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CHAPTER X.
RIEMANN’S THETA FUNCTIONS. (GENERAL THEORY.

173. THE theta functions, which are, certainly, the most important
elements of the theory of this volume, were first introduced by Jacobi in
the case of elliptic functions.* They enabled him to express his functions
sn u, cn u, dn «, in the form of fractions having the same denominator, the zeros
of this denominator being the common poles of the functions sn %, cn %, dn w.
The ratios of the theta functions, expressed as infinite products, were also
used by Abelt. For the case p =2, similar functions were found by Gopelf,
who was led to his series by generalizing the form in which Hermite had
written the general exponent of Jacobi’s series, and by Rosenhain§, who
first forms degenerate theta functions of two variables by multiplying to-
gether two theta functions of one variable, led thereto by the remark that
two integrals of the first kind which exist for p = 2, become elliptic integrals
respectively of the first and third kind, when two branch places of the surface
for p =2, coincide. Both Gopel and Rosenhain have in view the inversion
problem enunciated by Jacobi; their memoirs contain a large number of
the ideas that have since been applied to more general cases. In the form
in which the theta functions are considered in this chapter they were first
given, for any value of p, by Riemann|. Functions which are quotients
of theta functions had been previously considered by Weierstrass, without
any mention of the theta series, for any hyperelliptic case. These functions
occur in the memoir of Rosenhain, for the case p=2. It will be seen that

* Fundamenta Nova (1829); Ges. Werke (Berlin, 1881), Bd. 1. See in particular, Dirichlet,
Gediichtnissrede auf Jacobi, loc. cit. Bd. 1., p. 14, and Zur Geschichte der Abelschen Trans-
cendenten, loc. cit., Bd. 11., p. 516.

+ Euvres (Christiania, 1881), t. 1. p. 343 (1827). See also Eisenstein, Crelle, xxxv. (1847),
p. 153, ete. The equation (b) p. 225, of Eisenstein’s memoir, is effectively the equation

97 (W)=4§° (u) - g, @ (u) - 95.
1 Crelle, xxxv. (1847), p. 277.
§ Mém. sav. étrang. x1. (1851), p. 361. The paper is dated 1846.
iI Crelle, utv. (1857) ; Ges. Werke, p. 81.
9 Crelle, xuviL. (1854); Crelle, L11. (1856); Ges. Werke, pp. 183, 297,
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the Riemann theta functions are not the most general form possible. The
subsequent development of the general theory is due largely to Weierstrass.

174. In the case p =1, the convergence of the series obtained by Jacobi
depends upon the use of two periods 2w, 2¢’, for the integral of the first
kind, such that the ratio /e has its imaginary part positive. Then the
quantity ¢ = e a is, in absolute value, less than unity.

Now it is proved by Riemann that if we choose normal integrals of the
first kind »%, ..., v:’ % so that o “ has the periods 0...0, 1, 0, ..., 7. 1, ..., Tr,p,
the imaginary part of the quadratic form

b=Tun’+ ...... +T .04 + 21 s mne + ... + 27, s MM+ ...

is positive* for all real values of the p variables n,, ..., n,. Hence for all
rational integer values of n,, ..., n,, positive or negative, the quantity e
has its modulus less than unity. Thus, if we write 7, ;= p, s+ Ky s pr,s
and «,, , being real, and a,, =b,+ 1, ..., @y, =b,+1ic,, be any p constant
quantities, the modulus of the general term of the p-fold series

n=w Ng=PD np=c
) 3o S emttetapmptinh

N=-0 Ny=-w Np= —©

wherein each of the indices m,, ..., m, takes every real integer value
independently of the other indices, is e~ where

L=—mn+...... +by1np) + (e + . + 2615 Ny + oo ),
=—(bmnm+...... + bynp) + Y, say,

where Y is a real quadratic form in n,, ..., n,, which is essentially positive
for all the values of n,, ..., n, considered. When one (or more) of n,, ..., n,
is large, L will have the same sign as, and will be positive; and if u be any

-p
positive integer el/* is greater than 1 + L/u, and therefore e~ < (1 + 5) ;

now the series whose general term is (1 +%)-F will be convergent or not
according as the series whose general term is ¥—* is convergent or not, for
the ratio 1 +£: 4 has the finite limit 1/u for large values of n,, ..., ny;
and the series whose general term is 4»~# is convergent provided u be taken

* The proof is given in Forsyth, Theory of Functions, § 235. If w7 °, ..., w;' % denote a set of
integrals of the first kind such that w™ ® has no periods at the b period loops except at b, and

has there the period 1, and ¢4, 1, ..., o, p be the periods of wf' % at the a period loops, the quadratic
function

has its imaginary part negative.
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>4p. (Jordan, Cours d’Analyse, Paris, 1893, vol. 1, § 318.) Hence the
series whose general term is

ea,n,+‘.‘...+a,,n,,+i1r¢’
is absolutely convergent.

In what follows we shall write 27iu, in place of a, and speak of u,, ..., up
as the arguments; we shall denote by un the quantity w,n, + ...... + ugny,
and by T the quadratic m,n.2+ ...... + 2T My + .o . Then the Riemann
theta function is defined by the equation

® (’M) = zem-iun+i1rm”

where the sign of summation indicates that each of the indices n,, ..., n,
is to take all positive and negative integral values (including zero),
independently of the others. By what has been proved it follows that ® (u)
is a single-valued, integral, analytical function of the arguments u,, ..., .

The notation is borrowed from the theory of matrices (cf. Appendix ii); r is regarded
as representing the symmetrical matrix whose (r, s)th element is =, ,, 7 as representing
a row, or column, letter, whose elements are #,, ..., n,, and u, similarly, as representing
such a letter with u,, ..., %, as its elements.

It is convenient, with @ (u), to consider a slightly generalized function,
given by
® (u 5 q, q’)’ or ® (u, q) = 3 g2t (n+q)+inT (itq) H2mig (n+q) ;

herein ¢ denotes the set of p quantities q,, ..., ¢p, and ¢’ denotes the set
of p quantities ¢y, ..., ¢, and, for instance, u(n + ¢') denotes the quantity
un + ug’, namely

Uny + ... +uphy + g + .. + UpQyp,

and 7(n + ¢')* denotes n®+ 27ng’ + 7¢”%, namely

Y2
(Tunl+ oo + 21 mn +0.)+2 2 S 1 ng + (e P+ - 4 2T g ).

s=1r=1

The quantities q;, ..., ¢, ¢/, ..., @, constitute, in their aggregate, the
characteristic of the function ® (u; ¢); they may have any constant values
whatever; in the most common case they are each either 0 or §.

The quantities r;, ; are the periods of the Riemann normal integrals of the first kind at
the second set of perjod loops. It is clear however that any symmetrical matrix, o, which
is such that for real values of £y, .... £, the quadratic form ¢#% has its imaginary part
positive, may be equally used instead of , to form a convergent series of the same form as
the © series. And it is worth while to make this remark in order to point out that the
Riemann theta functions are not of as general a character as possible. For such a
symmetrical matrix o contains 4p (p+1) different quantities, while the periods ,,, are
(Chap. 1., § 7), functions of only 3p—3 independent quantities. The difference 4p (p+1)
—(3p-3)=4%(p—2)(p—3), vanishes for p=2 or p=3; for p=4 it is equal to 1, and for
greater values of p is still greater. We shall afterwards be concerned with the more
general theta-function here suggested.
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The function © () is obviously a generalization of the theta functions used in the
theory of elliptic functions. One of these, for instance, is given by

0 3 H=2 0()0) 6= o (9,00 — 5P ) Hrin (kB i+,

and the four elliptic theta functions are in fact obtained by putting respectively ¢, ¢'=0, % ;
=%14; =4,0; =0,0.

175. There are some general properties of the theta functions, imme-
diately deducible from the definition given above, which it is desirable to
put down at once for purposes of reference. Unless the contrary is stated it
is always assumed in this chapter that the characteristic consists of half
integers; we may denote it by 8, ..., 38y, ¥, ..., $a,, or shortly, by
3B, 3a, where B, ..., By, &y, ..., @, are integers, in the most common case
either 0 or 1. Further we use the abbreviation Q,, ,, or sometimes only Q,,,
to denote the set of p quantities

mi+ T M + + T, pMy s (t=12 ..,p)

wherein m,, ..., my, m/, ..., m, are 2p constants. When these constants
are integers, the p quantities denoted by £, are the periods of the p Riemann
normal integrals of the first kind when the upper limit of the integrals is taken
round a closed curve which is reducible to m; circuits of the period loop b;
(or m; crossings of the period loop a;) and to m; circuits of the period
loop @;, 7 being equal to 1, 2,...,p. (Cf the diagram Chap. IL p. 21.)
The general element of the set of p quantities denoted by Q,,, will also
sometimes be denoted by m;+ 7;m’, 7; denoting the row of quantities formed
by the ¢th row of the matrix 7. When m;,, ..., m, are integers, the quantity
m;+ T;m’ 1s the period to be associated with the argument u;.

Then we have the following formulae, (A), (B), (C), (D), (E):
O (—u; §B, ta)=¢"* 0O (u; {8, }a), (A).

Thus O (u; 48, ) is an odd or even function of the variables w,, ..., u,
according as Ba, =B + ...... + Bpap, is an odd or even integer; in the
former case we say that the characteristic 8, $a is an odd characteristic, in
the latter case that it is an even characteristic.

The behaviour of the function © (u) when proper simultaneous periods
are added to the arguments, is given by the formulae immediately following,
wherein r is any one of the numbers 1, 2, ..., p,

Oy, ..., ur+ 1, ..., up; 3B, fa)=¢" O (u; £, 1),
O (U4 Ty, Us+ To 5y ooey Up+Tp, 15 36, Fa) = T 04HmA—78: @ (u; 18, $a).

Both these are included in the equation

© (u + Qs 8, §a) = g-omimwrhrmi rione—mi®) @ (u; 48, ha),  (B);
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herein the quantities m,, ..., my,, my, ..., m, are integers, w+ Q,, stands for
the p quantities such as u,+m, +m/r, , +...... + m,'7,, p, and the notation
in the exponent on the right hand is that of the theory of matrices; thus
for instance m'rm’ denotes the expression

4
21 my (Tr, My + e + Ty, p My,
-

and is the same as the expression denoted by tm™.

Equation (B) shews that the partial differential coefficients, of the second
order, of the logarithm of ® (u ; $8, %a), in regard to u,, ..., u,, are functions
of uy, ..., up, with 2p sets of simultaneous periods.

Equation (B) is included in another equation ; if each of B, a’ denotes a
row of p integers, we have

O (u+ 30,05 3B, )= e mewHBHIH) @ (u; 18+ 38, $a+ 1), (C):

to obtain equation (B) we have only to put B, =2m,, &, =2m,” in equation
(C). If, in the same equation, we put 8'= — B, «’ = — a, we obtain

O (u—1Qp,.; 3B, Fa)=emie i) B (u; 0, 0) = ¢m= ¥ O (u);
from this we infer
B (u; 3B, fa) = eriawtiftia @ (u+ Q4 ), ®);

this is an important equation because it reduces a theta function with any
half-integer characteristic to the theta function of zero characteristic.

Finally, when each of m, m’ denotes a set of p integers, we have the
equation

Ou; $B+m, ta+m)=e" 0@ (u; {8, }a), (E);

thus the addition of integers to the quantities }a does not alter the theta
function ® (u; 38, 3a), and the addition of integers to the quantities {8
can at most change the sign of the function. Hence all the theta functions
with half-integer characteristics are reducible to the 2% theta functions which
arise when every element of the characteristic is either 0 or §.

176. We shall verify these equations in order in the most direct way. The method
consists in transforming the exponent of the general term of the series, and arranging the
terms in a new order. This process is legitimate, because, as we have proved, the series is
absolutely convergent.

(A) If in the general term
eZm:u (n+}a)+inr(nt+ia +wi8 ('n+ia)’

we change the signs of u,, ..., %,, the exponent becomes

2miu (- n—a+4a)+imr (—n—a+4a)+ w8 (—n—a+ia)+2mBri+mifa.
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Sincde a consists of integers we may write m for —n—a, that is m,= —(n,+a,), for

r=1,2, ..., p; then, since 8 consists of integers, and therefore ¢2™"

becomes

=1, the general term

gmiBa | 2w (m+§a)+i1r‘r(m+iu)+1riﬁ(m+%ﬂ);

save for the factor ™%, this is of the same form as the general term in the original series,
the summation integers m,, ..., my, replacing n,, ..., n,. Thus the result is obvious.
(B) The exponent
9ari (u-+ m+-7m) (n+ ha) + 7 (nt a2 +mif (n+ha),
wherein m ++m’ stands for a row, or column, of p quantities of which the general one is

) MptTp, 1 My + eennee +1p, pmys
is equal to

2miu (n+ ¥a) +inr (n+%a)? + w8 (n+4 a) + 2nimn + nima+ 2oirm'n + wirm'a
=2mtu (n+m' +3a)+imr(n+m' +%a)2+miB (n+m' +%a) — 2mim’ (u+47m’)
+ 7t (ma— m'B) + 2wimn.
Replacing ¢ by 1 and writing % for n+m/, the equation (B) is obtained.
(C) By the work in (B), replacing m, m’' by 4, 4a’ respectively, we obtain
9 (u+38 +hrd) (n+4a) +inr (0 + o)t +i8 (n+ o)
=2rtu(n+4a +%a)+inr (n+)d +3a)+miB (n+3d +4a)—mia’ (u+4ra)
+3n¢ (B'a—d'B)+miBn,
and this is immediately seen to be the same as
2riu (n+4d' +4a)+imr (n+dd +3a)+ 70 (B+8) (n+3a’ +3a)—nia’ (u+3B+38 +rd).
This proves the formula (C).

It is obvious that equations (D) are only particular cases of equation (C), and the
equation (E) is immediately obvious.

