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CHAPTER VIII. 

ABEL'S THEOREM; ABEL'S DIFFERENTIAL EQUATIONS. 

148. THE present chapter is mainly concerned with that theorem with 
which the subject of the present volume may be said to have begun. I t will 
be seen that with the ideas which have been analysed in the earlier part of 
the book, the statement and proof of that theorem is a matter of great 
simplicity. 

The problem of the integration of a rational algebraical function (of a 
single variable) leads to the introduction of a transcendental function, the 
logarithm ; and the integral of any such rational function can be expressed 
as a sum of rational functions and logarithms of rational functions. More 
generally, an integral of the form 

\dxR(x>y>yli ...,2/jb), 

wherein x, y, y1} y2}... are capable of rational expression in terms of a single 
parameter, and R denotes any rational algebraic function, can be expressed 
as a sum of rational functions of this parameter, and logarithms of rational 
functions of the same. This includes the case of an integral of the form 

idxR(x, */ ?+ + ) . 

But an integral of the form 

]dxR(x, \/ * + bx3 + cx2 + dx + e) 

cannot, in general, be expressed by means of rational or logarithmic functions ; 
such integrals lead in fact to the introduction of other transcendental func­
tions than the logarithm, namely to elliptic functions ; and it appears that 
the nearest approach to the simplicity of the case, in which the subject 
of integration is a rational function, is to be sought in the relations which 
exist for the sums of like elliptic integrals. For instance, we have the 
equation 

fXl dx *2 dx * dx _ 

io V(l -«•)•(! -1?VJ> +Jo V ( l - ^ ) ( l - l ^ " " i o J(V^J(l-kW)~ -
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provided 

x3 (1 - k2x2x2) = #1 V ( l - # 2
2 ) ( l - f e 2 ) + x2 V ( l - ^ 2 ) ( 1 - j fc^) . 

On further consideration, however, it is clear that this is not a complete 
statement ; and it is proper, beside the quantity x, to introduce a quantity y, 
such that 

y2-(l-x2)(l-k2x2) = 0, 

and to regard y, for any value of x, as equally capable either of the positive 
or negative sign ; in fact by varying x continuously from any value, through 

one of the values x=±l, # = ± , and back to its original value, we can 

suppose that varies continuously from one sign to the other. Then the 
theorem in question can be written thus ; 

/•to, *i> dxj *», va dx2 f fc» *> dxs _ 
ho,D 1 ,1) 2̂ J (p,i)  

where the limits specify the value of y as well as the value of x. The 
theorem holds when, in the first two integrals the variables (x, y) are taken 
through any continuous succession of simultaneous values, from the lower to 
the upper limits, the variables in the last integral being, at every stage of 
the integration, defined by the equations 

- xt (1 - teœfœf) = xxy2 + x2yu 

yz (1 - h2x2x2f = M 2 (1 + h2x?x2) - # A (1 - & * ) (1 - *•). 

The quantity y is called an algebraical function of x\ and the notion thus 
introduced is a fundamental one in the theorems to be considered; its 
complete establishment has been associated, in this volume, with a Riemann 
surface. 

In the case where y2 — (1 — x2) (1 — k2x2) we have the general theorem 
that, if R (x, y) be any rational function of x, yt the sum of any number, w, 
of similar integrals 

/4*», *i> f ( a w J 

I R(x,y)dx + + 1 R(x,y)dx 

can be expressed by rational functions of (x1} J, ..., (xm> ym), and logarithms 
of such rational functions, with the addition of an integral 

R{x, y) dx. 

Herein the lower limits (alf òi), ..., (amt bm) represent arbitrary pairs of 
corresponding values of x and y, and the succession of values for the pairs 
(&i> \), ..., (xm, ) is quite arbitrary ; but in the last integral xm+1, ym+1 are 
each rational functions of (xlt yx\ ..., (xm, ym), which must be properly deter-
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mined, and it is understood that the relations are preserved at all stages of 
the integration, so that for example am+1, 6W+1 are respectively taken to be 
the same rational functions of (aly ) , ..., (am, ) . The question of what 
alteration is necessary in the enunciation when this convention is not 
observed, is the question of the change in the value of an integral 

I R (x, y) dx 

when the path of integration is altered. This question is fully treated in the 
consideration of the Riemann surface, with the help of what have been called 
period loops. 

149. Abel's theorem may be regarded as a generalization of the theorem 
just stated, and may be enunciated as follows: Let y be the algebraical 
function of x defined by an equation of the form 

/ ( * *) = + 1-1 + + = 0, 
wherein Aiy ..., An are rational polynomials in xf and the left-hand side of 
the equation is supposed incapable of resolution into the product of factors of 
the same rational form ; let R (.r, y) be any rational function of x and ; 
then the sum of any number, m, of similar integrals 

I R(œ, y)dx+ + I R (x, y) dx, 

with arbitrary lower limits, is expressible by rational functions of (xly ) , ..., 
(xmy ) , and logarithms of such rational functions, with the addition of the 
sum of a certain number, k, of integrals, 

— I R(xy y)dx — — I R(œ,y)dx, 

wherein zly ..., z^ are values of , determinable from x1} yly ..., xm, ym as the 
roots of an algebraical equation whose coefficients are rational functions of 
#i, 2/i> •••> ®m> > and slt ..., sk are the corresponding values of y, of which 
any one, say Si, is determinable as a rational function of zit and xly yly ..., 
®m, - The relations thus determining (zly s^, ..., (zk> sk) from (xly yx), ..., 
(&m> ) m a y De supposed to hold at all stages of the integration; in 
particular they determine the lower limits of the last integrals from the 
arbitrary lower limits of the first m integrals. The number does not 
depend upon m, nor upon the form of the rational function R (x, y) ; and in 
general it does not depend upon the values of (xlf yY), ..., (xm, ym), but only 
upon the fundamental equation which determines in terms of x. 

150. In this enunciation there is no indication of the way in which the 
equations determining zlt slf ..., zk, sk from œly ylt ..., xmy ym are to be found. 
Let (yy x) be an integral polynomial in x aud y, wherein some or all of the 
coefficients are regarded as variable. By continuous variation of these 
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coefficients the set of corresponding values of x and y which satisfy both 
the equations f{y, x) = 0, 0(y, x) = 0, will also vary continuously. Then, if 
m be the number of variable coefficients of { , x\ and m + the total 
number of variable pairs (x} y) which satisfy both the equations ƒ (y, x) = 0, 

( , ) = 0, the necessary relations between (xly yj), ..., (xm> ym), (z1} ^ ) , ..., 
{zie, sjc) a r e expressed by the fact that these pairs are the common solutions of 
the equations ƒ (y, x) = Q, ( , ) = 0. The polynomial ( , ) may have any 
form in which there enter m variable coefficients ; by substitution, in ( , ) , 
of the m pairs of values (xlt ..., (xm, ym), we can determine these variable 
coefficients as rational functions of xly yly ..., xnii ym\ by elimination of  
between the equations (y, x) = 0, f (y, x) = 0, we obtain an algebraic equa­
tion for x, breaking into two factors, P0 (#) P (#) = 0, one factor, P0 (x), not 
depending on xly y1} ..., xm, ymi and vanishing for the values of x at the 
fixed solutions of f(y,x) = 0, 6(y, x) = 0, which do not depend on xlyylt 

• -, ®m, y my the other factor, P (x), having the form 

(x - ) ... (x - xm) (x* + R^-1 + ... + Rk), 

where Rlt ..., Rjc are rational functions of œlt ylt ..., xm, ym. Finally, from 
the equations f{si, Zi) = 0, 6{si, Zi) = 0 we can determine S{ rationally in 
terms of Zi , 1} ..., xm, ym. As a matter of fact the rational functions of 
xly y1} . . . , xnu ym, which appear on the right-hand side of the equation which 
expresses Abel's theorem, are rational functions of the variable coefficients in 

