "̂  + -f^»7 7^, I70 = **1 » "*i-f + ?^P>™P. 

Thus, if we take for /j^,..., /JLP places determined from x just as mlt..., mp 

are determined from m, so that 

(m, / 1} ..., fip) = (xy mlt ..., ra^), 

the arguments ux> m — U0 will be = 0 ; as the odd function fr (u) vanishes for 
zero values of the argument, we therefore have (§ 192), writing £lP for the 
exact value of ux>m - U0> 

I*'M+ +F?'flp= 2 / ^ ( ) [ ? r ( w * » - « * ' » * - - %." ) - ( )1 

= 2 fir(x) Çr(u*>m- ***™* - ... - <u*p> ™ - ) 
r = l 
V 

= - 2 fa (#) fr fa*1' ^ + ... + ' ^ ' ^ ) . 
=1 

If in this equation we put x at m we derive 

i C m i + + j C , m p = - ^ Mr(m)f r(^»«b + + t t * ,«p ) , (M), 
r = l 

where ^j , ..., -ŝ  are arbitrary. 

If however we put x in turn at p independent places cl9 ..., cp, and 
denote the places determined from -, as m1) ..., m^ are determined from 
m, by , i, ..., , , so that 

(Ci}mu ...ymp) = (m}ci)lf ...,citP), 

we obtain p equations of the form 

^ 1 , C i > 1 + + F*"Ci'p = - ^ ^ ^ ^ + /*' ^ ) . 

Suppose then that xt xly ..., #p are arbitrary independent places; for 
Z\, •••> zp put the places xiyli ..., XitP determined by the congruence 

\X) X{} lf . . . , Xit p) = (^C^, fl?j, . . . , Xp) ] 

then, if £LQ denote a certain period, — uXi**' '1 — ... — î *» *» Ci,î> is equal to 

nQ+ux'm-ux^m^- - ux»m*>, and we have 

19—2 
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therefore 

Ci(nQ + ux'm-uXl'mi-...-uXp'mp)= I vrii[F?r'1'er-1+... + F*r-PiCr'Pl 
r=l r r 

where vry i is tbe minor of /x* (cr) in the determinant whose (r, s)th element is 
fxs (cr)y divided by the determinant itself. 

In particular, when the differential coefficients / (x), ..., /JLP (X) are those 

already denoted (§ 121, Chap. VII.) by <ÛY (#), . . . , cop(œ)}and V*'a = I ( ) > 
J a 

and the paths of integration are properly taken, we have* 

3 log MF*' m - y*1'™1- _ 7^'wn = j p ^ M . ^ , 1 + +jp*i,p>citP 

dVi ci ci 

197. A further result should be given. Let xy xlf ..., xp be fixed 
places. Take a variable place z> and thereby determine places zu ...,zp, 
functions of z, such that 

\Xt Zly . . . , Zp) = yZ, Xly . . . , Xp). 

Then from the formula 

- Çi(uz>m — u***mi— - ^ ' ™ * ) + gi(tte»m — *»»111» - _ ^ , « v ) 

= 1% a + 2 vS) i [(zs> z) - (zSt a)] -jj , 
s=i at 

wherein v8j i is formed with zl9 . . . , %, we have, by differentiating in regard 

to z and denoting — — ft- (w) by ^ j ( ), 

^ — d^ dz ~\ 

where U=uz> m — uz^m^ — _ ^ > "**>, Jj = u
a> m — uz^Wi — — uzP'mp. 

In this equation a is arbitrary. Let it now be put to coincide with z ; 
hence 

w (*) p.-, j ( tO = A X? * + lvs, i D2 [(*., z) . 

* This form is used by Noether, Math. Annal, xxxvii. (1890), p. 488. 
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Therefore 

î'=l i = l 

= I w (AT)AÌ Ì '+S I *,,< (̂*) L., *>5] 
= 1 s = l = 1 L a C J 

= I A4 (4) D,Lf e+ I ». (4) A [(*., *) § 1 

= D'z { f ^ (4) Lf a + Ì»t (k) [(*„ s) - (*, a)] ̂ } , 

where / means a differentiation taking no account of the fact that zlt ..., zp 

are functions of zy 

= D1"| 2/Ai(&)Zi , e-^r(2r, a; fc, ̂ , . . . , ^ ) + (&,*)-(&, a) ^ , 

in which form the expression is algebraically calculable when the integrals 

LT a are known (Chap. VII. § 138), 

= Dg j r £ a - ^ 0 , a; &, ̂ , ..., zp)-2%Sart8/ir(k)u8*
c>, 

where is an arbitrary place ; and this (cf. Ex. iv. § 125) 

p p 
= -W(z\ k,zlf ...,zp)-2 5 %artafir(z)fir(ky 

If now 
(A;, z1} . . . , Zp) = \zy kly ... y Kp), 

so that 

U = Ux>m - W*i> m i — — UXP> ™P = uz>m — Uzi>mi— —UZp,™>p 

= uk,m_uki,m1__ — >,»*; 

and 

( # , Z1, . . . , -S'pJ = ( # , ?!, . . . , ) , 

( # , fCly - . . , A*p) = (A?, W1, . . . , ? >), 

then the formula is 

-t2^iij(U).fii(k)fij(z)=W(z; k,z1} ...,zp) + 2 2 X } s (z) 8 ( ) , 
j r—ls^l 

P P 
= W(k) z>k1,...,kp) + 2% 2 ar>s/jLr(z)fis(k), 

r=ls=l 

by Ex. iv. § 125. 
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By the congruences 
uZi » Xi + 4- UZP ' ^ = uz> x 

the places zl9 ...,zp are algebraically determinable from the places 
and therefore the function W(z; k, z1} ..., zp) can be expressed by x, x1} ..., 
xv,k, z only. In fact we have 

^(zlyœ; zyx1} ...,xp) = 0, ^{zvyx\ z, xu ..., xp) = 0. 