It follows from the equation (A) that the number of odd theta functions contained in
the formula © (u; 48, 3a) is 2°~1(2P—1), and therefore that the number of even functions
is 22 —2p=1(9P—1), or 2°~1(2P+1).

For the number of odd functions is the same as the number of sets of integers,
Zyy Y1y veey Lpy Yp, €ach either O or 1, for which

Z1Y1+ oo + Zpyp=2an odd integer.
These sets consist, (i), of the solutions of the equation

Z1Y1Fecenns +&,_1Yp—1=an odd integer,

in number, say, f(p — 1), each combined with each of the three sets

(xmyp)=<01 1), (1, 0), (0, 0),

together with, (ii), the solutions of the equation
Z1YyF e +Zp_1¥p-1=an even integer,

in number 2%-2— f(p—1), each combined with the set

(.Z'p, yp) =(1, 1).
f(p)=3f(p—-1)+22 2= f(p-1)=2%"24+2f (p-1)

=22-242 {2 -44+ 2f (p—2)} =etc.
=224 92034 9% 44 [ +2P+2P1£ (1)
=9r-1(20—1).

Hence the number of even half periods is 2¢ =1 (2 +1).

Thus
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177. Suppose now that e, ..., e, are definite constants, that m denotes a

fixed place of the Riemann surface, and # denotes a variable place of the surface.

. . Z, M €z, m Zz, m
We consider p arguments given by u,=wv." +e¢,, where vy’ , ..., v, are

the Riemann normal integrals of the first kind. Then the function O (%) is
a function of 2. By equation (B) it satisfies the conditions

O @w+k)=0(w), O U+ 7k)=e¥ etit) @ (u),

wherein k£ denotes a row, or column, of integers %, ..., &, and &’ denotes
a row or column * of integers &/, ..., k,. As a function of &, the function

® (v ™ +¢) cannot, clearly, become infinite, for the arguments v, "+ ¢, are
always finite ; but the function does vanish ; we proceed in fact to prove the
fundamental theorem—the function ® (v>™+e) has always p zeros of the
Jfirst order or zeros whose aggregate multiplicity s p.

For brevity we denote vy "+ ey by u,. When the arguments w, ..., u,
are nearly equal to any finite values U, ..., U,, the function © (u) can
be represented by a series of positive integral powers of the differences
w— Uy, ..., u, — Up. Hence the zeros of the function ® (u), = © (v ™ +¢),
are all of positive integral order. The sum of these orders of zero is there-
fore equal to the value of the integral

o f d1og ® ()= 5. f éldu@; (w)/® ()= .1 f dwél(du,/dw) (8, (w)/O(w)),

2m

wherein the dash denotes a partial differentiation in regard to the argument
u,, and the integral is to be taken round the complete boundary of the p-ply
connected surface on which the function is single-valued, namely round the p
closed curves formed by the sides of the period-pair-loops. (Cf. the diagram,

p. 21.)

Now the values of B’ (u) du,

8w do at two points which are opposite points on
a period-loop a, are equal, and in the contour integration the corresponding
values of dx are equal and opposite. Hence the portions of the integral
arising from the two sides of a period-loop a@, destroy one another. The
8, (v)
O (u)
differ by — 2, or 0, according as s = or not.

values of at two points which are opposite points on a period-loop b,

Hence the part of the integral which arises from the period-loop-pair
(a,, by) is equal to — f du,, taken once positively round the left-hand side of
the loop b,, namely equal to —(—1)=1.

The whole value of the integral is, therefore, p; this is then the sum
of the orders of zero of the function @ (v* ™+ ).

* The notation u,+7,%’ denotes the p arguments v, +7,%', ..., U, + 1 K
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178. In regard to the position of the zeros of this function we are able
to make some statement. We consider first the case when there are p dis-
tinct zeros, each of the first order. It is convenient to dissect the Riemann
surface in such a way that the function log ® (v*™ + ) may be regarded as
single-valued on the dissected surface. Denoting the p zeros of ® (v™ ™ + ¢)
by 2, ..., z,, we may suppose the dissection made by p closed curves such as
the one represented in Figure [2], so that a zero of ® (v™ + ¢) is associated
with every one of the period-loop-pairs. Then the surface is still p-ply
connected, and log ® (u) is single-valued on the surface bounded by the

Fig. 2.

.
At 2Trr)=2,
ALy ‘4,

ar

p closed curves such as the one in the figure. For we proved that a com-
plete circuit of the closed curve formed by the sides of the (a,, b,) period-
loop-pair, gives an increment of 2m¢ for the function log ® (u); when the
surface is dissected as in the figure this increment of 27¢ is again destroyed
in the circuit of the loop which encloses the point z.. Any closed circuit
on the surface as now dissected is equivalent to an aggregate of repetitions of
such circuits as that in the figure; thus if « be taken round any closed
circuit the value of log ® (u) at the conclusion of that circuit will be the
same as at the beginning. From the formulae

O, ..., u+1, ..., uy) =0 (u),
O U+ Tr 1y oy UpF Ty, gy oony Up + Ty p) =€ HT ) @ (u),

which we express by the statement that ® (u) has the factors unity and
e~ i) for the period loops a, and b, respectively, it follows that log @ (u)
can, at most, have, for opposite points of a,, b,, respectively, differences of
the form 2wig,, — 2w (u, + §7,,,) — 2mwih,, wherein g, and h, are integers.
The sides of the loops for which these increments occur are marked in the

figure, u, denoting the value of vy ™ +e, at the side opposite to that where
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the increment is marked ; thus u, + 47, , is the mean of the values, %, and
Uy + Tr,», Which the integral u, takes at the two sides of the loop b,.
Since log ® (u) is now single-valued, the integral %r—% f log ® (u) . dus,

taken round all the p closed curves constituting the boundary of the surface,
will have the value zero. Consider the value of this integral taken round the
single boundary in the figure. Let A, denote the point where the loops
a, by, and that round z,, meet together. The contribution to the integral

arising from the two sides of a, will be f g,dvf’ ™ this integral being taken
once positively round the left side of a,, from 4, back to 4,. This contri-
bution is equal to g,7, ;. The contribution to the integral % f log ® (u) dus

which arises from the two sides of the loop b, is equal to
- f [0 ™ + & + 370, + B 02T,

taken once positively round the left side of the curve b,, from A, back to 4,;
this is equal to

[+ ™ 4 ot

where f, ; is equal to 1 when r=s, and is otherwise zero. Finally the part
of the integral —2%7: f log © (u) dus, which arises by the circuit of the loop
enclosing the point z,, from A, back to 4,, in the direction indicated by the
arrow head in the figure, is f :dv:’ ™ where A, denotes now a definite point on

the boundary of the loop b,. If we are careful to retain this signification we
2r, Ar

may denote this integral by v;””". When we add the results thus obtained,
for the p boundary curves, taking r in turn equal to 1, 2, ..., p, we obtain

2

he+ i, s+ .onne. +GpTp, s+ €= 21 [— A +fb @™ + 37, ) dvy m] ,
r= r

wherein, on the right hand, the b, attached to the integral sign indicates

a circuit once positively round the left side of b, from 4, back to 4,; and if

ky denote the quantity defined by the equation

D
k=2 | (00" +37., ) do; ",
r=1Jbr

which, beside the constants of the surface, depends only on the place m,
we have the result

21, 4, Zp, Ap
— . — Vg

hx+917l,s+---+gp7p,a+es="'vs +k's (3=1, 2, ,P)
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179. Suppose now that places m, ..., m, are chosen to satisfy the
congruences
o Tt (s=12,...,p);
this is always possible (Chap. IX. § 168, 169); it is not necessary for our
purpose, to prove that only one set* of places m,, ..., m,, satisfies the con-
ditions ; these places, beside the fixed constants of the surface, depend only
on the place m. Then, by the equations just obtained, we have

2y, My

e=— @ " e 497 (5=1,2,...,p).
Thus if we express the zero in the function ® (v»™ + ¢), it takes the form

O (v " — v M e =0 — by — Ty,
where g/, ..., gy, b/, ..., hy' are certain integers, and this, by the fundamental
equation (B), § 175, is equal to
O " —vy ™ —...... — ™),
save for the factor ¢ =270’ @ ™ =v" ™~ ... ~0™ ™ ~47¢) " This factor does not
vanish or become infinite. Hence we have the result: It us possible, corre-

sponding to any place m, to choose p places, m,, ..., my, whose position depends
only on the position of m, such that the zeros of the function,

O@Wmsm—pmm— ., — v Mp),

regarded as a function of x, are the places z,, ..., z,. This is a very funda-
mental resultt.

It is to be noticed that the arguments expressed by v® ™ —p2 m— | —yz, ™
do not in fact depend on the place m. For the equations for m,, ..., m,,
corresponding to any arbitrary position of m, were

my, 4 Mmp, 4 r z,m z, a
A S s =k, =2 | (U T )dv
r=1J by

a being an arbitrary place. If, instead of m, we take another place u, we
shall, similarly, be required to determine places u,, ..., up by the equations

15 Ay s 4 s s
B k=l = 2 ,,r(vi"+%n,r)dv§ Y =12 ..,p);
r=

* If two sets satisfy the conditions, these sets will be coresidual (Chap. VIIL., § 158).

+ Cf. Riemann, Ges. Werke (1876), p. 125, (§ 22). The places m,, ..., m, are used by Clebsch
u. Gordan (dbel. Functionen, 1866), p. 195. In Riemann’s arrangement the existence of the
solution of the inversion problem is not proved before the theta functions are introduced.
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P )

A T +" =3 | gt ayt =3 0", (5=1,2,...,p),
r=1J by r=1

wherein f; ,=1 when r=s, and is otherwise zero, as we see by recalling

the significance of the b, attached to the integral sign. Thus (Chap. VIIL,

§ 158), the places p,, ..., pp, m are coresidual with the places m,, ..., m,, u,

and the arguments

z,m z,m 2p, Mp
Vs — Vg = eeeers -,

are congruent to arguments of the form

'U:, " _ 'U:“ "y _ _ 2ps "'?’.
The fact that the places g, ..., pp, m are coresidual with the places
my, ..., My, u, which is expressed by the equations

1y My

A T +ob ™ gt =0, =12, ...,p),

will also, in future, be often represented in the form

(15 ey gy M) = (M, ..o, My, ).

If the places my, ..., m, are not zeros of a ¢-polynomial, this relation
determines ., ..., u, uniquely from the place pu.

Ez. In case p=1, prove that the relation determining m,, ..., m, leads to

PP =1 (147).

Hence the function © (v *+4+4%) vanishes for x=z, as is otherwise obvious,

180. The deductions so far made, on the supposition that the p zeros of
the function @ (v»™ + ¢) are distinct, are not essentially modified when this
is not so. Suppose the zeros to consist of a p,-tuple zero at z,, a p,-tuple zero
at 2,, ..., and a pg-tuple zero at z, so that p, +...... +pr=p. The surface
may be dissected into a simply connected surface as in Figure 3. The
function log ® (v ™ + ¢) becomes a single-valued function of z on the
dissected surface ; and its differences, for the two sides of the various cuts,
are those given in the figure. To obtain these differences we remember
that log ®(v»™ + ¢) increases by 2wt when z is taken completely round
the four sides of a pair of loops (@, b,). The mode of dissection of Fig. 3,
may of course also be used in the previous case when the zeros of ® (v® ™ +¢)
are all of the first order.

The integral —2—1_—7: f log ® (4" ™ + ¢) dv;’ ™, taken along the single closed
boundary constituted by the sides of all the cuts, has the value zero. Its
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value is, however, in the case of Figure 8,

2y, 4 2> A
Pvs T e + P

+91f d’i):’m —hlfb d'l):’m —fb (’Ul'm'l' 6+ %7‘1,1) d'v:'m — (p — 1) ,v:m 4,
a, N .

+gaf dvf’m—hgfb dv:’m—fb (v;’m+eg+1}'rg,2) dvf’m—(p— 2) vf” 4
[ 2 2
L S

+9 f " b, f ™ - [ (B™ 4oy + b ) 5™
ap bp bp

wherein the first row is that obtained by the sides of the cuts, from 4,,
excluding the zeros z, ..., z;, and the second row is that obtained from
the cuts a,, b, ¢;, and so on. The suffix a, to the first integral sign in

Fig. 3.

the second row indicates that the integral is to be taken once positively round
the left side* of the cut a,, the suffix b, indicates a similar path for the
cut b, and so on. If] as before, we put &, for the sum

p 'y
ke =32 | @F™+370) dvy ™,
r=1Jbs
we obtain, therefore, as the result of the integration, that the quantity
hs+ gm0+ oo, +9pTs,p+ 65

* By the left side of a cut a,, or b,, is meant the side upon which the increments of log © (u)
are marked in the figure. The general question of the effect of variation in the period cuts is
most conveniently postponed until the transformation of the theta functions has been considered.

B. 17
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is equal to
i e 4 (p D (p Y
and this is immediately seen to be the same as

B i o g

We thus obtain, of course, the same equations as before (§ 179), save that
z, is here repeated p, times, ..., and 2z is repeated p; times. And
we can draw the inference that © (v®»™+¢) can be written in the form

O™ —vr™— ... — ™ — hy— 7,9), which, save for a finite non-vanish-
. . z, m 215 M 2o, Mpy .

ing factor, is the same as @ (v" —o["™ —...... —v/»™); the argument
= — — v ™ does not depend on the place m.

181. From the results of § 179, 180, we can draw an inference which
leads to most important developments in the theory of the theta functions.