( , ). 
151. When 6(y,x) is quite general save for the condition of having 

certain fixed zeros satisfying f(y, x) = 0, the forms of (zlf sj, ..., (zk, sjc) as 
functions of (x1, 2/i), ..., (xm, ym) are independent of the form of ( , ). This 
appears from the following enunciation of the theorem, which introduces 
ideas that have been elaborated since Abel's time, and which we regard as the 
final form—Let (aly 6 j , ..., (aQ, bQ) be any places of the Eiemann surface 
whatever, such that sets coresidual therewith have a multiplicity q, and a 
sequence Q — q=p — — 1, where + l is the number of polynomials 
vanishing in the places ( , ò^, ..., (aQ, bQ); let (xl} \ ..., (xq, yq) be q 
arbitrary places determining a set coresidual with (aly 62), ..., (aQ, bQ), and 
(zlt Sj), ..., (zp-T-lf ^_T_j) be the sequent places of this set*; then, R (x, y) 
being any rational function of (x, y), the sum 

n*i»3/i> (*9, 9) 
R(x, y)dx + + I R(x, y)dx 

J (al} bj J (aq, bq) 

is expressible by rational functions of (xlf y^), ..., (xq> yq), and logarithms of 
such rational functions, with the addition of a sum 

— I R(x,y)dx — — R(x,y)dx 
. (»9+1, bq+i) J iaQi bQ) 

* See Chap. VI. § 95. 
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herein it is understood that the paths of integration are such that at every 
stage the variables form a set coresidual with (alt bj, ..., (aQ, bQ). 

The places (c^, bi), ...,{aQ, bQ) may therefore be regarded as the poles, and 
(#i> 2/i)> -•> (œq> Vq)>(zi> si)> ••-> {zp-T-i, SP-T-\)

 a s the zeros, of the same rational 
function Z (x) ; if {y, x) denote the form of the polynomial ( , x) when it 
vanishes in (aly b^, ..., (aQy bQ), and 2( , x) denote its form when its zeros 
are (x\, yj), ..., (zlt s^, ..., the function Z{x) may be expressed in the form  

2( , x)l@i(y, %)• If the polynomials 1( , ) , 2( , #) are not adjoint, the 
function will be of the kind, hitherto regarded as special, which takes the 
same value at all the places of the Riemann surface which correspond to a 
multiple point of the plane curve represented by the equation f(y, x) — 0 ; 
this fact does not affect the application of Abel's theorem to the case. 

152. To prove the theorem thus enunciated, with the greatest possible 
definiteness, we shew first that it may be reduced to two simple cases. 

In the neighbourhood of any place of the Riemann surface, at which t is 
dx 

the infinitesimal, we can express R (x, ) - in a series of positive and 

negative powers of t, in which the number of negative powers is finite. Let 
the expression at some place, £, where negative powers actually enter, be 
denoted by. 

l«Lii#+ter!^+ + £ + 4-1 + + « + *+ ; 

then, if P\'c denote any elementary integral of the third kind, with infinities 

at f, 7, and Ex*c denote the differential coefficient of Px'c in regard to the 

infinitesimal at £, the places 7, being arbitrary, the difference 

\™R(x,y)ax-AJP*e -AJEC'-AJ)^- -AmLÇ-*B*e, 
J ( , ) ç,y ç ç s ç 

wherein D^ denotes differentiation in regard to the infinitesimal at £, is finite 
at the place f. The number of places, £, at which negative powers of t enter 

in the expansion of R (x, y) -5-, is finite ; dealing with each in turn we obtain 

an expression of the form 

( , v) 

J ( B(x, y)dx-t[A^' +A2E*-° + AJ)tEïc + + AmD;~îJS^]< 

wherein 7, are taken the same for every place £; this is finite at all places 
of the Riemann surface, except possibly the place 7. If ty be the infinitesi­
mal at this place the function is there infinite like (2, A J log ty. But in fact 
S A is zero (Chap. II. § 17, Ex: (S): Chap. VII. § 137, Ex. vi.). Hence the 

1 4 - 2 
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function under consideration is nowhere infinite, and is therefore necessarily* 
a linear aggregate of integrals of the first kind, plus a constant. Hence 
if it* ' a, ..., uXj a be a set of linearly independent integrals of the first kind, a 

denoting the place (a, 6), and 02, ..., Gp be proper constants, we have 

f*B(x,y)dx= X (A1 + A2D^ + ^ m i ) p 2 ) P ^ ; + a i < ' a + + C > * ' \ 

The consideration of the sum 
rxx rxQ 

I R{xyy) dx + + 1 (x, y) dœ, 

wherein 1; ..., aQ denote the places (alt 6 ..., (aQf bQ), and xly ..., xQ denote 
the places (xly y^, . . . , (xqy yq), (z1} 8 ) , ..., (^-r- i , Sp-T-i)> is thus reduced to 
the consideration of the two sums 

<""' + +«?•"», (» = 1,2,...,p.) 
P^l» «1 I I PXQ> aQ 

^ Ê v + + J r ^ v • 

Ex. i. By the proposition here repeated from § 20, Chap. IL , it follows that any 
rational function can be written in the form 

Äfay) = 2 ^ [ f a £ ) - f a y ) ] + ^ 

+ [fa 1) 1'"1
 1(*, ) + ... + (^ l)T/-1"1#n-i(*,y)]//' ( ) 

where (cf. § 45, Chap. IV.) 

fa £) = [ fa ) + 2 fa y)gr (£, ?)]/(#- £) ƒ ( ), 
î 

?7 being the value of at the place £. 

2&p. ii. Prove also that any rational function with simple poles at £1? f2,...
 c a n he 

written in the form 

*i[(f i , * ) - ( & , «)] + X2[(&, * ) - ( & , « ) ] + . . . , 

X17 X2 , . . . being constants, and a denoting an arbitrary place (cf. § 130, Chap. VIL). 

153. We shall prove, now, in regard to these two sums, under the 
conventions that the upper limits are coresidual with the lower limits, and 
that the Q paths of integration are such that at every stage the variables are 
at places also coresidual with the lower limits, a convention under which the 
paths of integration may quite well cross the period loops on the Biemann 
surface, that the first sum is zero for all values of , and the second equal to 
\ogZ(ì;)/Z( ) , Z{x) being the f rational function which has c^, ..., aQ as 
poles and xly ..., xQ as zeros. The sense in which the logarithm is to be 
understood will appear from the proof of the theorem. If we suppose the 
lower limits arbitrarily assigned, the general function Z(x)y of which these 

* Forsyth, Theory of Functions, § 234. 
t If two rational functions have the same poles and the same zeros their ratio is necessarily 

a constant. 
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places au . . . , aQ are the poles, will contain #-f-l arbitrary linear coefficients, 
entering homogeneously, and the assignation of q of the zeros, say œ1} ..., xq, 
will determine the others, as explained.—The equations giving the determi­
nation will be such functions of aly ..., aQ as are identically satisfied by these 
places, alt ..., aQ. Hence the general form of Abel's theorem is 

i!y^^=i[Ä^m+A^i+ ] 

where Z' (£) = DçZ (£) ; the term % A r log Z (7) = log Z (7) can be omitted 

because *ÈAX = 0 (Chap. II. p. 20 (S)). Herein Z (f) is a rational function of 
a1} ..., aQ and xlt ..., xq. 

154. In carrying out the proof we make at first a simplification—Let 
Z(x), or Z, be the rational function having aly ..., aQ as simple poles and 
œlt ..., xQ as simple zeros, these places being supposed to be all different ; 
trace on the Kiemann surface an arbitrary path joining Ĝ  to xlt chosen so as 
to avoid all places where dZ is zero to higher than the first order, and let fi 
be the value of Z at any place of this path ; then there will be Q — 1 other 
places at which Z has the same value /j, ; the paths traced by these Q — 1 
places as /J, varies from x to 0 are the paths we assign for the Q — 1 integrals 
following the first. The simultaneous positions thus defined for the variables 
in the Q integrals are, for q > 1, not so general* as those allowed by the con­
vention that the simultaneous positions are coresidual with a1} ..., aQ; but it 
will be seen that the more general case is immediately deducible from the 
particular one. 

