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CHAPTER VIIL
ABEL’Ss THEOREM; ABEL'S DIFFERENTIAL EQUATIONS.

148. THE present chapter is mainly concerned with that theorem with
which the subject of the present volume may be said to have begun. It will
be seen that with the ideas which have been analysed in the earlier part of
the book, the statement and proof of that theorem is a matter of great
simplicity.

The problem of the integration of a rational algebraical function (of a
single variable) leads to the introduction of a transcendental function, the
logarithm ; and the integral of any such rational function can be expressed
as a sum of rational functions and logarithms of rational functions. More
generally, an integral of the form

fdwR(w, Y Y1y ooer Yi),

wherein #, ¥, ¥, ¥,, ... are capable of rational expression in terms of a single
parameter, and B denotes any rational algebraic function, can be expressed
as a sum of rational functions of this parameter, and logarithms of rational
functions of the same. This includes the case of an integral of the form

fcla:R(w, Vaz? + bz + c).

But an integral of the form

fcla:R(a:, Naah + bad + ca® + dz + €)

cannot, in general, be expressed by means of rational or logarithmic functions;
such integrals lead in fact to the introduction of other transcendental func-
tions than the logarithm, namely to elliptic functions; and it appears that
the nearest approach to the simplicity of the case, in which the subject
of integration is a rational function, is to be sought in the relations which
exist for the sums of like elliptic integrals. For instance, we have the
equation

& dz [z dx
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provided
oy (1 — kiz?) = 2, V(1 — &) (1 = B?) + 2, V(1 — 22 (1 — k).

On further consideration, however, it is clear that this is not a complete
statement ; and it is proper, beside the quantity «, to introduce a quantity v,
such that

—1-2)(1-Fka?)=0,
and to regard y, for any value of z, as equally capable either of the positive
or negative sign; in fact by varying « continuously from any value, through

1 . ..
one of the values #=11, 2=+ 7, and back to its original value, we can

k
suppose that y varies continuously from one sign to the other. Then the
theorem in question can be written thus;

@n ) da, @2 ¥2) d, @5 ¥3) dz,
f — + — + —=0,

oy % oy ¥ Jovn ¥
where the limits specify the value of y as well as the value of #. The
theorem holds when, in the first two integrals the variables (z, y) are taken
through any continuous succession of simultaneous values, from the lower to
the upper limits, the variables in the last integral being, at every stage of
the integration, defined by the equations

— 23 (1 — bPa®x?) =2y, + 23,
ys (1 — Ba?z?) = yyy, (1 + Faay®) — 2y (1 — Koy2?) (1 — &2).
The quantity y is called an algebraical function of z; and the notion thus
introduced is a fundamental one in the theorems to be considered; its

complete establishment has been associated, in this volume, with a Riemann
surface.

In the case where y*=(1 —2*) (1 — k*%¢*) we have the general theorem
that, if R (z, y) be any rational function of z, y, the sum of any number, m,
of similar integrals

(@, 8)

@, 41) (zm’ ym)
f Rz, y)dz+...... +f . R (z, y)dz
(@,.5b)

can be expressed by rational functions of (2, %), .-, (€m, Ym), and logarithms
of such rational functions, with the addition of an integral

LCmeh yu+1)R ) d

- x, y) de.
f @at1r Omyr) ( Y

Herein the lower limits (a,, b,), ..., (@m, bm) represent arbitrary pairs of

corresponding values of x and 7, and the succession of values for the pairs

(1, 31), --., (Tm, Ym) 18 quite arbitrary ; but in the last integral 2pi1, Ym41 are

each rational functions of (2, 4,), ..., (m, Ym), which must be properly deter-
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mined, and it is understood that the relations are preserved at all stages of
the integration, so that for example @my;, by, are respectively taken to be
the same rational functions of (a,, b,), ..., (@m, by). The question of what
alteration is necessary in the enunciation when this convention is not
observed, is the question of the change in the value of an integral

@113 Y
| R(a, y)da

@py1s Dy
when the path of integration is altered. This question is fully treated in the
consideration of the Riemann surface, with the help of what have been called
period loops.