For, from what is there obtained it follows that if z, ..., z, be any places
whatever, the function @ (™™ —v® ™ — . ... —v*®™) has z, ..., z, for

zeros. Hence, putting z, for # we infer that the function

O@™™ - ™M — ... — P (1))
vanishes identically for all positions of z,, ..., zp—,. Putting
fi=v "+ o BT g™

fors=1,2,...,p, this is the same as the statement that the function

® (v "™+ f) vanishes identically for all positions of = and for all values
of f1, ..., fp which can be expressed in the form arising here. When f£;, ..., £,
are arbitrary quantities it is not in general possible to determine places
2y, ...y Zpo tO express f, ..., fp in the form in question. Nevertheless the
case which presents itself reminds us that in the investigation of the zeros
of ® (v ™ + e) we have assumed that the function does not vanish identically,
and it is essential to observe that this is so for general values of e, ..., ¢,.
If, for a given position of «, the function ® (v*™ + ¢) vanished identically for
all values of e, ..., ¢, the function ® (r) would vanish for all values of the
arguments 7y, ..., . We assume * from the original definition of the theta
function, by means of a series, that this is not the case.

Further the function ® (v>™ + ¢) is by definition an analytical function of
each of the quantities e, ..., €,; and if an analytical function do not vanish

* The series is a series of integral powers of the quantities e2™, _ 2™,
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for all values of its argument, there must exist a continuum of values of
the argument, of finite extent in two dimensions, within which the function
does not vanish *. Hence, for each of the quantities e, ..., ¢, there is a
continuum of values of two dimensions, within which the function ® (v* ™ + ¢)
does not vanish identically. And, by equation (B), § 175, this statement
remains true when the quantities e,, ..., e, are increased by any simultaneous
periods. Restricting ourselves then, first of all, to values of e, ..., ¢, lying
within these regions, there exist (Chap. IX. § 168) positions of z, ..., 2, to
satisfy the congruences

e=1v"™ 4 ... + o, (s=1,2,...,p);

and, since to each set of positions of z,, ..., z,, there corresponds only one set
of values for e, ..., &, the places z, ..., z, are also, each of them, variable
within a certain two-dimensionality. Hence, within certain two-dimensional
limits, there certainly exist arbitrary values of 7, ..., 2, such that the function

O W™ —v™— . — 9™ ™) does not vanish identically. For such
values, and the corresponding values of e, ..., ¢, the investigation so
far given holds good. And therefore, for such values, the function
@@ —y™ — . — o™ ™) vanishes identically. Since this function

is an analytical function of the placest z, ..., z,-,, and vanishes identically
for all positions of each of these places within a certain continuum of two
dimensions, it must vanish identically for all positions of these places.

Hence the theorem (F) holds without limitation, notwithstanding the
fact that for certain special forms of the quantities e, ..., e,, the function
® (v> ™ + ¢) vanishes identically. The important part played by the theorem
(F) will be seen to justify this enquiry.

182. Tt is convenient now to deduce in order a series of propositions in
regard to the theta functions (§§ 182—188); and for purposes of reference
1t is desirable to number them.

@) If &, ..., & be p places which are zeros of one or more linearly
independent ¢-polynomials, that is, of linearly independent linear aggregates
of the form AQ,(z)+ ...... + A2, () (Chap. 1II. § 18, Chap. VI. § 101), then
the function

O™ - ™ — ... — o ™)

vanishes identically for all positions of 2.

For then, if 7+ 1 be the number of linearly independent ¢-polynomials
which vanish in the places &, ..., §,, we can, taking 7+ 1 arbitrary places

* E.g. a single-valued analytical function of an argument z, =z +14y, cannot vanish for all
rational values of z and y without vanishing identically.

1 By an analytical function of a place z on a Riemann surface, is meant a function whose
values can be expressed by series of integral powers of the infinitesimal at the place.

17—2
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Zy, «..) Zyy, determine p— 71— 1 places 2,44, ..., 2, such that (2, ..., zp)
=(&, ..., &p) (see Chap. VL. § 93, etc., and for the notation, § 179). Then the
argument

zm _ ,G,m $ps mp =

Yy =y = -, s=12,...,p),
can be put in the form

R L — e

8 8 8

save for integral multiples of the periods; thus (§ 179, 180) the theta
function vanishes when z is at any one of the perfectly arbitrary places
Zy, <.y Zza. Thus, since by hypothesis 7+ 1 is at least equal to 1, the theta
function vanishes identically.

It follows from this proposition that if 2, ..., z,” be the remaining zeros
“of a ¢-polynomial determined to vanish in each of z, ..., z,, and neither
& nor z, be among 2, ..., z,, then the zeros of the function

O™ ™ — ... — ),
regarded as a function of z,, are the places z, 2,/, ..., 2,.

From this Proposition and the results previously obtained, we can infer
that the function ® (v ™ —v™ ™ — ... — o™ ™) vamishes only (i) when =z

cotncides with one of the places z, ..., 2p, or (i1) when 2z, ..., z, are zeros of
a ¢-polynomial.

(IL.) Suppose a rational function exists, of order, ¢, not greater than p,
and let 7 +1 be the number of ¢-polynomials vanishing in the poles of this
function. Take 7+ 1 arbitrary places

gl) s gq, Ly eeny Lry1—g>

wherein ¢ = @ — p+ 7+ 1, and suppose z, ..., z, to be a set of places core-
sidual with the poles of the rational function, of which, therefore, ¢ are
arbitrary. Then the function

o™+ Sfg $ofvf o™ _

— FmH-g, Mrti-q __ ,Zat1 Mrde—q __ — e mp—q)

vanishes identically.

For if we choose &y, ..., & such that (&, ..., &) =(a, ..., 2;), the
general argument of the theta function under consideration is congruent
to the argument

P Fam _ e Mrti-g _ So4n Mrta—q _ — S g

This value of the argument is a particular case of that occurring in
(F), § 181, the last ¢—1 of the upper limits in (F) being put equal to the
lower limits. Hence the proposition follows from (F).
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(IIL.) If r denote such a set of arguments 7, ..., 1, that ® (r) = 0, and,
for the positions of z under consideration, the function ® (v%Z+ ) does not
vanish for all positions of z, then there are unique places z, ..., z,,,
such that

mp, M z,m,

2p-1, Mp-1
— — eennn — T

r=v

In this statement of the proposition a further abbreviation is introduced

which will be constantly employed. The suffix indicating that the equation
stands as the representative of p equations is omitted.

’

Before proceeding to the proof it may be remarked that if m’, m/, ..., m,
be places such that (cf. § 179)

’ — ’
(m', my, ..., mp) = (m, my, ..., my)
and therefore, also,

mpy Mp __
v —v — .. - =0,

then the equation
r= v""l’; m__ %, My
is the same as the equation

mp', m'

21, My’ Zp-1, M'p-1
r=v o Pl el

-0 — ... —
This proposition (IIL) is in the nature of a converse to equation (I).
Since the function ® (v™?+ r) does not vanish identically, its zeros, z,, ..., 2,
are such that
Vit —v
now we have
o™ + PP T = g + o mp’

so that the zeros 2, ..., 2z, may be taken in any order ; since ® (7) vanishes,
z is one of the zeros of ® (v*?+r); hence, we may put z, = z, and obtain

215 My _,Uzp,m«p_vz, 2
3

r - —eeeens

i
S

Mp, M 2, My Zp-1, Mp-1
BT — . —p b s

=v
which is the form in question.

If the places z, ..., z,, in this equation are not unique, but, on the
contrary, there exists also an equation of the form

Mp, M 2, m, Zp-15 Mp-1
DT —y T — - ,

r=v
then, from the resulting equation

g Zp-1y 2p-1 __
it S P =,
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we can (Chap. VIIL § 158) infer that there is an infinite number of sets of
places 2/, ..., z’p_,, all coresidual with the set z, ..., z,_,; hence we can put

z, mp

m 2, My Ep-1, Mp-1 _
v

W r= AT — -
wherein at least one of the places 2/, ..., 2/, is entirely arbitrary. Then the
function O (v%»? + r) vanishes for an arbitrary position of 2, that is, it
vanishes identically ; this is contrary to the hypothesis made.

It follows also that whenever it is possible to find places z, ..., z,, to
satisfy the inversion problem expressed by the p equations

2, -1, Mp-
A N 4Py,

the function ® (v™ ™ — u) vanishes; conversely, when « is such that this
function vanishes we can solve the inversion problem referred to.

(IV.) When 7 is such that © (r) vanishes, and ® (v»%+r) does not,
for the values of z considered, vanish identically for all positions of z, the
zeros of ® (v* 2+ 1), other than z, are independent of z and depend only on
the argument r.

This is an immediate corollary from Proposition (IIL); but it is of
sufficient importance to be stated separately.

(V) If ®(r)=0, and O (v>2+r) vanish identically for all positions
of z and z, but ® (v**+vH¢+7r) do not vanish identically, in regard to ,
for the positions of 2z, & ¢ considered, then it is possible to find places
Zy, ..., Zp— such that

Mp, M

— 21, M, 2p-2, Mp-2 £ mp-1
r=v 1y Ty p:p_vnll

) ————— - i
and these places z,, ..., z,_, are definite.

Under the hypotheses made, we can put
b S = P L — ™

wherein 2z, ..., z, are the zeros of ® (v»*+v5¢+r); now z is clearly a zero;
for the function ® (v:¢+r) is of the same form as ® (v%% 4 r), and vanishes
identically; and {is also a zero; for, putting ¢ for z, the function @ (v® 74 vt ¢4 r)
becomes @ (v% * + r), which also vanishes identically. Putting, therefore, ¢, 2
for z,, and z, respectively, the result enunciated is obtained, the uniqueness
of the places z, ..., 2, , being inferred as in Proposition (I1L.).

We may state the theorem differently thus: If ® (v* %+ ) vanish for
all positions of & and 2, and ® (v»?+v5%$+7) do not in general vanish
identically, the equations

go= g _ B Zp-2, Mp-2 __

Zp-1, Mp-1
Y — e - L

v
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can be solved, and in the solution one of z, ..., 2z,, may be taken arbitrarily,
and the others are thereby determined. Hence also we can find places

4

2/, ..., @'py, other than z, ..., z,,, such that
VB L + PP =,

one of the places 2/, ..., 2, being arbitrary. Hence by the formula
Q-g=p—7-—1, putting Q=p—1, gq=1, we infer 7+1=2, so that a
¢-polynomial vanishing in 2z, ..., 2z, can be made to vanish in the further
arbitrary place z. Thus, when ® (v* 2 + r) vanishes identically, we can write

2, mp

Zp—1, Mp—1
P:P—__v ’

i =t =M L -
wherein the places z,, ..., 2,, 2 are zeros of a ¢-polynomial (cf. Prop. L).

(VL) The propositions (IIL.) and (V.) can be generalized thus: If
O (W™ +...... +v™* +7) be identically zero for all positions of the places
&y, 24, ..., &g, 29, and the function @ (v™ %+ o™ " + ...... +9™%47r) do not
vanish identically in regard to @, then places &, ..., {,—, can be found to
satisfy the equations

mp.m_,vs'nm,_

r=qv — b mp-1

......

and, of these places, ¢ are arbitrary, the others being thereby determined.

These arbitrary places, &, ..., §;, say, must be such that the function
W +v 4 ... + % % 4 7) does not vanish identically.

For as before we can put

wherein §, ..., £, are the zeros of the function ® (v” % + o™ # +...+ v™ 4+ 7).
It is clear that z is one zero of this function ; also putting 2, for # the function
becomes ® (v *+ o™ 4 ... + 9™ * + r), which vanishes, by the hypothesis.
Thus the places z, 2, ..., 2, are all zeros of the function

OCW"  + o™+ ... + 0" ),

Putting then 2z, ..., 7, 2z respectively for &, ..., &, & in the congruence
Jjust written, it becomes

Z1s

v E V™ O N T 4™y g e

and this is the same as

mp, m

r=v — ™ B —ofrb et

......

replacing x,, ..., 2, by &, ..., § we have the result stated.
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Hence also, we can find places &/, ..., {'p—, other than &, ..., §,, such
that
PO FofP =,
q of the places ¢, ..., {’,—, being arbitrary. Therefore a ¢-polynomial can
be chosen to vanish in &,, ..., {and in g(=p—1—(Q —¢), when Q=p—1)
other arbitrary places. Thus the argument

CASE S S + o R
for which the theta function vanishes identically, can be written in the form

z, m 215 My 2q-1, Mg-1 Sa» Mg Sp-1, Mp-1 2, mp
v = — e — — - - s

...... - v

wherein z,, ..., 241, & --., {p—, 2 are zeros of g+1 linearly independent
¢-polynomials.

(VIL) If the function ® (v + ...... + 9™ % 4+ r) be identically zero for
all positions of the places @, 2, &, 2s, ..., Ty, 24, and, for general positions of
Ty, 2z, ..., &, Z,, the function ® ("% + o™+ ... + 9™ %+ 7) be not

identically zero, as a function of z, for proper positions of z, and be not
identically zero, as a function of z, for proper positions of z, then we can find
places &, ..., -1, of which g places are arbitrary, such that

r= ’Ump’m—’l)g“ my _

......

and can also find places &, ..., €, of which ¢ places are arbitrary, such
that

— rEva’m_,v‘fnml_

......

This is obvious from the last proposition, if we notice that
B+ "+ +Vr ) =0 @+ L + o™ 7).
We can hence infer that

20" ™ o™ S ™ L N T b Y 1}

and this is the same (Chap. VIIL § 158) as the statement that the set of
2p places constituted by &, ..., &, &, ..., &, and the place m, repeated, is
coresidual with the set of 2p places constituted by the places m,, ..., m,, each
repeated. This result we write (cf. § 179) in the form

(m2 &, s Epns Gy e, Gpm) = (M2 M, L, my?).
(VIIL) We can now prove that if &, ..., {,—, be arbitrary places, places
&, ..., &, can be found such that
(m2; fl’ L] Ep—l; Cl: RS ] §p—1)5(m12: ngy sey 2)'
Let 7 denote the set of p arguments given by

$p—1, Mp-1

rEPPM g™ — ,
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&, ..., &py being quite arbitrary. Then, by theorem (F), (§ 181), the function
O (r) certainly vanishes. It may happen that also the function @ (v* 2+ r)
vanishes identically for all positions of # and z. It may further happen that
also the function @ (v»2+v®>% + r) vanishes identically for all positions of
%, 2, @, 2. We assume* however that there is a finite value of ¢ such that
the function ® (v™% + ™ 2 4 ...... + 9™ * 4 ) does not vanish identically for
all positions of =, 2, @, 2z, ..., %y, 2,. Then by Proposition VIL it follows
that we can find places &, ..., £,—, such that

Mp, M ,vfn m__

—_r =9 — ,vfp-l, Mp—1 ;

......

comparing this with the equations defining the argument r, we can, as
in Proposition (VIL) infer that the congruence stated at thc beginning of
this Proposition also holds.