Consider now, for any value of /*, the rational function 

1 di 
Z — fi dx' 

ƒ, = JR (x, y) dx, being any Abelian integral whatever. In accordance with 

a theorem previously used (Chap. II . p. 20 (S) ; Chap. VII. § 137, Ex. vi.) the 
sum of the coefficients of £-1 in the expansions of (Z — fi)~ldlldt, in terms of 
the infinitesimal t, at all places where negative powers of t occur, is equal to 
zero. Of such places there are first the Q places where Z is equal to /x. We 
shall suppose that dl/dt is finite at all these places ; then the sum of the 
coefficients of t~l at these places is 

%-L-(ü\ =f^U +(H) 
dfijdt \dt ) ' \dfiJj \dfM/Q ' 

* Sets coresidual with two given coresidual sets have a multiplicity q; but sets equivalent 
with two given coresidual sets have a variability expressible by one parameter only (cf. Chap. VI. 
§§ 94-96). 

file:///dfiJj
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provided Z — p be not zero to the second order at any of the places, that is, 
provided dZ be not zero to higher than the first order. In accordance with 
the convention made as to the paths of the variables in the integrals, we 
suppose this condition to be satisfied. 

Hence this sum is equal to the sum of the coefficients of t~Y in the 
expansions of the function — (Z — fi)~l dl/dt at all places, only, where dl/dt is 
infinite; this result we may write in the form 

(<ä) + +(E) =_ *?_ ^ . 
\dfM/1 \dfiJQ \dtZ-}i/t-i' 

we may regard this equation as a convenient way of stating Abel's theorem 
for many purposes; and may suppose the case, in which an infinity of dl/dt 
coincides with a place at which Z = / , to be included in this equation, the 
left hand being restricted to all places at which Z = p and dl/dt is not 
infinite. 

In this equation, in case I, = iie.,ai be any integral of the first kind, the 
right hand vanishes; then, integrating in regard to fi from oo to 0, we 
obtain 

^' 1+ + ?> » = 0. (A) 

In case I be an integral of the third kind, = JP? c say, and Z be not equal to 

/ , either at J or 7, the right hand is equal to 

1_ 1_ 
Z(f ) - /*- + Z ( 7 ) - A * ; 

hence, integrating, 

while, if the places at which the rational function Z (x) has the values / , v be 
respectively denoted by 

and 

we have 

For any Abelian integral we similarly have 

/* • «' + + /*"e« = rfTiog i ^ b ^ l , 
[_dt ° z (#) — vjt-1 

which is a complete statement of Abel's theorem. 
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155. In the equation (B), and in the equation which follows it, the 
significance of the logarithm is determined by the path of fi in the integral 
expression which defines the logarithm ; we may also define the logarithm by 
considering the two sides of the equation as functions of £. 

There is no need to extend the equation (B) to the case where one of the 
paths of integration on the left passes through either £ or y, since in that 
case a corresponding infinite term enters on both sides of the equation. 

But it is clear that the condition that no two of the upper limits x1} ..., xq 

should be coincident is immaterial, and may be removed. And if two (or 
more) of the places at which Z takes any value, / , should coincide, the 
equations (A) and (B) can be formed each as the sum of two equations in 
which the course of integration is respectively from Z = oc to Z = / and from 
Z = fju to Z = 0, and the final outcome can only be that the order in which the 
upper limits xl7 ..., xQ are associated with the lower limits ax, ..., aQ may 
undergo a change. But in the general case we may equally put, for example, 
in equations (A), (B), 

rxy rx2 rx2 fxl fx2 rxy rx2 fx{ 

dl+l dl,= dl+ dl+l dT+ dl,= dl+ di, 
J «! J a2 J eti J J xx J a2 J J a2 

with proper conventions as to the paths ; hence the condition that dZ shall 
not be zero to higher than the first order at any stage of the integration may 
be discarded also, with a certain loss of definiteness. The most general form 
of equation (A), when each of the Q paths of integration are arbitrary, is of 
course 

t£ l>e | + + tt?'"' = !/><,! + + MpœitP + M1'œ'iil + + Mp'm'iiP, (C) 

where < >1, ..., w'itP are the periods of ufa and M1} ..., Mp are rational 
integers, independent of . We shall subsequently see that this equation is 
sufficient to prove that the places - , ..., XQ are coresidual with the set 
«i , . . . , aQ. 

If, in equation (B), we substitute for Z(x) any one of its rational 
expressions, say* e2{x)j61{x)7 we shall obtain 

where, now, 2( ) , 1( ) are any two polynomials, integral in x and y, of 
which, beside common zeros, 2( ) has œlt ..., xQ for zeros, and 1( ) has 
a1} ..., a4 for zeros. If in this equation we suppose any of the coefficients in 
02 (x) to vary infinitesimally in any way, such that the common zeros of 2 ( ) 

* (x) is, for shortness, put for what would more properly be denoted by ( , ). 
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and 1( ) remain fixed, 62{x) changing thereby into 62(x)-f 2(w)> the places 
xXi ..., xQ changing thereby to xY -f dx1} ..., xQ -f dxQ, we shall obtain 

which is slightly more general than any equation before given, in that the 
places xl + dxli ..., xQ + dxQ, though coresidual with xu . . . , xQi are not 
necessarily such that the function 2( )/ ^ ) has the same value at all of 
them. This general equation is obtained by Abel in the course of his proof 
of his theorem. 

For any Abelian integral we have, similarly, the equation 

which, also, may be regarded as a complete statement of Abel's theorem. 

156. In equation (B) the logarithm of the right hand will disappear if 
Z(^) = Z (y), namely if the infinities of the integral be places at which the 
function Z (x) has the same value. 

One case of this may be noticed ; if ^ (y, x) be an integral polynomial, of 
grade (•/* — 1) a + n — 3 (cf. Chap. VI. §§ 86, 91), which is adjoint at all places 
except those two, say A, A', which correspond to an ordinary double point of 
the curve represented by the equation ƒ {y, x) = 0, the integral 

V '* - ("tSMiJÙdx 
' 'Ja f ( ) ' 

will be an integral of the third kind having A, A' as its infinities. Hence, if 
in forming the function Z(x), = >( ) / 1( ) , the places A, A' have been 
disregarded, so that the polynomials 6Y (x), 02(x) do not vanish in these 
places, the function Z(x) will take the same value at A as at A\ and 
we shall obtain 

7*"^ + _|_ vXii'ae = 0. 

Hence we obtain the result : if, in the formation of the integrals of the 
first kind for a given fundamental curve, we overlook the existence of a 
certain number, say S, of double points, we shall obtain p + S integrals, where 
p is the true deficiency of the curve; and these integrals will be linear 
aggregates of the actual integrals of the first kind and of S integrals of the 
third kind. If in the formation of the rational functions also we overlook 
the existence of these double points, Abel's theorem will have the same form 
of equation for the p + S integrals as if they were integrals of the first kind 
(cf. §§ 83, 90, and Abel, Œuvres ., Christiania, 1881, Vol. I. p. 167). 

For example, let al9 ..., aQ be arbitrary places in which + 1 -poly-
nomials vanish (Chap. VI. §§101, 93). Take q(=Q-p + T+l) arbitrary 
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places clt . . . , cq, and so determine the set cl5 . . . , cQ coresidual with a1} . . . , aQ. 
A rational function, %(x), which has the places a l5 . . . , aQ for poles and the 
places cly . . . , Cq for zeros is quite determinate save for a constant multiplier-
Let x\, . . . , xQ be any set of places at which £(&•) has the same value, A say, 
so tha t a,\, . . . , xQ are the zeros of f (x) — A ; then, as a1? . . . , aQ are the poles 
of f (a?) — A. we have 

± c\,c2 "f" f -*• ,, c2
 1U5 f ( c \ _ A ' 

and as f(Ci) = f(c2) = 0, the right hand is zero. 

Hence, calling the places where a definite rational function has the same 
value a set of level points for the function, we can make the s ta tement—the 
level points of a definite function satisfy the equations 

rJ P*1 ri PXQ 

dx1 axQ
 v 

Ci, c2 being any two of the zeros of the function. 