149. Abel’s theorem may be regarded as a generalization of the theorem
just stated, and may be enunciated as follows: Let y be the algebraical
function of # defined by an equation of the form

fly, 2y=y"+Ay" 7 +...... +4,=0,
wherein A,, ..., 4, are rational polynomials in @, and the left-hand side of
the equation is supposed incapable of resolution into the product of factors of
the same rational form; let R (x, y) be any rational function of = and y;
then the sum of any number, m, of similar integrals

@, ¥y @ms Ym)
f Rz, y)dz+...... + f R (z, y) da,

with arbitrary lower limits, is expressible by rational functions of (z, %), ...,
(%m, Ym), and logarithms of such rational functions, with the addition of the
sum of a certain number, %, of integrals,

...fz” N Rz, y)de—...... - flz“ . R(z, y) de,

wherein z,, ..., z; are values of z, determinable from @), ¥, ..., Zm, Y as the
roots of an algebraical equation whose coefficients are rational functions of
@y, Y1y -es Tmy Ym, and 8, ..., 8 are the corresponding values of y, of which
any one, say s;, is determinable as a rational function of ¢;, and z, 3, ...,
Zm, Ym- The relations thus determining (z,, ), ..., (2, s¢) from (21, %), ...,
(®m,» ym) may be supposed to hold at all stages of the integration; in
particular they determine the lower limits of the last k integrals from the
arbitrary lower limits of the first m integrals. The number % does not
depend upon m, nor upon the form of the rational function R(z,y); and in
general it does not depend upon the values of (2, 31), ..., (@m, ¥u), but only
upon the fundamental equation which determines y in terms of z.

150. In this enunciation there is no indication of the way in which the
equations determining z,, 8y, ..., 2, S from @, ¥, ..., Tm, Ym are to be found.
Let 8 (y, «) be an integral polynomial in « and y, wherein some or all of the
coefficients are regarded as variable. By continuous variation of these

B. 14
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coefficients the set of corresponding values of # and y which satisfy both
the equations f(y, #) =0, 6 (y, #)=0, will also vary continuously. Then, if
m be the number of variable coefficients of 6 (y, z), and m + k the total
number of variable pairs (z, ) which satisfy both the equations f(y, z) =0,
0 (y, ) =0, the necessary relations between (x,, 1), ..., (Zm, ¥Ym), (z1, 81)s «-»
(2k, sx) are expressed by the fact that these pairs are the common solutions of
the equations f(y, 2)=0, 6 (y, 2)=0. The polynomial 8 (y, ) may have any
form in which there enter m variable coefficients; by substitution, in € (y, z),
of the m pairs of values (2, %), ..., (@m, ¥m), We can determine these variable
coefficients as rational functions of @), ¥, ..., Zm, ¥m; by elimination of y
between the equations 6 (y, #) =0, f(y, ) =0, we obtain an algebraic equa-
tion for z, breaking into two factors, P,(z) P (x)=0, one factor, P,(z), not
depending on @, ¥, ..., m, Ym, and vanishing for the values of z at the
fixed solutions of f(y, £)=0, 8(y, )=0, which do not depend on ,, y,,
.evs &m, Ym, the other factor, P (z), having the form

(Zz—2) ... (2 — 2p) (* + Ra* 7 + ... + Ry),

where R,, ..., Ry are rational functions of z;, %, ..., m, Y. Finally, from
the equations f(s;, 2;))=0, (s;, 2)=0 we can determine s; rationally in
terms of z;, &, Y1, ..., Tm, Ym- As a matter of fact the rational functions of
Zy, Y1y -+« Lm, Ym, Which appear on the right-hand side of the equation which
expresses Abel’s theorem, are rational functions of the variable coefficients in
9 (y, x).