(IX.) Hence follows a very important corollary. Taking any other
arbitrary places &/, ..., {’p—1, we can find places &/, ..., €', such that

(m27 Ell: LEREY E,p—l: gll: ceey gip—l) = (mlzi 777/22, e sz);

therefore the set &, ..., £, &, ..., {p—1 is coresidual with the set &/,...,&,_,,
& ..., &pa. Now, of a set of 2p —2 places coresidual with a given set
we can in general take only p— 2 arbitrarily; when, as here, we can take
p—1 arbitrarily, each of the sets must be the zeros of a ¢-polynomial
(Chap. VI. § 93). Thus the places &, ..., £, &, ..., &1 are zeros of a
¢-polynomial.

Therefore, if @, ..., @y, be the zeros of any ¢-polynomial whatever,
that is, the zeros of the differential of any integral of the first kind, the
places m,, ..., my, are so derwed from the place m that we have

(M2, @y, -oey Qps) = (Mm%, MY, ..o, MyY), (G);
in other words,if ¢, ..., ¢, denote any independent places, the places m,, ..., my
satisfy the equations

5 My Cp] — ),y Cp a1 C1 Q2 €1 d2p—3, Cp a2p—2, Cp
2% + .. o "] =200+ U + + :

fors=1, 2, ..., p. Denoting the right hand, whose value is perfectly definite,
by A,, and supposing g, ..., gp, M1, ..., hp to denote proper integers, these
equations are the same as

CHERCE SR + 0 P=3A, 4+ (he+ GiTs, 1+ -oennn + 95750 (Q),

s
where s=1,2, ..., p.
* It will be seen in Proposition XIV. that if © (v *+v% 24 . . +9v™ % 14) vanishes

identically, then all the partial differential coefficients of O (x), in regard to u,, ..., up, up to and
including those of the (¢ +1)th order, also vanish for u=r.
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There are however 2% sets of places my, ..., my, corresponding to any
position of the place m, which satisfy the equation* (G). For in equations
(G’) there are 2% values possible for the right-hand side in which each
of g1, ..., Gp> b, ..., by is either 0 or 1, and any two sets of values g, ..., gp,
hi, ..., hpand g/, ..., g5, b/, ..., hy, such that g;, g; differ by an even integer,
and h;, h; differ by an even integer, for +=1, 2, ..., p, lead to the same
positions for the places m,, ..., mp. (Chap. VIIL § 158.)

We have seen (§ 179) that the places m,, ..., m, depend only on the place
m and on the mode of dissection of the Riemann surface. We are to see,
in what follows, that the 2% solutions of the equation (G) are to be associated,
in an unique way, each with one of the 2% essentially distinct theta functions
with half integer characteristics.

183. The equation (G) can be interpreted geometrically. Take a non-
adjoint polynomial, A, of any grade u, which has a zero of the second order
at the place m ; it will have nu — 2 other zeros. Take an adjoint polynomial
v, of grade (n — 1) o+ n— 3 + g, which vanishes in these other nu— 2 zeros
of A. Then (Chap. VI. § 92, Ex. ix.) ¥ will be of the form A, +Ag,
where v, is a special form of ¥, A is an arbitrary constant, and ¢ is a
general ¢-polynomial. The polynomial « will have 2p zeros other than
those prescribed ; denote them by ki, ..., k,,. If ¢’ be any ¢-polynomial, with
@y, ..., Gz &S zeros, we can form a rational function, given by (AMjry+A¢)/Ad,
whose poles are the places a,, ..., @y ,, together with the place m repeated,
its zeros being the places &, ..., ky. Hence (Chap. VI. § 96) we have

(M2 @y, ..., Gypg) = (ky, Koo, <.\ Koapy, Fonp),
and therefore, by equation (G),
(mlz, AR 7np2) = (kh kz: e k2p—l, kzp) (G”) 5

hence (Chap. VI. § 90) it is possible to take the polynomial v so that
its zeros k, ..., ks, consist of p zeros each of the second order, and the
places my, ..., my are one of the sets of p places thus obtained.

There are 2% possible polynomials 4 which have the necessary character,
as we have already seen by considering the equation (G); but, in fact,
a certain number of these are composite polynomials formed by the product
of the polynomial A and a ¢-polynomial of which the 2p — 2 zeros consist of
p — 1 zeros each repeated. To prove this it is sufficient to prove that there
exist such ¢-polynomials having only p —1 zeros, each of the second order;
for it is clear that if ® denote such a polynomial, the product A® is of grade

* If for any set of values for g,, ..., gp, I, ..., hp the equations (G’) are capable of an infinity
of (coresidual) sets of solutions, the correct statement will be that there are 2% lots of coresidual
sets, belonging to the place m, which satisfy the equation (G). The corresponding modification
may be made in what follows.
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(n —1)0 + n — 3 + p and satisfies the conditions imposed on the polynomial .
That there are such ¢-polynomials ® is immediately obvious algebraically.
If we form the equation giving the values of « at the zeros of the general
¢-polynomial,
M oo+ Apby,

the p — 1 conditions that the left-hand side should be a perfect square, will
determine the necessary ratios A, :A,:...:%,, and, in general, in only a
finite number of ways. (Cf. also Prop. XI. below.)

It is immediately seen, from equation (G”), that if m,, ..., m, be the
double zeros of one such polynomial v as described, and m,, ..., m, of
another, both sets being derived from the same place m, then

R +™ ™ =10, (H)
where Qg . stands for p quantities such as
Bs+ay7s 4+ ..., + AT, p,
ay, ..., oy, By, ..., By being integers.

‘We may give an example of the geometrical relation thus introduced, which is of great
importance. It will be sufficient to use only the usual geometrical phraseology.

Suppose the fundamental equation is of the form
C+(xa 3’)1+(za y)2+('z" .7/)3+(x’ y)4=01
representing a plane quartic curve (p=3). Then if a straight line be drawn touching the
curve at a point m, it will intersect it again in 2 points 4, B. Through these 2 points
4, B, ©3 conics can be drawn ; of these conics there are a certain number which touch
the fundamental quartic in three points P, @, R other than 4 and B. There are 2%=64

sets of three such points P, @, R ; but of these some consist of the two points of contact
of double tangents of the quartic taken with the point m itself.

In fact there are (Salmon, Higher Plane Curves, Dublin, 1879, p. 213) 28, =2P~1(2¢ -1),
double tangents ; these do not depend at all on the point m; there are therefore
36, =20-1(27+1), proper sets of three points P, @, R in which conics passing through
A and B touch the curve. One of these sets of three points is formed by the points
my, Mg, My. It has been proved that the numbers 22-1(2» — 1), 2P=1(27 4 1) are respectively
the numbers of odd and even theta functions of half integer characteristics (§ 176).

184. (X.) We have seen in Proposition (VIIL.) (§ 182) that the places
my, ..., my, are one set from 2% sets of p places all satisfying the same
equivalence (G). We are now to see the interpretation of the other 27 —1
solutions of this equation.

Let m/, ..., m, be any set, other than m,, ..., m,, which satisfies the
congruence (G). Then, by equations (G), we have

2 ™M +U™ ™) =0, (=L2..,p)

s
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and therefore, if g . denote the set of p quantities of which a general one is
given by

Bs+oute 1+ ... + ayTy, p, (s=1,2,...,p),
where a;, ..., @), 83,, ..., B, are certain integers, we have
my', m, my', m;
. S N tvg =408 4;
hence the function
OO —v™ — ... o™ 18 1a),
=@ @™ . 4o g™ 1B, $a),
wiga )
=¢ " O (u—}30p4; 3B, a),
where
2y, M N xr, m
Us=TVs  + .ue.n. +o ™ ™" (s=12, ..., p);

the function is therefore equal to
emlﬂa—m'u (u—}ra) ® (’ll;),

by equation (C), §175; thus the function ® (v™ " —v™ ™ —......— v ™ 18, La)
vanishes when x is at either of the places z, ..., z,.

We can similarly prove that
O @™ =™ — =) =T @ (_y; 3B, a).

It has been remarked (§ 175) that there are effectively 2% theta functions,
corresponding to the 2% sets of values of the integers a, 8 in which each
is either 0 or 1. The present proposition enables us to associate each of
the functions with one of the solutions of the equivalence (G). When the
function ® (v®»™; 18, 4a) does not vanish identically in respect to z, its
zeros are the places m,, ..., my. Therefore, instead of the function © (u),
we may regard the function ® (u; 48, $a) as fundamental, and shall only be
led to the places m,, ..., m,/, instead of my, ..., my.

(XI.) The sets of places m,, ..., m,” which are connected with the places
My, ..., M, by means of the equations

R + " =3 Qp o, (H),

wherein a;, ..., ap, By, ..., B, denote in turn all the 2% sets of values in which
each element is either 0 or 1, may be divided into two categories, according
as the integer Ba, = Bia +...... + Byap, is even or odd. We have remarked,
in Proposition (IX.), that they may be divided into two categories according
as they are the zeros, of the second order, of a proper polynomial Ayr, + A¢,
or consist of the p —1 zeros, each of the second order, of a ¢-polynomial
together with the place m. When the fundamental Riemann surface is
perfectly general these two methods of division of the 2% sets entirely agree.
When Ba s odd, m,, ..., m, consist of the place m and the p —1 zeros,
each of the second order, of a ¢-polynomial. When Ba is even, m/, ..., m,
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consist of the zeros, each of the second order, of a proper polynomial ¥. In
the latter case we may speak of the places m,, ..., m,’ as a set of tangential
derivatives of the place m.

For by the equations (D), (A), (§ 175), we have
erien © (40, o + 0)fem © (04, — 1) =

hence, when Ba is odd, e¢m* @ (}£4s .+ %) is an odd function of u, and
must vanish when « is zero; since then ® (4l ,) vanishes, there exist, by
Proposition (VIL), places n,, ..., np,—, such that

—3Qp =™ =™ ™ — — ot et (K),
or ’
2™ ™+ .. + "L ) = Qg ,, =0.
Hence (Chap. VIIL § 158) we have
(m?, nd, ..., W%p) = (M, ..., mpd),
so that, by equation (G), the places n,, ..., n,_, are the zeros of a ¢-polynomial,
y eq p P poly

each being of the second order.

When Ba is even, the function e™** @ (3, , + %) is an even function, and
it is to be expected that it will not vanish for w=0. This is generally the
case, but exception may arise when the fundamental Riemann surface is of
special character. We are thus led to make a distinction between the general
case, which, noticing that © (4Qg . + %) is equal to e~ma®+if—ira) @ (u; 18, 1a),
may be described as that in which no even theta function vanishes for zero
values of the argument, and special cases in which one or more even theta
functions do vanish for zero values of the argument.

Suppose then, firstly, that no even theta function vanishes for zero values
of the argument. Then if n/, ..., n’,_, be places which, repeated, are the
zeros of a ¢-polynomial, we have

(m3 n% .., W)= (M2 m?, .., my?) ;

hence the argument

mp, M ny's m Np-1, Mp-1

- T eeenes -

is a half-period, =— }Qp, , say. Thus, by the result (F), ® (3 Q4 ) is zero;
therefore, by the hypothesis 8'a’ is an odd integer. So that, in this case,
every odd half-period corresponds to a ¢-polynomial of which all the zeros
are of the second order, and conversely.

v

Further, in this case it is immediately obvious that the places m,, ..., m,
do not consist of the place m and the zeros of a ¢-polynomial whose zeros are
of the second order ; for if m,, ..., m, were the places n, ..., n,;, m, then, by
the result (F), the function ® (v"'™ +...... + 2™ 1) would vanish for all
positions of z, ..., z,,, and therefore ® (0) would vanish.
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185. If, however, nextly, there be even theta functions which vanish
for zero values of the argument, it does not follow as above that every
¢-polynomial with double zeros corresponds to an odd half-period; there
will still be such ¢-polynomials corresponding to the 27— (22 —1) odd half-
periods, but there will also be such ¢-polynomials corresponding to even
half-periods.

For if &y, ..., ay, By, ..., By be integers such that Ba is even, and
O (u + 3 Q4,.) vanishes for =0, the first differential coefficients, in regard
to u,, ..., Up, of the even function em* ® (u+ 4, .), being odd functions,
will vanish for «=0. By an argument which, for convenience, is postponed
to Prop. XIV.,, it follows that then the function ® (v® 2+ $Qs o) vanishes
identically for all positions of z and z. Therefore, by Prop. V., there is at
least a single infinity of places z,, ..., z,, satisfying the equations

—3Qp =" - — L i
these equations are equivalent to
(m3, 2% ..., 2%) = (M2, md, ..., mp);

hence there is a single infinity of ¢-polynomials with double zeros corre-
sponding to the even half-period $€g, ., and their p —1 zeros form coresidual
sets with multiplicity at least equal to 1.

By similar reasoning we can prove another result*; the argument is
repeated in the example which follows; if, for any set of values of the

integers By, ..., By, @, ..., @y, 1t s possible to obtain more than one set of
places ny, ..., ny_, to satisfy the equations
—3Qp =" =" — L — gl el

then 1t 1s, of course, possible to obtain an infinite number of such sets. Let
0 ? be the number of sets obtainable. Then Ba=q+1(mod.2). And this
may be understood to vnclude the general cases when (i) for an even value
of Ba, no solution of the congruence ts possible (¢ = — 1), (i1), for an odd value
of Ba, only a single solution is possible (g = 0).