In particular, when q = 1, the sets of level points are the most general 
sets coresidual with the poles or zeros of the function. Hence, if x1} . . . , xp+1 

be any set of places coresidual with a fixed set c1} c2, . . . , cp+1, in which no  
-polynomials vanish, we have the equations 

157. Ex. i. We give an example of the application of Abel's theorem. 

For the surface associated with the equation 

the integral 

J  
is of the second kind, becoming infinite only at the (single) place x = oo. Consider the 
rational function 

y_ y + AxP + Bx*>-1 + „.+Kx+L 

which, for general values of A,..., Z0, is of the (2/>-fl)th order, its zeros, for instance, 
being given by 

4x*v + 1-g1x
2P-1-...-g2p-(Axv + ...+L)2=0. 

To evaluate the expression 

ß \\ 
\dt Z-fiJt-i ' 

the place x~cc being the only one to be considered, we put x=t~2 and obtain 
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z - ^ - i - , 1 * ( i - , o » ' + ' 

^ / ^ p ^ ^ p - 2 ^ _ 2 

^ ï + i C 1 - * ^ ! « 4 - ) 

and therefore 

dtZ-n^ l-fit2+1E ( 1 - / 0 * * 1 - ' 

wherein the coefficient of £ - 1 is J ( - 0) (1— /0~2-

Hence, if x19 . . . , ^'2P + I ^ e the z e r o s> and «i»»»«> a2^ + i be the poles of Z, we have 

/« , . «,+...+ƒ%,+.> «*„+.= - i (.4 _ 0 ) £ ^ - 2 = _ i ( J - 40) . 

Now the zeros of Z are zeros of the polynomial 

y + t f (. ) = ^ + .4 ; + 2? ; - 1 + +Kx+L=0; 

denoting the values of by yu . . . , y ^ + i, and using i^(#) for ( — ) ( ? — * + 1 ) , 
where ( ^ , . . . , ( ? +1, &> +1) are any p + l of the places (x19 \..., (#2 J ,+ 1 , y2j» + i)i w e 

have, from the JO + 1 equations 

yi+Axf + Bx?-1* + Kxi+L=0, ( i = l , 2, , (p + l)), 

and hence, if ^.. be the values of when # = « ! , a 2 , . . . , and F0(x) = (x — a1)... 
(x - ap + 1), we have 

' 'e'+ + ~" w * * -
If in the integral I the term #*» be absent, the value obtained for the sum 

rvvai+ + / * W W i 
will be zero. 

The reader will notice that for/? = l, we obtain an equation from which the equation 

can be deduced, being arguments whose sum is zero ; and that the algebraic 
equation whose roots are xxi..., x.2p + 1 gives 

&\+&2 + +«£,2j, + i : = j - = £ ( s F'lx)) ' 

which for jt> = l becomes 
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Ex. ii. If F, Z be any two rational functions, and any integral of the first kind, 
prove by the theorem * 

( 1 du dx\ _ 

{Y-b){Z-c) dx dtjt-1 

that the sum of the values of (Y— 6 ) - 1 du/dZ, at all places where Z=cy added to the sum 
of the values of {Z— c) ~1 du/dY at all places where Y— 6, is zero. 

I t is assumed that all the zeros of the functions Y— 6, Z— are of the first order. 

Hence prove the equation 

r=lJarX-b i=\\dx 6 Z{x)-v)i 

where at,..., au are the places at which Z(x)=vy x\,..., xQ the places at which Z{x) — \iy 

and the suffix on the right hand indicates that the values of the expression in the brackets 
are to be taken for the n places of the surface at which x=b. 

I t is assumed tha t there are no branch places for x=b. 

Ex. iii. If (x) be any integral polynomial in x, y2 = (x, l)2p + 2> —f(x) > and M (x\ 
N{x) be any two integral polynomials in x of which some coefficients are variable, and 

f(x).M2(x)-JY2(x) = K(x-x1) (tf-A-fl), 

where is a constant or an integral polynomial whose coefficients do not depend upon 
the variable coefficients in M{x), N(x\ and #!>..., #ö be determined by the equations 
yiM(xi) + Ar(xi)=Oy then, on the hypothesis that z is not one of the quantities x1}..., xQ, 
and is not a root o f / (# ) = 0, prove that 

( ( ) /* (*) _ (^ w N(z)+M(z)J№ 

where is a constant, and R is the coefficient of - in the development of the function 

( * ) _ lojr N{x) + M(x)J№ 
(x - z) y'f ( ) N (x) - M {x) Jf (#) 

in descending powers of ; herein the signs of s!f(x), yff(z) are arbitrary, but must be 
used consistently. 

Shew that the statement remains valid when ƒ (x) is of order 2p + 1 (in which case the 
development from which r is chosen is to be regarded as a development in powers of >Jx) ; 
prove that r is zero when ( ) is of order p, or of less order. Obtain the corresponding 
theorem when 2 is a root of ƒ (x) = 0. 

Ex. iv. The result of Ex. iii. is given by Abel [Œuvres Compi., Vol. i. p. 445), with a 
direct proof. We explain now the nature of this proof, in the general case. L e t / (y, x) = 0 
be the fundamental equation, and let ( , x) be a polynomial of which some of the 
coefficients are variable ; if y1? . . . , yn be the n conjugate roots of ƒ (g, x) = 0 corresponding 
to any general value of xy the equation 

{ ) = (#!, x) (y2, x) (yn, ?) = 0, 

gives the values of x at the finite zeros of the polynomial ( , ) . Suppose that the 
left-hand side breaks into two factors F0 (x) and F ( ?), of which the former does not 
contain any of the variable coefficients of Ô (y, x). Let £ be a root of F(x) — 07 and 
?h, . . . , T/n be the corresponding values of ; then one or more of the places (£, 7 , 
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(& Vn) a r e zeros of (ft x) ; fix attention upon one of these, and denote it by (£, rj). Then 
if, by a slight change in the variable coefficients of (ft x), whereby it becomes changed 
into (ft ?) + # (#i x\ F (x) become F (x) + òF ( ) the symbol referring only to the 
coefficients of (ft x\ and £ become £ + c?£, we have the equations 

^o ( W ( 0 = * ( 0 = 2 0 (7l> f) 0 ( r , ^ , £) 0 (, i + 1 , 0 (Vni © M fa, £), 

where ƒ" (£) = dF ($)/d£. Denote now by U (x) the rational function of x, given by 

U(x) = 2 0 ( f t , ;) 0 (#;_!, ') 0 (ft + 1 , ?) ( f t , ?) M (ft, ") ; 

then if ( ;, ) be any rational function of ; and ft we have 

(ft ) <#= - (ft ) j r ^ ^ g , 

where, on account of (rç, f) = 0 we can write 

and 

Ä (É, *) ff «) = 2 Ä ({, m) fa, f) tffa^, £)0 fa+1, *(*», Ö M (w, É) 
t = i 

= (£)> s ay> 
(£) being a rational function of £ only. Taking the sum of the equations of this form, 

for all the zeros of (ft x), we have 

herein the summation on the right hand can be carried out, and the result written as the 
perfect differential of a function of the variable coefficients of (ft x), in fact in the form 

dx ~l 

[R(x,y)-j-tdlogâ(y,x)jt_1, 

as we have shewn. 