151. When 8 (y, «) is quite general save for the condition of having
certain fixed zeros satisfying f(y, ) =0, the forms of (z, sy), ..., (2, sx) as
functions of (#,, ¥,), ..., (Zm, ym) are independent of the form of 8(y, #z). This
appears from the following enunciation of the theorem, which introduces
ideas that have been elaborated since Abel’s time, and which we regard as the
final form—Let (a,, b)), ..., (aq, by) be any places of the Riemann surface
whatever, such that sets coresidual therewith have a multiplicity ¢, and a
sequence  —g=p—7—1, where 7+ 1 is the number of ¢ polynomials
vanishing in the places (a;, b)), ..., (aq, bg); let (z, w), ..., (g, y,) be ¢
arbitrary places determining a set coresidual with (a, by), ..., (aq, by), and
(21, 81); +++s (2p—r—1, Sp—-—1) be the sequent places of this set*; then, R (z, y)
being any rational function of (z, y), the sum

@5 1) @y Yy)
[ Rz y)dat...... +f R(z, y)de
(@,, by (ag, bg)
is expressible by rational functions of (@, %), ..., (24, ¥,), and logarithms of
such rational functions, with the addition of a sum
(21, §)) @715 8p_7-1)
—f Rz, y)dz—...... -—{ R (z, y)dz
< lag4r, bep) v lag, bg)

* See Chap. VL. § 95.
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herein it is understood that the paths of integration are such that at every
stage the variables form a set coresidual with (a,, b,), ..., (aq, by).

The places (@, by), ..., (aq, by) may therefore be regarded as the poles, and
(@1, W), ooy (@gs Yg), (215 81)s ooy (Zp—r—1, Sp—r—1) a8 the zeros, of the same rational
function Z (x); if 6, (y, ) denote the form of the polynomial 8 (y, #) when it
vanishes in (a,, b)), ..., (@¢, bg), and 6, (y, ) denote its form when its zeros
are (z, ¥,), ..., (&1, 81), ..., the function Z (x) may be expressed in the form
0,(y, )/ 0, (y, ®). If the polynomials 6, (y, z), 6,(y, ) are not adjoint, the
function will be of the kind, hitherto regarded as special, which takes the
same value at all the places of the Riemann surface which correspond to a
multiple point of the plane curve represented by the equation f(y, z)=0;
this fact does not affect the application of Abel’s theorem to the case.

152. To prove the theorem thus enunciated, with the greatest possible
definiteness, we shew first that it may be reduced to two simple cases.

In the neighbourhood of any place of the Riemann surface, at which ¢ is
the infinitesimal, we can express R (z, y)(é—‘: in a series of positive and

negative powers of £, in which the number of negative powers is finite. Let
the expression at some place, £ where negative powers actually enter, be
denoted by.

im—1 1 Zm t,;"‘l‘ ...... +‘;+4+B+Bt+32t~ ...... ;

then, if P~ denote any elementary integral of the third kind, with infinities
at &, ry, and E;’c denote the differential coefficient of P;; in regard to the
infinitesimal at £, the places v, ¢ being arbitrary, the difference

@ 4 X , € 2, ¢ z, ¢ m—2 pt, ¢
wn Rz, v) dw—AlPZ, —AE, —ADEY ... —A, DB,
wherein D; denotes differentiation in regard to the infinitesimal at £, is finite

at the place £& The number of places, £ at which negative powers of ¢ enter
in the expansion of R (=, y) %, is finite ; dealing with each in turn we obtain

an expression of the form

@, N
[” B(s,y) do—S[APYS + AT+ ADET oot 4, DB
(a, b)

wherein v, ¢ are taken the same for every place £; this is finite at all places
of the Riemann surface, except possibly the place . If ¢, be the infinitesi-
mal at this place the function is there infinite like (34,)logt¢,. But in fact
S 4, is zero (Chap. IL. § 17, Ex: (8): Chap. VIL. § 137, Ex. vi.). Hence the