As an example of the exceptional case here referred to, consider the hyperelliptic
surface ; and first suppose p=3, the equation associated with the surface being

P=@-a)...... (x—ag);
then we clearly have (2) =28=2P~1(20P —1) ¢-polynomials, each of the form (z - @;)(x - a;),

of which the zeros are both of the second order. We have, however, also, a ¢-polynomial,
of the form (x—¢)? in which ¢ is arbitrary, of which the zeros are both of the second
order ; denote these zeros by ¢ and ¢ ; then if 30, , be a proper half-period

— M3, M C, m C, My .
_éﬂﬁ,n=/” 35 M _ s T _ o> e

* Weber, Math. Ann. X111, p. 42.
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but, since, if ¢ be any other place, the function (z—c)/(x—e) is a rational function, it
follows that (c, ¢)=(e, ), and therefore that in the value just written for 19, , ¢ may
be replaced by e, and therefore, regarded as quite arbitrary. By the result (F), the
function © (») vanishes when % is replaced by éﬂp «» and therefore © (v%2— 39, ), which

is equal to © (% ™ — % ™ —of ™ _ 4% ™s) vanishes when # is at ¢; since c¢ is arbitrary the
function © (v%* —49g o) vanishes identically in regard to z, for all positions of z. If the

function © (v™#+9™: " —40, ) vanished identically, it would, by Prop. VL., be possible,
in the equation

—éﬂﬂ aE’Um” m _ vz'l: ml__,vzar mg
to choose both z and z, arbitrarily. As this is not the case, it follows, by Prop. XIV.
below, that the function ©(u+3Qg ,), and its first, but not its second differential
coefficients, vanish for ¥=0. Hence ﬁnﬂ’ « i3 an even half-period. (See the tables for
the hyperelliptic case, given in the next chapter, §§ 204, 205.)

There is therefore, in the hyperelliptic case in which p=3, one even theta function
which vanishes for zero values of the argument.

In any hyperelliptic case in which p is odd, the equation associated with the surface
being
y=(z—ay) ...... (—agp4+q)

¢-polynomials with double zeros are given by

(i) the (Zﬁ +2 polynomials such as (z - a,)....... (x—ap_,). As thereis no arbitrary
place involved, the g of the theorem enunciated (§ 185) is zero,and the half-period given by
the equation

_ %Qﬁ =t M _ 0, T — -1 mp-l’

where 7% ..., #%,_, aré the zeros of the ¢-polynomial under consideration, is consequently
odd.

(ii) the (2p + > polynomials such as (z—a,)...... (x—ay,_J) (x—c)%, wherein ¢ is
arbitrary. Here ¢g=1 and Ba=0 (mod. 2).
(iii) the ( z * ) polynomials such as (z—a,)...... (x—ap,_g)(x—c)?(x—e)? for which
¢=2, Ba=1 (mod. 2) ; and o0 on. And, finally,
the single polynomial of the form (z-¢)?...... (z-¢p-1)%, in which all of ¢, ..., €p1
2 2
are arbitrary ; in this case q=%} , Ba—P +1 (mod. 2).
On the whole there arise
2p+2 2p+2 2p+2> (2p+2> 20 +2
p—l)+(p L T +1,or(P + P 5+ ...... +( 9 )

¢-polynomials corresponding to odd half-periods, according as p=1 or 3 (mod. 4).
Now in fact, when p=1(mod. 4)

2p+2
L ()t (BE]) =0+ oot (i e,
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is equal to

§(221’*2+2P+2coszi+2—-} w) or 2%2~1-27-1 or 271 (2°—1),

while, when p=3 (mod. 4)

2p+2 <2p+2) <2p+2
CEFD) o (28 et (212),

=3[P 24 (1 -2 2 (L i) 2= (1= i)+ Ty,
is equal to } (221’*2- 2r+2 cos 17_24;} 1r), and therefore, also to 271 (27 —1).

Thus all the odd half-periods are accounted for. And there are

Gra)+ (52

even half-periods which reduce the theta function to zero. This number is equal to

2p+2 o— _
-1 (1)) rer-wr -,

namely to 2”"1(2”+1)—(2p ;—1) This is the number of even theta functions which

vanish for zero values of the argument. It is easy to see that the same number is
obtained when p is even. For instance when p=4, there are 10 even theta functions
which vanish for zero values of the argument. They correspond to the 10 ¢-polynomials
of the form (x—c¢)?(x - a,), wherein ¢ is arbitrary, and a, is one of the 10 branch places.

There are therefore (220; l) even theta functions which do not vanish for zero values of

the argument.

In regard to the places m,, ..., m, in the hyperelliptic case the following remark may
conveniently be made here. Suppose the place m taken at the branch place @y, , ; using
the geometrical rule given in § 183, we may take for the polynomial A, of grade p, the
polynomial z—ay, 4, of grade 1; its remaining nu— 2, =0, zeros, give no conditions for
the polynomial 4 of grade (n—1)o+n—3+pu, =(2-1) p+2-3+1, =p. Since o+1, the
dimension of y, is p+1, the only possible form for ¢ is that of an integral polynomial
in x of order p. This is to be chosen so that its 2p zeros consist of p repeated zeros.
When p=3, for example, it must, therefore, be of one of the forms (z—a;) (¥ — @;) (* — ay),
(z — a;) (z—c)? where ¢ is arbitrary. It will be seen in the next chapter that the former
is the proper form.

186. Another matter* which connects the present theory with a subject afterwards
(Chap. XIIL) dealt with may be referred to here. Let 3@ be a half-period such that

the congruence
Q="M g™ — Pt M-l

can be satisfied by « ¢ coresidual sets of places z, ..., 2, (a8 in Proposition V1.). Then

we have
(m?, 2.2 ..., 2 _)=(m3 ..., mp?),

so that (Prop. IX.) z, ..., 2,_,, each repeated, are the zeros of a ¢-polynomial ; denote
this polynomial by ¢. If 2/, ..., Z,_, be another set, which, repeated, are the zeros of a
¢-polynomial ¢, and are such that

Jo=on Mol ofet e,

* Cf. Weber, Math. Annal. x111. p. 35; Noether, Math. Annal. xviL. 263,
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then we have
— QpMp, M m ', m -1, Mp- Zp-1, Mp—
0= 3 0 _/Uzl' ‘..vzll LR _vzp 1, 1_ R%0-1 l’

80 that z;, ..., 25_1, %y ...y Zp_; are the zeros of a ¢-polynomial; denote this polynomial
by ¢.

The rational functions ¥-/¢, ¢’/ have the same poles, the places z, ..., %,_;, and
the same zeros, the places 2/, ..., #p_;. Therefore, absorbing a constant multiplier in ,

we have
Vi=¢¢', and ¢'/p=(V/p)

and thus the function 4/¢’/¢ may be regarded as a rational function if a proper sign
be always attached. The function has z, ..., z,_, for poles and 2/, ..., 2’,_, for zeros.
Conversely any rational function having zy, ..., 2,_, for poles can be written in this form.
For if 2", ..., 2’5, be the zeros of such a function, we have

A2 P Bm1=(,
and therefore, by the first equation of this §, also
§Q_=_wm”’m—vz‘”’ ™. —F -l M1,
thus ¢ of the zeros can be taken arbitrarily ; and if ® be any ¢-polynomial whose zeros
€15 +eey {p—1 are all of the second order, and such that

Q=0 ™ Sumi_ b1, mp-1,

@ _ & )
\/(})_7\+7x1 $‘+ ...... +2, ;j,

where ¢,, ..., ¢, are particular polynomials such as ¢’ or &, and A, Ay, ..., A, are constants.
In other words, corresponding to the cc ¢ sets of solutions of the original equation of this
§, we have an equation of the form

NE=ANG+N VP + .o + 2V by,
wherein proper signs are to be attached to the ratios of any two of the square roots, and
any two of the ¢+1 polynomials ¢, ¢y, ..., ¢4, are such that their product is the square of
a ¢-polynomial. There are therefore 3¢ (¢+1) linearly independent quadratic relations
connecting the ¢-polynomials. (Cf. Chap. VI. §§ 110—112.)
For example in the hyperelliptic case in which p=3, the vanishing of an even theta
function corresponds to the existence of a ¢-polynomial ®=(x— c)? such that

'\/5= —C\/T-l-'\/._z'_z', =-—cC «/E*’l\/@,
where ¢,¢;, =(2)%, =,
Ex. i. Prove, for p=3, that if an even theta function vanishes for zero values of the
arguments the surface is necessarily hyperelliptic.

we can put

Ez. ii. Prove, for p=4, that if two even theta functions vanish for zero values of the
arguments the surface is necessarily hyperelliptic ; so that, then, eight other even theta
functions also vanish for zero values of the arguments. The number, 2, of conditions thus
necessary for the fundamental constants of the surface, in order that it be hyperelliptic, is
the same as the difference, 9—7, between the number, 3p— 3, of constants in the general
surface of deficiency 4, and the number, 2p—1, of constants in the general hyperelliptic
surface of deficiency 4.

B 18
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187. (XIL) If r denote any arguments such that ® (r) =0, and such
that @ (v>%+47r) does not vanish identically for all positions of # and z,
the Riemann normal integral of the third kind can be expressed in the form

2,2 _ @(v"“-j-l") ‘@(v’*“+r)
0%5=1og | g s i [t

For consider the function of # given by

R I GAR L-X Ca o)

¢ @@ F+r)® (Fotr)’

(a) 1t is single-valued on the Riemann surface dissected by the a and b
period loops;

(B) it does not vanish or become infinite, for the zeros of ® (v*? 4 1r),
other than z, do not depend upon z (by Proposition IV.);

(y) it is unaffected by a circuit of any one of the period loops. At
a loop a; it has clearly (Equation B, § 175) the factor unity; at a loop
b; it has the factor

o2 % 8 g2 (vf’ b 13T o) e21ri (vf’ Boyritir)
. . ,

which is also unity. Thus the function is single-valued on the undissected

surface ;

(8) thus the function is independent of x; and hence equal to the value
it has when the place z is at z, namely 1.

A particular case is obtained by taking

="M L — el
where z,, ..., 7z, are any places such that © (v»2+ ) does not vanish

identically. Then by the result (F) the function ® () vanishes.

Hence we have

"% = loo | @ (W= — — P Tt g™ TPy
a8 0 ® (,vz, m_fema_ — b el b mp)
/@ @ =™ L. — PRt g Ty
® (vz, m e — PPl L 'l)ﬂ’ 'm'p)] °

Another particular case, of great importance, is obtained by taking
r=%4Q v, k, k' denoting respectively p integers ki, ..., kp, &/, ..., k', such
that k&' is odd, the assumption being made that the equations

‘%Qk, = g ’Ug" mo__ — -l M

......
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are not satisfied by more than one set of places &, ..., & (cf. Props. IIL, V.).
Then the function ® (v* 2+ $; r) does not vanish identically, and we have

O +3 0 x)O WP + 30 )
0(””’5+le ) O @+ 30 )’

Hf:;:log

(XIIL) Suppose k equal to or less than p; consider the function given
by the product of

D A X s

e Hu“ g, Mg g, = e ar. B,
and
B@H™—yn™— ... — v M4 ) @B —yt™— — v ™ + 1)
O@m™m—ho™ — ... — o™ ) O@@WAm—vfom™m — — P 4 1)’
wherein r denotes arguments given by
r=— (oM Mg L +o¥r ™),

and each of the sets a;, ..., @, Yis1s eovs Yp» Bis +oes Bhs Vit1s +ov, ¥p 18 such
that the functions involved do not vanish identically in regard to .

This function is single-valued on the dissected Riemann surface, does not
become infinite or zero,and, for example, at the period loop b; it has the factor
e’, where
L =—=2mi (v Bt ..., + % By — 2rg (VB P — gm0 T — L, — p% )

+2mi (v ™ — P — . — vPi M),
is zero. Thus the function has the constant value, unity, which it has when
z is at z. Therefore

& n® ! O (v ™ — oM — | — % M —Yigp Mt —,, — Y0 M)
“"ﬁ'+ -+, ﬂk g O(v% ™ — g™ — | — B M —Yhn M1 — | — Y )

O@m—rrm™m— ., — % M — VRl Mt — — Y My
O @wH™m—phum — — VB My — Vet Mt — — Vs Mp)
the places yg44, ..., vp being arbitrarily chosen so that a, ..., %, Yks1 - Vp
are not zeros of a ¢-polynomial, and B, ..., Bk, Ye+1, .-+, ¥p are not zeros of a
¢-polynomial.
Thus, when % = p, we have the expression of the function considered in

§ 171, Chap. IX. in terms of theta functions. For the case where ay, ..., a
are the zeros of a ¢-polynomial, cf. Prop. XV. Cor. iii.

188. (XIV.) We return now to the consideration of the identical vanishing

of the ® function. We have proved (Prop. VIL), that if ® (v*:5+......
+ 9% 4 1) be identically zero for all positions of m, ..., @, 21, .-+, Zg, DUt
O@m 2t at ..., . + 2% %+ 7) be not identically zero for all posnnons of

18—2
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z and z, then there exist o 7 sets of places &, ..., {1, and 7 sets of places
£, ..., £y, such that

= pMe, M _ fu{n ma_ ... — 'vgﬁ-l; Mp-1,
and
—r=ymm— b — — b=t mp-1,
Now, if in the equation ® (v*»%+...... +wos4r)=0, we make z,
approach to and coincide with z,, we obtain
2,
'21®i, (PFrat ... + v¥b fe1 ) 0 (2,) =0,
7=

wherein ®;' (u) is put for 8% 0 (u), Q;(z) for 2mi D; *, a being arbitrary ;

and this equation holds for all positions of ,, z, ..., #4—;, Z—,. Since, how-
ever, the quantities Q,(zy), ..., Q,(z,) cannot be connected by any linear
equation whose coefficients are independent of z,, we can thence infer that
the first differential coefficients of ® (u) vanish identically when u is of the

form v® &2 4 ... + %z, Tt follows then in the same way that the
second differential coefficients of © (u) vanish identically when u has the
form v 54 ... + v™-% %-2 4+ r; in particular all the first and second differ-

ential coefficients vanish when u =». Proceeding thus we finally infer that

® (u) and all its differential coefficients up to and including those of the gth
order vanish when u=1r.