For example, when 
ƒ (ft x) =y3 + JJ3 - - 1, (ft x) —y - mx - we have F0 (x) = 1, 

F (x)=a? + (nix 4- ) — Sax (mx+n) — 1, 
and 

ft)rf| _ 3tibF (ft . (,) (jgm + hi) 3 | (mj + ») (ftm + ftp ^Kft 

Now * ^ ) _ _ 3 » i 8 m | * ( f t ) 

and hence 2 y % = J , / / + —-—T , = - 3 0 •=-—-3 , 

as is easily seen. From this we infer 

3 fxt xydx _ mn-a (mn-a\ _ . * v ~ 3 

n = l 
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In this example it is easily seen that the integral is only infinite when x is 
infinite; putting x=t~\ the equation f (y, # ) = 0 gives y = -a>t~1-a<a2 + At + Bt2 + , 

where » = 1, or ( - 1 ± V - 3)/2 ; then log ( , x) dlIdt, =\og(y-mx- n) [xy/(y2 - )] 

dx/dt, has (aw2+n) < 2/( + ) for coefficient of t~\ and we easily find 

a+n < 2+ 2 a<ù + n _ 3 (a — mn) 
m + 1 m + û) m + <ù2 ~~ m3 + l 

Ex. v. If Y, Z denote any two rational functions (in x and y), such that there is no 

finite value of x for which both have infinities, and 2 (YZ) denote the sum of the n 

conjugate values of YZ for any value of xy and [2 (YZ)~\,_ayX denote the sum of the 

coefficients of (x — a ) - 1 in the expansions of the rational function of x, 2 ( YZ), for all finite 

values of x for which Y is infinite, and [2 (YZ)~\X_X denote the coefficient of x~l in the 

expansion of 2 (YZ) in descending powers of x, it is easy (cf. § 162 below) to prove that 

wherein, on the left hand, the dash indicates tha t the sum is to be taken only for the 
finite places at which Z is infinite. Hence if ƒ be any Abelian integral, — \R(x,y) dx, 
we have 

( f » log ê (y, x ) ) ^ - [ l ( £ » log ( , * > ) ] _ - [ > ( £ « log * ( , * ) ) ] ( _ ) V 

Hence, if we assume that ô (y, x) has no variable zeros at infinity, we can obtain  
theorem in the form 

2 s *- -0 (t7 *,og 6 <*. 4L + 0 (I*log e (* *>)]„-«.. » 
wherein the summation on the left refers to all the zeros of ( , ) . 

This is the form in which the result is given by Abel {(Eûmes Compi.,, Christiania, 1881, 
Vol. i. p. 159, and notes, Vol. ii. p. 296). the right hand being obtained by actual 
evaluation of the summation which we have written, in the last example, in the form 

The reader is recommended to study Abel's paper*, which, beside the theorem above, 
contains two important enquiries ; first, as to the form necessary for the rational function 
dl/dx, in order that the right-hand side of the equation of Abel's theorem may reduce to a 
constant, next, as to the least number of the integrals in the equation of Abel's theorem, 
of which the upper limits may not be taken arbitrarily but must be taken as functions 
of the other upper limits. Though the results have been incorporated in the theory here 
given (§§ 156, 151, 95), Abel's investigation must ever have the deepest interest. 

Er. vi. Obtain the result of Ex. i. (§ 157) by the method explained in Ex. iv. 

* Which was presented to the Academy of Sciences of Paris in Oct. 1826, and published by 
the Academy in 1841 (Mémoirespar divers savants, t. vii.). During this period many papers were 
published in Creile9s Journal on Abel's theorem, by Abel, Minding, Jürgensen, Broch, Richelot, 
Jacobi and Rosenhain. (See Creile, i—xxx. I have not examined all these papers with care. 
Jürgensen uses a method of fractional differentiation.) 
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Ex. vii. Prove that the sum of the values of the expression 

U.v 
J > 

wherein v is any linear expression in the homogeneous coordinates x, y, z, U is any 
integral polynomial of degree m + n — 3, J is the Jacohian of any two curves / = 0 , = 0, 
of degrees n and m, and the line #=0, and the sum extends to all the common points 
o f /=0 and —Oy vanishes, multiple points of/=0, =0 being disregarded. 

Hence deduce Abel's theorem for integrals of the first kind. 

(See Harnack, Alg. DifF. Math. Annal, t. ix. ; Cayley, Amer. Journ. Vol. v. p. 158 ; 
Jacobi, theoremata nova algebraica, Creile, t. xiv. The theorem is due to Jacobi ; for 
geometrical applications, see also Humbert, Liouville's Journal (1885) Ser. iv. t. i. p. 347)*. 

Ex. viii. For the surface 
2= (x) + (x), = / » , 

wherein (#), >/r (x) are cubic polynomials in xi prove the equation 

wherein xlf x2i £ and mly m2, are coresidual with the roots of (#)=0, and £, are the 
places conjugate to £ and ; conjugate places being those for which the values of x are 
the same. 

158. When the places 1 *..,xq are determined as coresidual with 
the fixed places aly . . . , aq, p — — 1 of the places xlt . . . , xq are fixed by 
the assignation of the others. Hence the p + 1 relations, which are given by 
Abel's theorem, 

" > + +ii>^ = 0, 

^,"/l+ +^^=bg[z(o/z(7)], 
cannot be independent. We prove now first of all tha t the last may 
be regarded as a consequence of the other p equations. In fact, if œl9 . . . , xq 
and aly . . . , aq be any two sets of places, such that, for any paths of integration, 

u*u"l + + tt?,a*= Mi<òitl+ +Mp0>ifP+M1Witl + . . . . . . + M'p<o'itP9 

(i — 1,2, ...,p), wherein ' , ..,,up are any set of linearly independent 

integrals of the first kind, 1, ..., a>'itP are the periods of the integral w/ , and 
Mlt . . . , M'p are rational integers independent of i, then there exists a rational 

function having the places aly . . . , aqfor poles and the places a\, ...,Xqfor 
zeros. 

F o r if v['a, . . . , vXp a be the normal integrals of the first kind, so tha t we 
have equations of the form, 

x, a s-* x, a fv xt a 
= {}1 + + \ , 

•* Further algebraical consideration of Abel's theorem may be found in Clebsch-Lindemann-
Benoist, Leçons sur la Géométrie (Paris 1883) Vol. iii. Geometrical applications are given by 
Humbert, Liouville's Journal, 1887, 1889, 1890 (Ser. iv. t. iii. v. vi.). 
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wherein ftt], ..., CjtP are constants, and therefore, also, 

ft, i «i, i + + ft, ^ <*>Pi j = 0 or 1, according as =f= j , or i = j , 

and 

ft, i «Y j+ + ft, ^ <ÙPÌ j = nt j, 

we can deduce 

v?a' + +^*e=i i+i1'r i i l+ + #><.„. 
Consider the function 

: \ + + i r V -bri{M\v*-e+ +M' vx>°) 
Z(x) = e " a ' x^a* l l p p 

being an arbitrary place. 

Herein an integral, Tlx\tai, suffers an increment 2m when x makes a 
circuit about the place x1 ; but this does not alter the value of Z (x). And 
in fact Z{x) is a single-valued function of x\ for the functions Tl%a

a. have 
no periods at the first p period loops, while, if x describe a circuit equivalent 
to crossing the -th period loop of the second kind, the function Z(x) is only 
multiplied by the factor 

2 ( ^ ' ' + +vx^^)-27ri(M\ritl+ +M'priiP) 

or , whose value is unity. 

Further the function Z(x) has no essential singularities; for it has poles 
at the places a1} ... , aQ, and is elsewhere finite. 

Since the function has zeros at xlt ...,xq and not elsewhere, the state­
ment made above is justified. 

Ex. i. I t is impossible to find two places y, £, such that each of the p integrals ub is 

zero. For then there would exist a rational function, given by 

having only one pole, a t the place y. (Cf. § 6, Chap. I.) I t is also impossible tha t the 
equations 

v\%y=M1+tf1Ti9l + +M'pTitP, 

wherein Mly..., Mp, M'lf..., M'p are rational integers independent of ', should be 
simultaneously true. 

Ex. ii. If p equations, of the form 

v*l'yi+v*i
t,yi = #i+M'iTi9l + +M'pTitP 

exist, yj and y2 are the poles of a rational function of the second order, and the surface is 
hyperelliptic. (Chap. V. § 52.) 
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159. In regard now to the equations 

< " a i + + ^ ' a « = 0, 

which express that the places #i, . . . , # Q are coresidual with the places 
aJt..., CLQ, if T 4-1 be the number of -polynomials which vanish in the places 
alf ...,aQ (Chap. VI. § 93), or (Chap. III. §§ 27, 37) the number of linearly 
independent linear aggregates of the form 

( ) + + CpQp(œ), 

wherein C1)...)CP are constants, which vanish in these places, then, 
Q—p-fT + l of the places X1}...,XQ can be assumed arbitrarily, and the 
equations are therefore equivalent to only p — — 1 equations, determining 
the other places of xY, ..., x§ in terms of those assumed. This can be stated 
also in another way : the p differential equations 

express that the places x^, ..., &Q are coresidual with the places xx -f d#, , . . . , 
xQ -f dxQ ; if the places x1} ...,xQ have quite general positions these equations 
are independent ; if however + 1 linearly independent linear aggregates, of 
the form, 

«£+ + .£-* 
wherein Clt ..., Cp are constants, vanish in the places xlf ..., , then the p 
differential equations are linearly determinable from p — — 1 of them. 