The interest of the formula lies in the fact that the left-hand side is a 
multiply periodic function of the arguments U1} ..., Up. 

A particular way of expressing the right-hand side in terms of to 
put down 4 J O ( ^ + 1 ) linearly independent particular cases of this equation, in which the 
right-hand side contains only x, xu . . . , xpi 2, k, and then to solve for the ^p(p + l) 
quantities jjp^-. Since (z, a ; k, zlt ...9 zp) vanishes when k = zp, we clearly have, as one 
particular case, 

and therefore 

M j f t , ^ ' w - * * 1 ' m i - -*"*• % ) w W (xr)=Z>xDXrR*> a (N) 
i xr> c 

and there a r e p equations of this form, in which xly . . . , xv occur instead of xr. 

If we determine . */, . . . , x'p_l by the congruences 

UX'm — UXli W l - - W3*' W;> = - \uXp> m — UX*' W l - -<up'r-l> Wf-i — u*' mPl 

so tnat \ , . . . , xp _ 1 are the other zeros of -polynomial vanishing in x^, . . . , xp_-^y 

we can infer p — 1 other equations, of the form 

z s ft, («••»-«ft' «* - -«">• ')« №(<)= , ^ ; ^ 

where r = l , 2, . . . , ( /»-1) . Here the right-hand side does not depend upon the place x. 
And we can obtain p such sets of equations. 

We have then sufficient * equations. For the hyperelliptic case the final formula is 
given below (§ 217, Chap. XL). 

198. Ex. i. Verify the formula (N) for the case p = \. 

Ex. ii. Prove that 

/•. [ m_ uxlt my _ _uxP, mP),Lx, a _jxlt a__ _jxPì a 
' i 

is a rational function of x, xXi . . . , xp. 

Ex. iii. Prove that if 

{x, zly . . . , zp) = (z, xti . . . , xp)=^(a) al7 . . . , ap), 
then 

y\r(x, a; z, xXi . . . , xp) = Tx> + ^ ' a 4 - + r*p»*p. 

Deduce the first formula of § 193 from the final formula of § 196. 

* The function jft, ,•(?*)» here employed, is remarked, for the hyperelliptic case, by Bolza, 
Göttinger Nachrichten, 1894, p. 268. 
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Ex. iv. Prove tha t if 

ft=r^.i'«i + +YX
c>;»-\ 

where ax, . . . , ap are arbitrary places, and 

y _ yX, m_ yxit ™ i _ _ _ yxP>mp= VCi' m - V*1'1' 1Hl - - VXi>P' mi> 
r r r r' r r r ' 

then 

^-pr = W {pi ; cr, x^ i, . . . , Xit pj, 

where IF denotes the function used in Ex. iv. § 125 ; it follows therefore by that example, 

that ^ = ^~. Hence the function 
ovr Vi 

QxdV^ + QPdVp 

is a perfect differential ; it is in fact, by the final equation of § 196, practically equivalent 

to the differential of the function log e ( V * m - V*1 »m> - - V » W p). Thus the theory 
of the Riemann theta functions can be built up from the theory of algebraical integrals. 
Cf. Noether, Math. Annal, xxxvii . For the step to the expression of the function by the 
theta series, see Clebsch and Gordan, Abelsche Functionen (Leipzig, 1866), pp. 190—195. 

Ex. v. Prove that if 

( m , ^*t, I , . . . , ^' i ,p, 2 1 ? . . . , Zp) = \Ci ± . . , mp ) 

then 

A iog e (p* '" 1 -^ ' '" ! - - »' *)^(^ 1+ + *; *•**). 

Ex. vi. Prove that 

- i tii(z)[Ci(u
x'm-u^'m^- -u**>m')-{i(tP'm-ifl'mi- -ux"mp)] 

t = l 

= F*'a-yl,(x,a; , a?j, . . . , ? ). 

Ex. vii. If 

T(x, a ; xu . . . , #p) = [ > 0 , « ; *, xu . . . , xp)-F
x,a]z=Xi 

prove that 
l o g M ^ ' ™ - ^ 1 ' ™ 1 - - t f * . « * ) 

CC (1 X fit t ^ 

= + 1 ' + +ApUp' +1 dxT(x, a ; x19 ..., xp), 

where J , ^11 ? . . . , are independent of #. 

Z r̂. viii. Prove that 

- at Mr(*)ft.r(t^•*-«"»"•- -«*•"*) = I Pv,iD*DXrlUrac, 

where , are arbitrary places and the notation is as in § 193. 