We proceed now to shew conversely that when ® («)and all its differential
coefficients up to and including those of the ¢th order, vanish for u=r,
then O (™2 +...... + 9% %+ r) vanishes identically for all positions of
&y, 21, Xy, Za, -.-, Ty, Zg. By what has just been shewn @O (v 254 ..,
+ v%> %+ ) will not vanish identically unless the differential coefficients of
the (g + 1)th order also vanish.

We begin with the case ¢g=1. Suppose that ® (u), ®, (), ..., 8, (u), all
vanish for u =r; we are to prove that ® (v* 2+ r) vanishes identically for all
positions of z and 2.

Let e, f be such arguments that @ (e)=0, ® (f)=0, but such that
®;/ (¢) are not all zero and O/ (f) are not all zero, and therefore ® (v* 74 ¢),
® (v**+f) do not vanish identically; consider the function

O +1*)0B(e —v*»?)

O (f+v5?)O(f—v>?)’
firstly, it is rational in # and z; for, considered as a function of , it has,
at the period loop b,, (Equation B, § 175) the factor

L X7 x, 2 . Lox 2 x, 2 .
6_2‘”(17‘ +etu _e)"""’"’f/e"2’”(”r +f+v,!" - f) - wir,,,
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whose value is unity ; and a similar statement holds when the expression is
considered as a function of z, for the expression is immediately seen to be
symmetrical in # and z; secondly, regarded as a function of z, the expression
has 2 (p —1) zeros, and the same number of poles, and these (Prop. IV.)
are independent of z. Similarly as a function of z it has 2 (p — 1) zeros and
poles, independent of a; therefore the expression can be written in the form
F (z) F (z), where F(z) denotes the definite rational function having the
proper zeros and poles, multiplied by a suitable constant factor, and F (2) is
the same rational function of 2.

Putting, then, z to coincide with z, and extracting a square root, we infer

30/ (e) i (a)
F@=t=t— ",
El@i'(f ) Qi (w)

where Q; (z) =2mi D%, for a arbitrary, is the differential coefficient of an
integral of the first kind ; thence we have

O +e)Ow>*—e) [30/(¢) %i(@)][20/ (e) Q:i(2)]

B +f)O = ~f) [26/(f)U@][Z0/(f) ()]
In this equation suppose that e approaches indefinitely near to r, for which
®(r)=0, ©/(r)=0. Then the right hand becomes infinitesimal, inde-
pendently of # and z. Therefore also the left hand becomes infinitesimal

independently of # and z; and hence ® (v*?+ r) vanishes identically, for
all positions of # and 2.

We have thus proved the case of our general theorem in which ¢=1.
The theorem is to be inferred for higher values of ¢ by proving that if the
function ® (v 2 +...... + v®n-1: #n-1 4 ) vanish identically for all positions of
&y, 21y -en s Tme s Zm—, and also the differential coefficients of @ (w), of order
m, vanish for w=r, then the function ® (v?>% + ...... + o%ms Zn 4 ) vanishes
identically. For instance if this were proved, it would follow, putting m =2,
from what we have just proved, that also ® (v* % 4 v™ % + 1) vanished
identically, and so on.

As before let f be such that © (/) =0, but all of ®/(f) are not zero; so
that © (v»?+ f) does not vanish identically in regard to z and 2. Let
e be such that ® (v 2 +...... + v¥n-1, Zu-1 4 ¢} vanishes identically for all
positions of @, 2y, ..., &y_1, Zm_y, but such that the differential coefficients of
® (u) of the first order do not vanish identically for u = v%> % +.., 4 oFn-1.20-1 4 ¢;
so that the function ® (v*v 4+ ...... + v%ms #n 4+ ¢) does not vanish identically.
Consider the product of the expressions

B a4 ... +otm i) O (v a4 L. + v 2 — @)

TI'® (v %+ £) © (25— f ) IO (v +.f) © (s — )
IO ("0 2 + f) © (v 2 — f ) ’
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wherein h, £ in the numerator denote in turn every pair of the numbers
1,2,..., m, so that the numerator contains 4. tm(m —1)+2=2(m* —m+1)
theta functions, and A, p in the denominator are each to take all the values
1, 2, ..., m, so that there are 2m? theta functions in the denominator.

Firstly, this product is a rational function of each of the 2m places
&y, 21y ovvy T, Zm. Consider for instance ; it is clear that if the product
be rational in #,, it will be entirely rational. As a function of z,, the
product has at the period loop b, a factor e—*"¥ where

m m
K=29 (’U:l’ 7 +o + 'Ufm’ Zm+ %“Tr,r) +23 (vf" zk_l_ %Tr,r) —-23 (v-:x, % + ‘%Tr,r);
k=2 r=1
and this expression is identically zero.

Secondly, considering the product as a rational function of z,, the
denominator is zero to the second order when #; coincides with any one of
the m places 2z, ..., 2w, and is otherwise zero at 2m (p —1) places depending
on f only; of these latter places 2 (m —1)(p—1) are also zeros of the
factors II'® (v*' % +f) @ (v¥»> * —f); there are then 2(p —1) poles of the
function which depend on f only. The factors II'© (v® % + f) @(v%0 % — f)
have also the zeros ,, ..., &, each of the second order. The factors
O (a4, + P m 4 )@ (¥ 5+ ... +9%m n —¢) have, by the hypothesis
as to e, the zeros z,, 2, ..., Zm, each of the second order, as well as 2 (p —m)
other zeros depending on ¢ only. On the whole then, regarded as a function
of z,, the product has

for zeros, 2 (p — m) zeros depending on ¢, as well as the zeros a, ..., Zp,
each of the second order,

for poles, 2 (p — 1) poles depending on f;
the function is thus of order 2(p—1); and it is determined, save for a
factor independent of x,, by the assignation of its zeros and poles. It is
to be noticed that these do not depend on z, 2, ..., Zn.

It is easy now to see that the product, regarded as a function of z,
depends on z, ..., Zm, 6, f in just the same way as, regarded as a function
of z,, it depends on @, ..., Tm, ¢, f.

The expression is therefore of the form F (@, @, ..., @n) F (21, 22y «.., 2m),
wherein F denotes a rational function of all the variables involved.

The form of F' can be determined by supposing @, ..., #, to approach
indefinitely near to 2, ..., 2, respectively ; then we obtain

?
O (v 5+ ... +’v“"“z'"+e)=—2—:?itm S O (¥ a4 .. 4 vEn ol 4 0) O (2),
i=1

where ?,, is the infinitesimal for the neighbourhood of the place 2,

O/ (4 + ... + 9¥m-t o1 L g)

1 5 _,
= grgtns £ O 05054 e 6) O (o),
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where £,,_, is the infinitesimal for the neighbourhood of the place z,_,, and
so on, and eventually,

® (5% ...+ U 2 )

_thty..-tm & ,
(227‘_1) P “1 1% ® 19 gyt (e) Qh (zl) le (22) ’erm (Zm)-

Similarly

OO0 W™ *#+f) =IO (™ *+ f) O (v * — f) [ @ ")m’" gl 2 0/(/) (z#)}

where h, k refers to all pairs of different numbers from among 1, 2, ..., m.

Therefore, dividing by a factor

(P 0 (v f) @ =) | G55

which is common to numerator and denominator, and taking the square root,
we bave

3.2,

F Py U1y Tgy ery Tm (e) Ql (Zl) ﬂ2 (22) ces Qm (zm)
(21, ovvs Zm) =25 =1

fi | £o:(/) 060

n=1
On the whole therefore we have the equation
Bt ... 4% 4 0) @ (V¥ A L + v T — @)

IO (v %+ ) O (v¥n % — ) TI'® (v 2 + f) O (v?w % — f)
IO (™ + £) O (5™ % — f)

=‘If(wl,.. wm,e)‘lf(z,,.. Zm» e)
H‘I’(wmf)mb(sz)

where

@, f)= él&'(f) s (a),

p ’
V(@ -0 Tmy €) = % . > Oy i, i (@) Qi (@) oo Qi (20).
tin= @=1
Suppose now that ¢; is made to approach to r;; then the conditions we
have imposed for e are satisfied, and there is added the further condition
that the differential coefficients of order m, ®'; ;,, ., ., also vanish. Hence
it follows that ® (v%: 2 + ..., + v Zn 4 ) vanishes identically.

The whole theorem enunciated is thus demonstrated.
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(XV.) The remarkable investigation of Prop. XIV. is due to Riemann ;
it is worth while to give a separate statement of one of the results obtained.
Using ¢ instead of m — 1, we have proved that if the equations

e = PMe M — b M — — YSp-1, Mp—1

......

are satisfied by oo ? sets of places &, ..., §p—,, so that also the equations

_e_=_vmpym_'u§n mn, _fvfp—l:"h?—l

are satisfied by ¢ sets of places &, ..., £, then their exists a rational
function, which has (i) for poles, the 2(p — 1) places ¢, ..., tp—1, 21, ..., Zp1,
which satisfy the equations

— plo-1, Mp-1

fzvmpym—vtnml_
—fz YPIP M g M — —Pp-1> M1

f being supposed such that these equations have one and only one set of
solutions, and has (ii) for zeros, the arbitrary places , ..., %, each of the
second order, together with 2 (p — 1 —¢q) places {41, «-vs Epa1s Egt1r -ovr Ep—rs
satisfying the equations

e= UM M — P — [ — 9% M — St Mgt — Y1 Mp-1

JE m, __ — pp-1,mp1
e =y PE M yp-1, Mp-1

............

and the function can be given in the form
Y (2, Za, .., %g, @, €) + P (2, f),

the notation being that employed at the conclusion of Proposition (XIV.).
The expressions ¥, ® occurring here have the zeros of certain ¢-polynomials,
to which they are proportional.

Corollary i. If we take p—1 places &, ..., {—, so situated that only
one ¢-polynomial vanishes in all of them, and define e by the equations

= gip, M _ m — pylo=1, Mp-1
e = yme, PS> M Yép=1; Mp-1,

......

there will be no other set &, ..., {,—,, satisfying these equations, or ¢=0.

If &, ..., ;-1 be the remaining zeros of the ¢-polynomial which vanishes in
&, ...s &1, we have (Prop. IX.)

(m4 &, ..., gp—u &, ..., Ep—l)E (ms, ..., my?),
and therefore

—e = yies M ’Ufl‘ m, — 1)51"1' mp-1

......

Similarly if #,, ..., ¢,_, be arbitrary places which are the zeros of only one
¢-polynomial, we can put

f=vmem — gl — pfp-1s M-y

—_ =My M 7y, My -1, Mp—
J = om— L, — vF-b M-l
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Then the rational function having ¢, ..., #p—, 2, ..., 2,—; for poles, and
& oees Lo, &1y on, Epy for zeros is given by ®(z, €) + P (x, f). Thus the
¢-polynomial which vanishes in §, ..., {1, &, ..., &5 is given by

$ @/ (e m— b — o) g (),
=1

where ¢, (2), ..., ¢, () are the ¢-polynomials occurring in the differential
coefficients of Riemann’s normal integrals of the first kind.

Hence if n,, ..., n,— be places which, repeated, are all the zeros of a
¢-polynomial, the form of this polynomial is known. Since, then, we have
(Prop. XI. p. 269)

Q=yeM—ytum— ., — gle-1, Mp-1,
we can write this polynomial
2 0/(0) ¢:(2)
3 Q being an odd half-period.

If another ¢-polynomial than this one vanished in m,, ..., n,_,, there
would be other places %, ..., #',—;, such that

%Q = Yo, M 'y”l': my — -— 1)“’17-1: mp-l,

......

and therefore (Prop. VI.) the function ® (v* 2+ 1Q) would vanish identi-
cally; in that case (Prop. XIV. p. 276) the coefficients ®; (3 Q) would vanish.

We can express the ¢-polynomial in terms of any integrals of the

first kind; if V7", ..., V,’™ be any linearly independent integrals of
the first kind, expressible in terms of the Riemann normal integrals

o™, ..., vy " by linear equations of the form
DA VIR A 0, VT, (=12, ..., p),
and the function ® () be regarded as a function of U, ..., U, given by
=N, U+ ..., + N, Uy, (=12, ..., p),
and, so regarded, be written & (U), the ¢-polynomial which has zeros of the
second order at n,, ..., n,—, can be written

25/(0) yi(o),

where Y, (#), ..., ¥, () are the ¢-polynomials corresponding to Vi"™, ...,
V7™ and $Q denotes a set of simultaneous half-periods of the integrals

Ve .., Vy ™ If $Q stand for p quantities of which a general one is
1} (lﬂt =+ kl"r,', 1+ eeee + k‘p"ri, p), (Z =1, 2, s p),
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and o, ;, 'y, s be 2p° quantities given by

1 .
0}=27Lg,1w1,8+27\,i,2w2,s + e +2M 055 (5,8=1,2,...,p),

Ti 8= 2N 0, 5+ 2N 00y 5+ .o + 2N, p 0y, 5,

where, in the first equation, we are to take 1 or 0 according as 1=s or 1s,
then 3O will stand for p quantities of which one is

ko +...... +hpw;, p+ 05+l + ko', (=1,2, ..., p)

For example when the fundamental Riemann surface is that whose
equation may be interpreted as the equation of a plane quartic curve, every
double tangent is associated with an odd half-period and its equation may
be put into the form

2 GO+ (30)+Y GQ)=0.
Corollary 1i. If the equations

e = Y™ M — g M e My — YSp—1, Mp1

......

can be satisfied with an arbitrary position of #; and suitable positions of
&, .-+, &1, and therefore, also, the equations

— e = e, M — %15 m — rufzn My _ v&t—ly Mp—1

......

can be satisfied, then a ¢-polynomial vanishing at ; to the second order, and
otherwise vanishing in &, ..., {—1, &, ..., £, 1s given by

_§1 Q; () '§1 0’5, (e) Q; (@) =0.
i= 7=

Ez. In the case of a plane quintic curve having two double points, this gives us the
equation of the straight lines joining these double points to an arbitrary point z,, of the
curve.