Ex. i. A rational function having x19..., xu as poles of the first order, and such tha t 
Xj, ..., \p are the coefficients of the inverses of the infinitesimals in the expansion of 
the function in the neighbourhood of these places, can be written in the form 

-x 'C- -x<;"; 
the conditions that the periods be zero are then the p equations 

M * O i ) + +Afiui(a?fi) = 0, ( = 1, 2, ...,p). 

But, if we take consecutive places coresidual with . ̂ , ..., . *0, and tì9 . . . , tq be the 
corresponding values of the infinitesimals at xly..., xQi we also have 

û< (#i) tx + + Qt (xQ) tQ=0 ; 

thus, if the first q ( = Q — /> + r-f 1) of tl9 . . . , tQ be taken proportional to A1? . . . , 9, we shall 
have the equations 

î A i = = W\K* 

Ex.ii. When the set xl9...,xQi beside being coresidual with al9...,aSi has other 
specialities of position, Abel's theorem may be incompetent to express them. For instance, 
in the case of a Riemann surface whose equation represents a plane quartic curve with 
two double points, there is one finite integral ; if al9..., a4 represent any 4 collinear points, 
and A \ , . . . , xi represent any other 4 collinear points, the equation of Abel's theorem is 
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but this equation does not express the two relations which are necessary to ensure that 
?1 ...,#4 are collinear; it expresses only that xXi x2i xZi xi are on a conic, S, passing 

through the double points, or that 
l > *̂ 2 5 3 > 4 a r e the zeros, and aly . . . ,a4 are the poles 

of the rational function S/LLQ, where Z = 0 is the line containing al9 ...,a4 and 2/0=0 is 
the line joining the double points. 

160. From these results there follows the interesting conclusion that 
the p simultaneous differential equations 

have algebraical integrals, Q being >p,and ,..., uv being a set of p linearly 
independent integrals of the first kind. The problem of determining these 
integrals consists only in the expression of the fact tha t xl9 . . . , xq con­
st i tute a set belonging to a lot of coresidual sets of places. 

The most general lot will consist of the sets coresidual with Q arbitrary 
fixed places alt..., aQ, in which no -polynomials vanish. But the lot does 
not therefore depend on Q arbitrary constants; for in place of the set 
alf..., aQ we can equally well use a set A1}..., AQ, whereof q, = Q — p, places 
have positions arbitrarily assigned beforehand ; in other words, all possible 
lots of sets of Q places with multiplicity q can be regarded as derived from 
fundamental sets of Q places in which q places are the same for all. A lot 
depends therefore on Q — q,=p, arbitrary constants, and this number of 
arbitrary constants should appear in the integrals of the equations (Chap. VI. 
§96) . 

We may denote the Q arbitrary places, with which xx,..., xq are coresidual, 

by Alt ...,Aqi alt ...,ap, so tha t Aly...,Aq are arbitrarily assigned before­

hand, in any way tha t is convenient, and the positions of a1} ...,ap are the 

arbitrary constants of the integration. 

Then one way in which we can express the integrals of the equations is 
as follows: form the rational function with poles, of the first order, in the 
places a?!, . . . , xQ) and determine the ratios of the q 4-1 homogeneous arbitrary 
coefficients entering therein, so tha t the function vanishes in Alt...,Aq. 
Then the function is determined save for an arbitrary multiplier, and 
must vanish also in al7 ...,ap. The expression of the fact that it does so 
gives jo equations, each containing one of aly . . . , ap as an arbitrary constant. 

From these p equations we may suppose p of the places xly ...,xQ, say 
xly . . . , xp> to be expressed in terms of al}...,ap and xp+1, ...,œQ (and 
Alt ...,Aq). The resulting equations may be derived also by forming the 
general rational function with its poles in alf..., apt , . . . , Aq and eliminating 
the arbitrary constants by the condition tha t this function vanishes in 
xi> &P+1, Xp+2> • •• XQ, i being in turn taken equal to 1, 2 , . . . , p. 

. 15 
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For example, for Q=p + 1, if / (x} a ; s, cu..., c )̂ denote the definite 
rational function which has poles of the first order in the places z,cl9...,cp, 
the coefficient of the inverse of the infinitesimal at the place z being 
taken = — 1, which function also vanishes at the place a (Chap. VII. § 122), 
then a complete set of integrals is given by 

yjr(altA; xp+1>x1>...,xp) = 0 = = ty{ap, A; xp+li œlt..., œp\ 

and a complete set is also given by 

yfr (x1}xp+1; A} Ox, ..., ap) = 0 = =i/r (xp,xp+1; A, ..., ) . 

The first of these integrals is in fact the equation 

I dux dux I _ 
dx1

i dx2 * ' dxp+1 ' 

dup dup dup 

dxx ' dx2 ' ' ' dxp+l 

\dP dP dP 
| dx^ dx2 ' ' dxp+1 

wherein = *^° and may be regarded as derived by elimination of 
dxly..., dxp+1 from the p given differential equations and the differential of 
the equation (§ 156) 

\1+ +KZCp+1=°> 
which holds when (xlt..., xp+1), (cly..., cp+1)f and (A, alt..., ap) are coresidual 
sets. 

Ex. i. For p — l, the fundamental equation being y2=(#, 1)4=X2^4 + ..., shew that the 
differential equation 

dx1 + dx^=0 

has the integral 

JC-i — / Xa — Ct 

where 62=(a, 1)4. (Here the place A has been taken at infinity.) 

Shew also that this integral expresses that the places (xti y^ (x2ì y2), (a, — 5), are the 
variable zeros of the polynomial — y+p + qx — \x2, when p and q are varied. 

JE&. ii. For p = 2, the fundamental equation being y2=(x, l ) e = X ¥ + . . . , using the 
form of the function yfs (xy a; z,^,..., cp) given in Ex. ii. § 132, Chap. VII., and putting 
the place A at infinity, obtain, for the differential equations 

CLX-i (XX _ XqÇvXa XqfJuXo _. 

the integral 
Vi i ^2 , . ^ _  

{^pä)WJ^5 (̂ 2 - ) *" (*2) ( ? - ) ^ ' ( ^ ) ) ~ ~ ' 

wherein F ( ) =: ( - ) ( - 2) ( — 3\
 2=( , 1)6, and the position of the place (a, b) is 
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the arbitrary constant of integration. By taking three positions of («, b) we obtain a 
system of complete integrals. 

Shew that this integral is obtained by eliminating p, q, r from the equations which 
express that the places ( 19 \ (x2,y2), te» )» te ) are zeros of the polynomial 
— - Xx3 + px2+qx+r. 

Ex. iii. For the case (^=3) in which the fundamental equation is of the form 

/ (y, x)=te y)*+te ) +te y )2+te y)i=o, 
te 3̂ 4 being a homogeneous polynomial of the fourth degree with general coefficients, etc., 
prove that an integral of the equations 

_*U- + **3L , AXJL + _ ^ i _ _ o S & +etc - 0 ^ +Pto - 0 
<wV + +/' "0' ƒ + ' -°' /w + e t c - 0 î 

is given by 
(2, 3, 4) 0i + (3, 1, 4) U2+(l, 2, 4) ffs-(l, 2, 3) ff4 = 0, 

where (2, 3, 4) = I x2 x3 x4 I etc., 

3/2 4 

1 1 1 1 I 

/ ( - xu Xi) 

a„d - , v" /  

ƒ (ô, a) being =0, and the position of (a, b) being the arbitrary constant of integration. 
A complete system of integrals is obtained by giving (a, b) any three arbitrary positions. 
To obtain these equations the place A has been put at #=0, y=0. 