14—2



212 PROOF OF THE THEOREM. [152

function under consideration is nowhere infinite, and is therefore necessarily*
a linear aggregate of integrals of the first kind, plus a constant. Hence

if u ", ..., u;’ “ be a set of linearly independent integrals of the first kind, a
denoting the place (a, b), and C,, ..., C, be proper constants, we have

F R(z, y)dz= ? (4, + A, D; + ...... + AmD;"“z)P;: + C’,uf‘ . + Cpu;‘“ .
The consideration of the sum

fz‘R(a:,y)da:+ ...... +fzgR(a',y)d-%‘,
a, %y

wherein a,, ..., ag denote the places (a,, b,), ..., (@g, bg), and ,, ..., 2, denote
the places (@1, %), ..., (Zg, Yg). (21, 81); -+, (8p—r—1, Sp—r—1), is thus reduced to
the consideration of the two sums

w4 +ui® (¢=12..p)

19 , a
Pz.v RLITIE +P:.97 .

Ez. 1. By the proposition here repeated from § 20, Chap. IIL., it follows that any
rational function can be written in the form

R (2, y) =2 {4, [(® 8)— (= Y]+ 4:D, (%, ) +...+ 4D, (7, £)}

@ ) Ty (@, 3) + e+ (@ )T G (2, )]/ (9)
where (cf. § 45, Chap. IV.)

n—1
(@ &)=[de (@ 9)+ 2 br (% y)g- (& M/ (&= T ¥
n being the value of y at the place &
Ez. ii. Prove also that any rational function with simple poles at £, &,,... can be
written in the form

A (&1 @) = (61> ]+ 25 [(&, @) = (&, )]+,
A1y Ag, ... being constants, and @ denoting an arbitrary place (cf. § 130, Chap. VIL.).

153. We shall prove, now, in regard to these two sums, under the
conventions that the upper limits are coresidual with the lower limits, and
that the @ paths of integration are such that at every stage the variables are
at places also coresidual with the lower limits, a convention under which the
paths of integration may quite well cross the period loops on the Riemann
surface, that the first sum is zero for all values of 7, and the second equal to
log Z (£)/Z (y), Z(x) being the] rational function which has a,, ..., ay as
poles and z,, ..., z, as zeros. The sense in which the logarithm is to be
understood will appear from the proof of the theorem. If we suppose the
lower limits arbitrarily assigned, the general function Z (), of which these

* Forsyth, Theory of Functions, § 234.

t If two rational functions have the same poles and the same zeros their ratio is necessarily
a constant,
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places a,, ..., a, are the poles, will contain ¢ + 1 arbitrary linear coefficients,
entering homogeneously, and the assignation of ¢ of the zeros, say «,, ..., z,,
will determine the others, as explained.—The equations giving the determi-
nation will be such functions of @, ..., a, as are identically satisfied by these
places, a,, ..., aq. Hence the general form of Abel’s theorem is

Zl

fR(w y) do = Z[Al ng;+AZZ((§))+ ...... ]
— Z (§)
_E‘,[A,logZ(f)+A,Z(E)+ ...... ]

where Z' (£)= D¢ Z (€); the term E,Al log Z () =log Z () 24, can be omitted

because 24, =0 (Chap. IL p. 20(8)). Herein Z (£) is a rational function of
ay, ..., agand @, ..., 2,

154. In carrying out the proof we make at first a simplification—Let
Z(xz), or Z, be the rational function having a, ..., @y as simple poles and
&, ..., &y as simple zeros, these places being supposed to be all different;
trace on the Riemann surface an arbitrary path joining @, to z;, chosen so as
to avoid all places where dZ is zero to higher than the first order, and let u
be the value of Z at any place of this path; then there will be @ — 1 other
places at which Z has the same value u; the paths traced by these @ —1
places as u varies from o to 0 are the paths we assign for the @ — 1 integrals
following the first. The simultaneous positions thus defined for the variables
in the ) integrals are, for ¢ > 1, not so general* as those allowed by the con-
vention that the simultaneous positions are coresidual with a,, ..., ¢g; but it
will be seen that the more general case is immediately deducible from the
particular one.