Corollary iii. We have seen (Chap. VI. § 98) that any rational function
of which the multiplicity (¢) is greater than the excess of the order of the
function over the deficiency of the surface, say, g=Q—p+7+1, can be
expressed as the quotient of two ¢-polynomials. If the function bave
&, ..., & for zeros, and &, ..., & for poles, and the common zeros of the
¢-polynomials expressing the function be z, ..., zg, where R=2p—2—-Q,
the function is in fact expressed by

£0/0n@+26/ (N,
where (cf. § 93, Chap. VL)

e=p ™ _ o™ _

......

My, m 205 M
f=v? " =y -

......
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189. Before concluding this chapter it is convenient to introduce a
slightly more general function * than that so far considered ; we denote by
Y (u; g, ¢), or by ¥ (u, g), the function

S (u; 9 {) = S gout+ehunt+q)+b (+q)?+eimgin+q)

wherein the summation extends to all positive and negative integer values of
the p integers n,, ..., 1y, a is any symmetrical matrix whatever of p rows and
columns, A is any matrix whatever of p rows and columns, in general not
symmetrical, b is any symmetrical matrix whatever of p rows and columns,
such that the real part of the quadratic form bm? is necessarily negative
for all real values of the quantities m;, ..., m,, other than zero, and ¢, ¢’
denote two sets, each of p constant quantities, which constitute the character-
istic of the function. In the most general case the matrix b depends on
3p (p+1) independent constants ; if however we put 4wt for b, 7 being the
symmetrical matrix hitherto used, depending only on 3p — 38 constants, and
denote the p quantities ~u by U, we shall obtain

(s g §)=e"0(T; ¢ 9).

We make consistent use of the notation of matrices (see Appendix ii.).
If u denote a row (or column) letter of p elements, and A& denote any matrix
of p rows and columns, then hw is a row letter; we shall generally write
huv for hu.v; and we have huw = hou, where k is the matrix obtained from
h by transposition of rows and columns. Further if £ be any matrix of p rows
and columns, hu . kv = hkvu = khuv. For the present every matrix denoted by
a single letter is a square matrix of p rows and columns.

Now let o, »’, 9, 7’ be any such matrices, and P, P’ be row letters of
elements P,, ..., Py, P/, ..., P;. Then, by the sum of the two row letters
P +o'P’ we denote a row letter consisting of p elements, each being the
sum of an element of wP with the corresponding element of w'P’. This
row letter, with every element multiplied by 2, will be denoted by Q,
so that
Qp=20wP + 20'P’;

in a similar way we define a row letter of p elements by the equation
Hp=29P+2¢'F

then u + Qp will denote a row letter of p elements, like .

The equation we desire to prove, subject to proper relations connecting
w, w’, 1, 7', is the following,
S (4 + Qp, q) = eHr W Hi0n) —miPP +3ni (P¢ = Pg) g=2wiPU'Y (u, P + @), (L),
which is a generalization of some of the fundamental equations given for
O (u).

* Schottky, Abriss einer Theorie der Abelschen Functionen von drei Variabeln, Leipzig, 1880.
The introduction of the matrix notation is suggested by Cayley, Math. Annal. (xviL), p. 115.
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In order that this equation may hold it is sufficient that the terms on the
two sides of the equation, which contain the same values of the summation
letters n,, ..., n,, should be equal ; this will be so if

a(u+Qp)+2h(u+ Qp) (n+9)+b(n+ ¢ )+ 2mig (n + ¢)
= H, (u+ 3Qp) — miPP —27iP'q + au? + 2hu (n + ¢’ + P) +b (n + ¢ + Py

+2m(P+qg)(n+q¢ +P);
picking out in this conditional equation respectively the terms involving
squares, first powers, and zero powers of n,, ..., n,, We require

b=b,
. h(u4Qp) +bg +wig=hu+b (¢ + P)+mi (P +q),
an
a(u+ QpP+2h (u+ Qp) g + b9+ 2miqq = Hp (v + $Qp) — m PP — 2miPyq
+auw+ 2hu (¢ + P)+b(¢ + Py +2mi (P +q) (¢ + P).

190. In working out these conditions it will be convenient at first to
neglect the fact that @ and b are symmetrical matrices, in order to see how
far it is necessary.

The second of these conditions gives
©hQp=miP + bP,
and therefore gives the two conditions hw = 4, heo' = }b, whereby o, o’
are determined in terms of the matrices &, b. In particular when & =m¢
and b=1wT, as in the case of the function ®(u), we have 2w=1, 20’ =1,
namely 2w, 20’ are the matrices of the periods of the Riemann normal
integrals of the first kind, respectively at the first kind, and at the second
kind of period loops.

The third condition gives

2audp + aQ?p + 200 ¢ = Hp (u+ £ Qp)

— PP — 2miP'q+ 2huP’ + b (2¢'P’ + P?) + 2mi(qP’ + Pq' + PP),
that is

(2aQp — Hp — 2hP) u+ (aQp — 3 Hp) Qp — m PP — bP™
+2(hQp —miP—bP)q =0;
in order that this may be satisfied for all values of u,, ..., u,, we must have,
referring to the equation already obtained from the second condition,
H,=2aQ, —2hP,
and
(aQp—3Hp) Qp=(mP +bP) P
from the first of these, by the equation already obtained, we bave
@Qp—3Hp)Qp=hP'Qp=hQpP = (wiP +bP) P ;
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subtracting this from the second equation, there results
(@—a) Q2= (b —b) P,

and in order that this may hold independently of the values assigned to
P, P’ it is necessary that @ =a, b =b; when this is so, these two equations
give, in addition to the one already obtained, only the equation

H,=2aQ,—2hP,

leading to _
7 =200, 7' =200 — 2h,

which express the matrices 7 and %’ in terms of the matrices @ and . These
equations, with

hQp=miP+bP,
or

hw = }mi, ho'=1b,
are all the conditions necessary, and they are clearly sufficient. When they
are satisfied we have

Y(u+Qp, q)=err@-2PIY (y; g+ P), (L),
where
Ap ()= Hp(u+%Qp) —miPP.
Ez. Weierstrass’s function ou is given by
Ao 3 I g i i)

where 4 is a certain constant.

The equations obtained express the 4p* elements of the matrices w, o', 7,9’
in terms of the p*+ p(p+1) quantities occurring in the matrices a, h, b;
there must therefore be 2p®— p relations connecting the quantities in o, o',
7, 7. The equations are in fact of precisely the same form as those already
obtained in § 140, Chap. VIL, equation (A), and precisely as in § 141 it
follows that the necessary relations connecting w, ', 7, n" may be expressed
by either of the equations (B), (C) of § 140. Using the notation of matrices
in greater detail we may express these relations in a still further way.

For _ _

=hQp. Q@ —hQy. P
=(mP+bP)Q — (mQ +bQ) P,
H.Qy— H)Qp=2mi (PQ - P'Q);
this relation includes all the 2p* — p necessary relations; for it gives

(P + 7' P) (0Q+ o'Q) = (1Q + 7' Q) («P + o'P) = §mi (P — PQ),

so that
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or (using the matrix relation already quoted in the form hu.kv = hkvu =khuv)
(@1 —djw) PQ +(an' —n0") PR+ (01 — 7'0) PQ + (07 — 7o) P'Q
=§mi(PQ - P'Q),
and expressing that this equation holds for all values of P, @, P, ¢, we
obtain the Weierstrassian equations ((B) § 140).
Similarly the Riemann equations ((C) § 140) are all expressed by
(20'P +27'Q) 20P' + 27Q) — (20P + 27Q) (20'P’' + 27'Q)=2m (PQ' — P'Q).

Ez. i. If we substitute for the variables # in the & function linear functions of any p
new variables v, with non-vanishing determinant of transformation, and Z, be formed from
the new form of the § function, regarded as a function of », just as H, was formed from
the original function, prove that L,v= H,u, and that A, (%) remains unaltered.

Ex.1i. Prove that

A (U + Q) + Ay (0) = 2t M P=Xg (0 + Qp) + Ay () — 27E N'Q,
provided
M4+P=N+@Q.

The equation (L) is simplified when P, P’ both consist of integers. For
if M, M’ be rows of integers, it is easy (putting a new summation letter,
m, for n + M’, in the exponent of the general term of & (w; g+ M, ¢ + M'),)
to verify that

(s g+ M, ¢+ M) =S (u; g, 9).

Therefore, if m, m’ consist of integers, we find

S (u+ Qp, q) = i) +2milmg’-m'a) § (y, g),
and in particular
Y (u+ Qp) = Y (u),

where & (w)is written for % (u; 0, 0). The reader will compare the equations
obtained at the beginning of this chapter, where a =0, n =0, 4" =—2m¢,
w=%, 0 =%7,Qp=P+ 7P, Hp=—-2miP', Ap (u) =—2miP' (u + 3P + }7P)
— mPP.

One equation, just used, deserves a separate statement ; we have
S (u; g+ M) =M Y (u; g),
where M stands for a row of integers M, ..., My, M/, ..., M.

191. Finally, to conclude these general explanations as to the function
Y (u), we may enquire in what cases & (u) can be an odd or even function.

When m, m’ are rows of integers the general formula gives

Y (._ U+ Qm: q) = @rm (—u)+2mi (mg’ -m'q) Y (_. w, q) ;
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hence when % (u, ¢) is odd, or is even, since A, (— %) = A_y, (u), we have

I (U= Qu, g) = eromttammd=m Y (u, g) ;
therefore, by equation (L),

S U+ Qm, ), = (u— Qu, q) . Qo= +amimg—mig)
=9 (u, g) e-n) Hom®—§0n) +emipmg'—m'q)

while also, by the same equation,

Y (u + Qp, 9) =% (u, @) ern )+ 2mimg—m'g)
Thus the expression

Nom (U — F Qo) + A (U) — My () + 411 (mg’ — m'q)

must be an integral multiple of 277. This is immediately seen to require
only that 2(mg’—m'q —mm’) be integral for all integral values of m, m/.
Hence the necessary and sufficient condition is that ¢ and ¢’ consist of half-
integers. In that case we prove as before that % (u, ¢) is odd or even
according as 4gq’ is an odd or even integer.

192. In what follows in the present chapter we consider only the case in
which b=1=n7, 7 being the matrix of the periods of Riemann’s normal

integrals at the second kind of period loops. And if %% ...,u;  denote
any p linearly independent integrals of the first kind, such as used in §§ 138,
139, Chap. VIL, the matrix % is here taken to be such that

2mivy “=hi yup A . +hipup”, (=12 ...,p),
so that h is as in § 139, and

Y (u* %, @Q)=e" B (v* 9, q),
where u = u* ¢

From the formula
Y (u+ Qp) = eHmHi0m) —mimm’ § (),
wherein m, m’ denote rows of integers, we infer, using the abbreviation
0
&(w)= s log % (u),
that
‘ C,-(u+ﬂm)—§i(u)=2(m,,ml+ ...... +m,pmp+q’,-,1ml'+ ...... +n',-,pmp’);

particular cases of this formula are

gi (u, + 2‘4’1, ry eees Up+ 2wp, » = Cz (u) + 27h', 7>

Ei(un+ 20y r, oo, Up + 2007, 1) = & (u) + 2775, .
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Thus if u, be the argument

x, m
Uy U

SR TR — i

s 3
where ;' ..., u; * are any p linearly independent integrals of the first
kind, and the matrix @ here used in the definition of & (u) be the same as
that previously used (Chap. VII. § 138) in the definition of the integral
L7 % so that the matrices #, 5’ will be the same in both cases, then it
follows that the periods of the expression

&)+ LYY,
regarded as a function of z, are zero.

193. And in fact, when the matrix a is thus chosen, there exists the
equation

—&Gsm =y — L, — wPn ™) 4 L (U™ — YT — L — ufes Mp)
2 . dz
=L>"+ El vy, i [(zr, @) — (27, @)] Ti—tr ,

wherein 7, ; denotes the minor of the element u;(#,) in the determinant
whose (r, 7)th element is u;(x,), divided by this determinant itself; thus
7y, ; depends on the places a,, ..., #, exactly as the quantity », ; (Chap. VIL
§ 138) depends on the places ¢, ..., ¢p.

For we have just remarked that the two sides of this equation regarded as
functions of z have the same periods; the left-hand side is only infinite

at the places o, ..., 2,; if in L7 “ which does not depend on the places
¢y ---» Cp used in forming it (Chap. VII. § 138), we replace c,, ..., ¢, by
&, ..., Zp, it takes the form

7, a

z, a z, a
—-2(as,wm" +...... +aip Uy ),

S M + 5, s T
and becomes infinite only at the places x,, ..., z,. Hence the difference
of the two sides of the equation is a rational function with only p poles,
@y, ..., &y, having arbitrary positions. Such a function is a constant (Chap.
III. § 37, and Chap. V1.); and by putting «# = a, we see that this constant is
zero.

194. It will be seen in the next chapter that in the hyperelliptic
case the equation of § 193 enables us to obtain a simple expression for
Gus™—uo™m— ., — u?» ™) in terms of algebraical integrals and rational
functions only. In the general case we can also obtain such an expression*;

* See Clebsch und Gordan, dbels. Functnen. p. 171, Thomae, Crelle, Lxx1. (1870), p. 214,

Thomae, Crelle, c1. (1887), p. 326, Stahl, Crelle, cx1. (1893), p. 98, and, for a solution on different
lines, see the latter part of chapter XIV. of the present volume.
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though not of very simple character (§ 196). In the course of deriving that
expression we give another proof of the equation of § 193.