Ex, iv. When the fundamental equation is x4 + * = 1, shew, putting the place A at 
x=l, y = 0, that, as in Ex. iii., we have integrals of the form 

(2, 3, 4) *71 + (3, 1, 4) 0 i+( l , 2, 4) ff8-(lf 2, 3) tf4 = 0, 
wherein 

2(2 2- +1)- 1( +1)2+ ?- +2 
l~ ( - 1 ) , - ( ^ - 1 ) 

and a4 + 64=l. 

161. The method of forming the integrals of the differential equations 
which is explained in the last article may also be stated t h u s : take any 
adjoint polynomial yfr which vanishes in the Q places Alt . . . , Aq, a1}..., ap; 
let Clf . . . , GM be the other zeros* of -\fr; let the general adjoint polynomial 
of the same grade as yfr, which vanishes in Cl9..., CB, be denoted by 

\yfr + XJI/TJ + + \qyfrq, 

W , ...,\q being arbitrary constants. By expressing tha t the places 
#t> ®p+i> &p+2> • ••> XQ are zeros of this polynomial we obtain a relation 
whereby Xi is determined from œp+1, . . . , #Q in terms of the arbitrary positions 

* Beside those where/ (y) or F' (rj) vanishes (cf. Chap. VI. § 86). 

15—2 
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(and Alf..., Aq). By taking i = 1, 2 , . . . , p we obtain a complete 
system* of integrals. 

Now instead of regarding the set Au ..., Aqt c*2 j • « • , ctp as the arbitrary 
quantities of the integration, we may regard the set Glt...fGlt as the 
arbitrary quantities, or, more accurately, we may regard the p quantities 
upon which the lot of sets coresidual with 1 ..., depends, as the 
arbitrary quantities. To this end, and under the hypothesis that no 
^-polynomials vanish in the places Glt..., CR, imagine a set of places 

, ..., BR_P, blt...,bp determined coresidual with Glf...,GB> in which 
, . . . , ~ have any convenient positions assigned beforehand, so that the 

lot of sets coresidual with Gli..., GR depends upon the positions of bu...y bp. 
Let a general adjoint polynomial with Q + variable zeros be of the form 

® = HÒ + fr%+ + / £ 

wherein fi,..., JJLJC are arbitrary constants, and is for shortness written for 

Q + R— p. Then an integral of the differential equations under con­

sideration is obtained by expressing that the places 

are zeros of the polynomial ® ; and a complete system of integrals is 
obtained by putting in turn equal to 1, 2 , . . . , p. 

Similarly a complete set of integrals is obtained by expressing that 
the places 

?!, . . . , Xpy (ßp+1, . . . , Xqy Oi, . 0 1 , . . . , ijR—p 

are zeros of the polynomial ©, % being taken in turn equal to 1, 2, ..., p. 

In this enunciation there is no restriction as to the value of jR, save that 
it must not be less than p. 

Ex. i. For the general surface of the form 

a set of integrals of the equations 

is given by | xx
2 xxyx yx

2 xx yx 1 1=0 , 

X2 X2y2 2 x2 Vl 1 

^ ^ ^ 1 

«V - ? * '1 

% 2 « 6^2 «j 6j 1 

I A2 AB 2 1 I 

* And we can of course obtain quite similarly a set of p integrals, each connecting 
xlf ..., xQ, AJy ..., Aq, and one of the arbitrary positions aXi . . . ,« . 
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where ƒ (bit ) = 0 ƒ ( , A) = 0, = 1 , 2, 3, and the place (.4, ) may be taken a t any 
convenient position. 

Ex. ii. Taking as before Q—p+l, and considering the hyperelliptic case, the funda­
mental equation being 

#* = (*, 1)2 + 2 = \**? + * + 1 * + 1 + , 

we require a polynomial having R +p +1 variable zeros : such an one is 

e = - # + A#p + 1 + Ä p + 6 ^ > - 1 + + # , 

R being equal to p, and we have 

(^ ̂ +^^ +^+...)-(\ ^+1^ ^...+ =(^-2\ ) ( ) ( ), 
where Z7( ?) = (x- ) (x — ̂ p + 1 ) , (« -) = ( — b±) (x-bp). 

An integral of the differential equations may be obtained by eliminating F, G,..., H 
from the equations expressing that the places 

ol9..., op, Xi, Xp + j 

are zeros of the polynomial G, or from the equations expressing tha t 

-'j , . . . , Xp j Xp _|_ j , Oi 

are zeros of this polynomial, and a complete system of integrals, in either case, by taking  
in turn equal to 1, 2, . . . , p. 

Or a complete system of p integrals may be obtained by eliminating F, G,..., H from 
the 2p + l equations obtained by equating the coefficients of the same powers of x on the 
two sides of the equation. 

We may of course also take 0 in the form 

-g+Exp + 1 + Fxp + +H; 

then R=p+l, and the places B19..., BR_P are not evanescent ; putting the place Bx at 
infinity we obtain E=\, as above. 

Ex. iii. The integration in the previous example may be carried out in various ways. 
By introducing again a set of fixed places aXi..., apy A, coresidual with xu..., xp, xp + ly 

we can draw a particular inference as to the forms of the coefficients F> G, . . . , H. For if 
U(x) denote \xp+ X+Fxp +... + G, and U0(x) denote what U(x) becomes w h e n x u . . . ,x p +1 

take the positions al9 „.,ap, A, the coefficients F, G, . . . , H being then F0, G0J . . . , &0, 
and also F0(x) = (x-a1) (x-ap) (x-A), then, because each of the polynomials 
- y + U (x), —y+UQ(x) vanishes in the places 61 } . . . , bp, the polynomial U(x)—UQ (x) 
must divide by (x), namely U (x) =U0(x) + t (x), where t is a variable parameter ; 
or, if we write <t>(x)=xp + t1x

p~1 + + tPi ^,..., tp being then regarded, instead of 
bu . . . , bp, as the arbitrary constants of the integration, we have 

F=F0 + t, G = G0+ttu , = + , 

and the quantities G-txF,„.,H-tpF are constants in the integration, being unaltered 
when the places xx,..., xp + 1 come to ax,..., ap, A. Hence we can formulate the following 
resul t : let the p + l quantities F0) G0,..., ffQ be determined so that the polynomial 
—y+^70 (x) vanishes in the fixed places au . . . , ap, A. Then denoting {x-a^)^.{x — ap) 
(x — A) by F0(x), the fraction 

is an integral polynomial; denote it by (fj,-2F0 X) (xp + tx xp~l + + * so that 
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0, ^,...,1 are uniquely determined in terms of the places «!,..., ap, A, and put 
F(x) for 7 + «1 ? " 1 + + V Then xx, ..., #p + 1 are the roots of the equation 

f~[U°t)(t) {X)f=b-*FoV Fa (*)-» Po(*)-* W-O; 
and the set | , . . . , t37p ̂ . i vanes with the value of t, which is the only variable quantity 
in this equation. By equating the coefficients of the various powers of x in the 
polynomial on the left-hand side of this equation to the coefficients in the polynomial 
(/x — 27^ X) F{x), we can express each of the symmetric functions 

\ = = 3C\ ~r T" Xp + j 

ilo — itiU/o t"X-tXo " * . . . . . . "i~ Xp Xn ^. -j 

as rational quadratic functions of a variable parameter t, containing definite rational 
functions of the variables at the places ax,..., ap, ; the place A may be given any 
fixed position that is convenient ; the positions of the places a^,..., ap are the arbitrary 
constants of the integration. 

Ex. iv. By eliminating t between the p + \ equations obtained at the end of Ex. iii. 
we obtain the complete system of p integrals. In particular any two of the quantities 
Aj, A2, ... are connected by a quadratic relation, and any three of them are connected by 
a linear relation (Jacobi, Creile, t. 32, p. 220). 

Ex. v. From the equation 

we infer 

where k1=x1 + ...+xp+1 ; hence if a be the value of x at a branch place of the surface, 
we have from Ex. ii. 