The function of # given by % (u»™; 18, $a) will have p zeros, unless
S (u® ™ + 4 Qp, ,) vanish identically (§§ 179, 180) ; we suppose this is not the
case. Denote these zeros by my/, ..., m,". Then (Prop. X. § 184) the function

Y (usH™— g™ — —u? ™ ; LB, La) will vanish when z coincides with
&y, &y, ..., or 2,. Determining m,, ..., m, so that
wmem + ™ =1 Qg o,

and supposing the exact value of the left-hand side to be 3 Qg .+ O s,
where £, k are integral, this function is equal to

S UH™m— ™ — L, —u' " — 1 Qg o — Qg ;5 3B 1),
and this, by equation (L) is equal to
¢ 1B, a1, o) +imiBa § (3),
where u = u®» ™ —y®o ™ — ... —u ™ — O p.

Therefore (§ 190) the expression

o, S w3, da)
S’(W’ — s m L — U*p» m‘,’; %B: %a) .
S(ux,m_w‘nmll— ...... —'U}Lp’mpl; Jz“By '%d)
S (uts ™ — g — — utr ™ ‘%‘Bx %u),
is equal to
S(uﬁ:m—u"“m‘— """" _uxp,m,,) S(u”’m——w‘“"”‘— ...... ——w‘rvmp).
S(u/‘,m_uﬂ?“ M .. —’uﬁprm”) 3(20‘""’”—11,"“’"'—- ...... _ullp,mp)’

we may write this in the form

S(U—r)/%(U—s)

S(V- (V-
the expression is therefore equal to
LO@H™ — g — %> mp)/@(v’”v —R — Ykpr M)
¢ O™ —pPm— ., — v ™) | O (v — ™ — — Ykpr Mp)’
where
L =a(U=ry—a(V-rr—a(U—=sr+a(V —ys)
is equal to
—2aU(r—8)+2aV (r—s),
or
—2a(U=-V)(r-s),
that is

— 2au¢, [ (l‘,xl HIE S + wUrr f‘l))’
B. 19
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which denotes

_ 2 (22 20‘1’] x,,l. i,., P'r).

r=1 4,j

Hence, by Prop. XIII. § 187, supposing that the matrix a, here used, is the
same as that used in § 138, Chap. VII., and denoting the canonical integral

za z,a z,¢
Hzc_zz zarxur Us

r=1s=1

which has already occurred (page 194), by R, we have

Ry + .. + Ry, =log ®.
195. From the formula
2. R::,Fu,_ lo g%(u"sm-— U M— | — s "”p) ¥ (urr ™ — ™ - — u’w"”ﬂ'),
’ D (u® ™ — s T—— ke M) [N (w ™ — o T — L — e M)
since
Rzn ""r_Pa;r'ILf"r + 2 z,, urL::. n)
we obtain

2 Px:;l‘r_'_z 2 r”"’r x,ﬂ- _logg'(u'r’m'— U) S’(u""”"— U)

i=lr=1 S@em—Uy)/ ¥ @w-m—U,)’
where
U=wrom™m4 ... + % Mp
U=ur™o4 ... + utps Mo,

and therefore

»
U— U0= 2 Irs M,
r=1
Hence, differentiating,

aw,

3 S0 e @) = @ ]+ L = = G = U)o+ Gy wn = U),
\vhere
0
&i(w)= a—uilog%(u) ;

but, from
AU;=Du"™ . day+ ...... + D> ™ . day,

where du,, ..., dzy denote the infinitesimals at @, ..., 2, we obtain

oz, dz,

m= Uy dt )
thus
z,m Lo dz,
—& (u® ™ — U) + & (wl’ " U) = Li + %1 Vr, i [(wr, x)— (wr: .u')] m >

which is the equation of § 193.
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196. From the equation
z, >
Ry 4. + R, =log @,
differentiating in regard to x, we obtain an equation which we write in
the form

P 2y B V4
ZE =3 @@= )=t = U],

where U =uz:™ 4 ...... +utor M, Uy=uto™ 4 ... + utpr M,
Thus, if we take for u,, ..., u, places determined from « just as m,, ..., m,
are determined from m, so that
(m, pa, v,y pp) = (2, Moy «.0, My),
the arguments »*» ™ — U, will be =0; as the odd function ¢, () vanishes for
zero values of the argument, we therefore have (§ 192), writing Qp for the
exact value of u»™ - U,

D
Frfy ... + PPt = 72=1MT () [&) (uo™ —u2m — . — M) — (Hp),]
B
= 2 (@) & (uB™—uh ™ — L — u ™ — (p)
r=1
D
=— 2 pp (2) & (WP M 4 oL+ U ),
r=1

If in this equation we put z at m we derive
P
Fo™ 4. +FP ™= 3 g (m) & (u ™ + .. + ™), (M),
r=1 .

where 2, ..., 2, are arbitrary.

If however we put # in turn at p independent places ¢, ..., ¢,, and
denote the places determined from c;, as m,, ..., m, are determined from

m, by ¢;, 1, ..., Ci, p, 50 that

(cs, Myy ooy mp) = (M, Cip1y oens i, p),
we obtain p equations of the form
i 2p, Cs 2 ; .
Foig o+ B == 3 () & (0 ),
i g r=1

Suppose then that 2, #, ..., #, are arbitrary independent places; for
2y, ..., zp put the places #; 1, ..., #;, , determined by the congruence

(@, @i, 1y oony @, p) =(Ciy @1, onn, Tp)
then, if Qg denote a certain period, — u%: 1> %1 — .. — % » %7 is equal to
Qo+ um™—u™ ™M — ... — 4™ ™, and we have

W );

Z; 4y C; Z: py C; 13 xX, m Ty, M
Fot ch‘+...+Fc.”” PP= X ()G (Qo+uw” T —uw T — =
v r=1

€
19—2
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therefore

G(Qo+u” " —u™ ™Mo ™) = 3 vf,,-[ch:’ vy +F:" » cT”’],
r=1 v
where v, ; is the minor of u; (¢,) in the determinant whose (r, s)th element is
s (¢), divided by the determinant itself.
In particular, when the differential coefficients u, (), ..., u, (z) are those
already denoted (§ 121, Chap. VIL) by @, (), ..., @, (),and V7§ * =/zwi(w)dt,,
and the paths of integration are properly taken, we have* ‘

0

z, m Ty, m Tps M, i 1 Ci, i, pr Ci,
Gy logS (VT =V Dy=F v +F e,

197. A further result should be given. Let z, #, ..., 2, be fixed
places. Take a variable place z, and thereby determine places z, .

s Zp,
functions of z, such that

(x, 21, ..., 2p) = (2, @1, ..., 2p).
Then from the formula
—Gr™—ur™m— —ut ™) + G (U — P ™ — L, — u?p> Mp)
Y2
=L+ 3 vs, i [(25, 2) — (25, @)] %" ,
s=1

wherein v, ; is formed with z, ..., z,, we have, by differentiating in regard

to z and denoting — 5%] & (u) by @, ; (),

p dz, i
JEI Pes (D) [M @ = (=) d_zz T — 1 (2p) dZ: ]
_ : d
_%’ @L](U) |j—_ p’j(%)%— ...... —pj(zp)g{;’:l
‘ 3 dzs 2
= .Dz s§1 [(Z.Sa Z) (Z87 )] 2 dz dz (VS 1{)

+sp2=:1 P [ (( © )dzs> (( %@ )dzs>] (flzs + § ”8 i D, ((zs, z) %z;) s

where U =us™ —q2m —

In this equation a is arbitrary. Let it now be put to coincide with z;
hence

§ 1 (@) @i (U)=D, Ly “+ £ v, ; D, \:(z,;, z) %] :
=1 s=1 v

* This form is used by Noether, Math. Annal. xxxvir. (1890), p. 488.
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Therefore
wi (k) g (2) 95,5 (U)

=S uwD, L+ S 50, (k) D, [(z,,, 2) ‘ﬁlzs]
i=1 1i=1 t

vs
£

I
X M’e

p® DL+ £ 0,09 D, | o) |

{ 2@ L+ @) (G0 ) - )]

where D,” means a differentiation taking no account of the fact that z, ..., z,
are functions of z,

~ AR WL g i b )+ [0 - 0 G

=D, {D]cR:,;—#l‘ (z,a; k2, ..., zp)} ,

in which form the expression is algebraically calculable when the integrals
L7 are known (Chap. VII. § 138),

=D, {I‘Z’a —V (2 a; k2, ..., 2,) — 2530, s p, (k) uf c} ,
where ¢ is an arbitrary place ; and this (cf. Ex. iv. § 125)

=—W(z k, 21, ..., 2p) — 2 3§ Ear,sp,, (2) p, (k).

r=1s=1
If now
k20, ooy 2p)=(2, Fry o0y k),
so that
U=zusm— yfm— ., — U M = B M — P T — —us "
=ubm ko — ukp» My,
and '

(, 21, v, 2p) =(2, @, «.n, Tp),
(@, by, .o k)=, 2y, .., ),
then the formula is

—E2 0 (D) m @D =W bz 2) 422 2 a0 () (B),
T g r=18=

— Wk 2, ks, k) +2 8 §1a,,s,b,(z)ps (&),
r=1s=
by Ex. iv. § 125.
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By the congruences
w4+ +um = uh T

the places 2y, ..., z, are algebraically determinable from the places z, «,, ..., z,, 2,
and therefore the function W (z; £k, 2, ..., 2,) can be expressed by «, ,, ...
Zp, k, z only. In fact we have

>

V(2, @5 2,21, e, %) =0, ...... s (2, X5 2, @, enn, ) = 0.

The interest of the formula lies in the fact that the left-hand side is a
multiply periodic function of the arguments Uy, ..., U,.

A particular way of expressing the right-hand side in terms of z, #y, ..., 2, 2, £ is to
put down 4p (p+1) linearly independent particular cases of this equation, in which the
right-hand side contains only @, #, ..., 2y, 2, &, and then to solve for the }p (p+1)
quantities ; ;. Since ¥ (z, @; £, 7z, ..., 2,) vanishes when k=z,, we clearly have, as one
particular case,

330 (05 B M = ™) 1 () iy () = Da D, B %
tJ
and therefore
3Py (™ T ) (0 (5) = DDy B2 S, (N)
ij .,

and there are p equations of this form, in which #;, ..., #, occur instead of z,.
If we determine #, ..., 2',_; by the congruences

W M gy T My — e M — _ [ux,,, m_ ux"’ my _

......

Z'p-1, Mp- x, m,
...... — 1 M=l gy M)

so that 2, ..., #/,_; are the other zeros of a ¢-polynomial vanishing in z, ..., &,_,
we can infer p—1 other equations, of the form

z’', a’

3 3@, 5 (0 o T ) () i ()= D, Dy, B

v g .
where =1, 2, ..., (p—1). Here the right-hand side does not depend upon the place z.
And we can obtain p such sets of equations.

We have then sufficient * equations. For the hyperelliptic case the final formula is
given below (§ 217, Chap. XL.).

198. Ewx.i. Verify the formula (N) for the case p=1.
Ez.ii. Prove that
& (ua:, M_ B M e 7"}1)+Lx, @ _ g, a_ _Itme
i ; e p
is a rational function of x, xz;, ..
Ez. iii. Prove that if
ther (@, 21y eeey 2p)=(2) By ey Bp)=(@, Ay ooey Q)
en
¥ (z, a; 2 2, ...,x,,)=I‘f’“+I‘:““'+ ...... +I‘;"’“I’.

Deduce the first formula of § 193 from the final formula of § 196.

* The function {0, ; (u), here employed, is remarked, for the hyperelliptic case, by Bolza,
Gottinger Nachrichten, 1894, p. 268.
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Ez. iv. Prove that if

— i a Z; a
Q=T0:v My 4TS O
2

V¥ ™
............ s

then
0Q;

14 = IV(Q; Crs Tiy 19 +oe9 i, 11)’
r

where W denotes the function used in Ex. iv. § 125 ; it follows therefore by that example,
aQi _ aQ’r :

that v, =av, Hence the function

AV +...... +@,dV,

is a perfect differential ; it is in fact, by the final equation of § 196, practically equivalent
to the differential of the function log © (V% ™ — P#:™ _  __ — V¥ ™). Thus the theory
of the Riemann theta functions can be built up from the theory of algebraical integrals.
Cf. Noether, Math. Annal. xxxvil. For the step to the expression of the function by the
theta series, see Clebsch and Gordan, Abelsche Functionen (Leipzig, 1866), pp. 190—195.

Ez.v. Prove that if

2 . — 2
('m' y Liy 19 ++0y Tiypy 21y seey zp)=(ci2) 7”’12’ ce g MYy )
then

aimloge(v’”’ P VM = VI T = (0 T ),
Ez. vi. Prove that

»
- .Elm @) [P ™= ™. — U ) b (e — — % )]
1=

T, &
=Fz ~V (2, a5 2, Byy eeey Tp):

Ex. vii. 1If
T(x, @5 Tpy eeey .2;,,)=[4/ (.Z‘, Q5 2y Xyy eeny ‘z'p)"‘F:' a]z=x;
prove that
logQ (W% ™— ™~ ... — P 7)

=Ad+44 ... +Apu;’a+fzdx T (2, @5 2y, ey Zp)
where d, 4,, ..., 4, are independent of .

Ex. viii. Prove that

r4 F4 T,
- zll"r (.2’,') pi, r (u ’ m—“w“ " sesese ™ uxp’ m,)= 2]'77‘, liDxrRx:-, (2]
r= r=

where a, ¢ are arbitrary places and the notation is as in § 193.