-^( )[ + (°-^>(^2= ( )[^2^"2 ]' 
and if, herein, a be put in turn at any p of the branch places of the surface, the resulting 
values of ( ) may be regarded as the arbitrary constants of the integration, and the 
resulting equations as a complete set of integrals ; and if X=0, as we may always suppose 
without loss of generality (Chap. V.), we thus obtain the p integrals 

(ai-^)...(ai-^+0[^^-^L-J=(?,.> (f-l, 2 ,p) 

CXi..., Cp being the constants of integration (Richelot, Creile, xxiii. (1842), p. 369. In this 
paper is also shewn how to obtain integrals by extension of Lagrange's method for the 
case p = \. See Lagrange, of Functions, Chap. II., and Cayley, Elliptic Functions, 
1876, p. 337). 

Ex. vi. By comparing coefficients of x2*> in the equation of Ex. ii., we obtain 

v - (2X0+F*) = (fi- 2\F) ft - Aj), 

where h1=x1-\-...+xp + 1; hence prove that 

| ^ -^^i + - - - + ^+i)- x 2 ^i+- ' -+^+i) 2 = y - < i^- 2 X ( ( 7 -A); 
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by Ex. ii. the right-hand side is a constant in the integration ; hence this equation is an 
integral of the differential equations; in particular if X=0, /u = 4, which is not a loss of 
generality, we have the integral 

where is a constant ; this is a generalization of the equation, for p—1, 

(cf. Ex. i. § 157). 

Ex. vii. Shew that if the fundamental equation be 

y2=(x, 1)2* + 2 = 2#2* + 2 + ;2*> + 1 + +Lx+M, 

then another integral is 

Lr=i^r r \xr)A \x\ +i/ Vi +i/ 
(Richelot, loc. cit.) 

Ex. viii. If a0, be the values of x at two branch places of the surface, obtain the 
equations 

( q j - ^ i ) ( g * - # j > + i ) / ( - ^ i ) ( Q Q - ^ p + i ) _ n . N2 

(o*-il) ( - ) / (a0-A) (oo-ag 1 1 ™ ' 

wherein the quantities -4,..., ap are the values of x at fixed places coresidual with 
#i,. . . ,#p+u pi is an absolute constant, and /x is a parameter varying with the places 
#i , . . . , xp+1. Take in turn equal to 1, 2, . . . , (p + l), and, eliminating /x, we obtain a 
complete set of integrals. In particular if the left-hand side of this equation be denoted 
by GÌ we have such equations as 

(# ~1)PjPk(pj-pk) + (Gj- !)PkPiipk- ) + (& - 1)piPj(Pi-ft-) = 0. 

(Weierstrass, Collected Works, Vol. i. p. 267.) 

162. The proof of Abel's theorem which has been given in this chapter 
can be extended to the case of an algebraical curve in space. Taking the 
case of three dimensions, and denoting the coordinates by x, y, z, we shall 
assume that for any finite value of #, say x = a, the curve is completely given 
by a series of equations of the form 

x = a + £ +1, œ = a + t2
w^, , x = a + tk

w*+1, 

y = P1(ti) , = - . ( « , >y = Pk{h) , (D) 
* = &&) , * = Q*(U) , , * = Q*(fc) , 

wherein w1 + 1 , . . . , Wfc-f 1 are positive integers, ^, ...,fe are infinitesimals, 
and P j , Qj , . . . , P&, Qb denote power series of integral powers of the variable, 
with only a finite number of negative powers, which have a finite radius 
of convergence. The values represented by any of these columns, for all 
values of the infinitesimal within the radius of convergence involved, are the 
coordinates of all points of the curve which lie within the neighbourhood 
of a single place (cf. § 3, Chap. I.) ; the sum 

(w1 + l) + (wt+l) + + (wk+l) 
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is the same for all values of x} and equal to n, the order of the curve. A 

similar result holds for infinite values of x ; we have only to write - for x — a. 
x 

We assume further that any rational symmetric function of the n sets 
of values for the pair (y, z), which are represented by the equations (D), is a 
rational function of x. 

Then we can prove that if R (x, y, z) be any rational function of x, y, z, 
dx 

the sum of the coefficients of t~l in the expression R (x, y, z) -7- , at all the 
CLV 

places of the curve represented by the equations (D), is equal to the 

coefficient of — in the rational function of x. 
x — a 

U (x) = R (x,y1} z,) + R (xyy2, z2) + + R (x, yn> zn). 

dx 
And further that the sum of the coefficients of f1 in R (x, y, z) -j- at all 

the places arising for x = 00 is equal to the coefficient of — in the expansion 
x 

of the same rational function of x} namely, equal to the coefficient of t~x in 

U (x) -j-, when x = -. 

Hence, the theorem 

which holds for any rational function, U (x), of a single variable (as may be 
immediately proved by expressing the function in partial fractions in the 
ordinary way), enables us to infer, in the case of the curve considered, that 
also 

By this theorem, applied to the case 

we can prove that the number of poles of R (x, y, z) is equal to the number 
of its zeros, and therefore also equal to the number of places where R (x, y, z) 
has any assigned value p, a place being counted as r coincident zeros when 
the expression, in R (x, y} z)} of the appropriate values for x, y, z, in terms 
of the infinitesimal, leads to a series in which the lowest power of t is tr ; 
similarly for the poles. 
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Hence, if I be any integral of the form ƒ R (xy yy z) dxy we can apply 
this theorem in the form 

№ -1A =o 
Z being any rational function of x, y, z, and so obtain, as before (§§ 154, 155), 
the theorem 

and if Z is of the form 2 (x, y, z)/0l (xy yy z)y where 02, 6X are integral poly­
nomials, we can put the right-hand side 

= — locr 02 & > * 
\_dt {xy y, z)\t~l ' 

wherein xly...,xje are the places at which Z=0, or 62(x,y,z) = 0, and 
aly...,ajc are the places where Z=oo or (xy , z) = 0, and the places 
to be considered on the right hand are the infinities of dl/dt. 

The reader may also consult the investigation given by Forsyth, Phil. Trans., 1883, 
Part i. p. 337. 

Take for example the curve which is the complete intersection of the cylinders 

y2=x(l-x) 
z2 = x. 

For any finite value of x, except x=Q or x — 1, we have 4 places given by 

y — ±\Jx (1— x), z=±\/x. 

For infinite values of x, putting os — -v we have two places given by 

. 1 , . 1 

1 1 
Z=~t ' Z=l 

For ?=1, putting x= 1 + t2, we have two places given by 

y=it + ... , y = it + ... , 
*=+(l+i<4.. .) , *=-(l+*««+...) . 

For A'=0, putting -=^2, we have two places given by 

y = * ( i - i * 3 - . . . ) , y = - * ( i - i « 2 - . . . ) , 
2; = £ , z = t , 

and, at = 0, # = 0 , ^ = 0 , dx : dy : dz = 2t : 1 : 1 or =2t : ~ l : 1 = 0 : 1 : 1 or = 0 : - 1 : 1 
so that there is a double point with x~0y y — ±z for tangents. 

Consider now 2 I — , from the intersections of z + ax + by=0 to those of z + a'x + b'y = 0. 
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Put I = I —' : then -^, = — ^ , when x is near to 0, has, for one value, 
] yz dtì yzdtì 

?üJp-5Ä-f (i+i«i+...x 
a' 

while ! « + « ' * + ? * j f + a P + r m - * . . . . ) ) 1 + + + ' + " 

. 1 + V f a' » V , 

and the contribution to the sum (-=- log 7 - ) , is 2 log -=-—» • 
\ ö 2+a^-fôy/^- 1 ° 1 + 6 

If we take the other place at # = 0 we shall get, as the contribution to 

/di. z+a'x+b'y\ 
\dti0g z+aat+ty/t-1' 

the quantity — 2 log -—j-. 

Thus, on the whole we get, at x=0i 

It is similarly seen that no contribution arises at the places x= 1, x= . 

Thus on the whole 

I x^Y^ + i ^V& 2
= 2 l0S (i-W i~b)-

Now from the equations z1-\-axì+by1 = 0, £2-J-a#2-t-oy2=0, we find 

£ _ % x2 "" % #1 

and thus 

I = + I - 7 = = = 2 log v 1V ' I ' T j v g — v j + c o n s t a n t 

J ? 1 - ^ •/ x *J\—x v^i ( 1 - 7 )~ V^ 2 ( l - ^i )~V^2 + V^i 
which is a result that can be directly verified. 