Consider now, for any value of u, the rational function
1t
Z —p dz’
= { R (z, y) dz, being any Abelian integral whatever. In accordance with

a theorem previously used (Chap. II. p. 20 (8); Chap. VIL § 137, Ex. vi.) the
sum of the coefficients of ¢~ in the expansions of (Z — u)"'dI/dt, in terms of
the infinitesimal ¢, at all places where negative powers of ¢ occur, is equal to
zero. Of such places there are first the ¢} places where Z is equal to p. We
shall suppose that dI/d¢ is finite at all these places; then the sum of the
coefficients of ¢! at these places is

= guar (@) = (@), (),

* Sets coresidual with two given coresidual sets have a multiplicity ¢; but sets equivalent

with two given coresidual sets have a variability expressible by one parameter only (cf. Chap. VI.
§§ 94—96).
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provided Z — p be not zero to the second order at any of the places, that is,
provided dZ be not zero to higher than the first order. In accordance with
the convention made as to the paths of the variables in the integrals, we
suppose this condition to be satisfied.

Hence this sum is equal to the sum of the coefficients of ¢ in the
expansions of the function — (Z — p)~' dI/dt at all places, only, where dI/dt is
infinite; this result we may write in the form

(%{)14, ...... +(;L,{)Q=_@Z{ 7).

we may regard this equation as a convenient way of stating Abel’s theorem
for many purposes; and may suppose the case, in which an infinity of dI/dt
coincides with a place at which Z = u, to be included in this equation, the
left hand being restricted to all places at which Z=x and dI/d¢ is not
infinite.

In this equation, in case I,=u; ", be any integral of the first kind, the
right hand vanishes; then, integrating in regard to u from « to 0, we
obtain

w4 +u2 % =0. (A)
In case / be an integral of the third kind, = P}’ 7 say, and Z be not equal to
w either at & or v, the right hand is equal to

_ .1
ZE) -—p Z(y)—p’

hence, integrating,

[0 / 1 1 Z (&)
Py . Pl e =j du| — 5o+ 57—, =logZ>2%, (B
B P = [ de( = gt g —a) < E Gy ®
while, if the places at which the rational function Z (x) has the values u, v be
respectively denoted by

Lpy eecees > & s
and
)y ennns , &g
we have
'y - [ 1 1
e T Pie®e = -
Lo+ TS f d”( Z(E)—M+Z('7)—#)’

ZE) —np -Z('y)—/iJ
=1 .
|76l 70—
For any Abelian integral we similarly have
z), @ Tya'y (i_I Z(w) el
1 S TI +1 —[dtlogFZ(w)—u o

which is a complete statement of Abel’s theorem.



155] REMARKS. 215

155. In the equation (B), and in the equation which follows it, the
significance of the logarithm is determined by the path of w in the integral
expression which defines the logarithm ; we may also define the logarithm by
considering the two sides of the equation as functions of £.

There is no need to extend the equation (B) to the case where one of the
paths of integration on the left passes through either £ or ¢, since in that
case a corresponding infinite term enters on both sides of the equation.

But it is clear that the condition that no two of the upper limits a;, ..., z,
should be coincident is immaterial, and may be removed. And if two (or
more) of the places at which Z takes any value, u, should coincide, the
equations (A) and (B) can be formed each as the sum of two equations in
which the course of integration is respectively from Z = to Z= u and from
Z = to Z =0, and the final outcome can only be that the order in which the
upper limits «,, ..., &, are associated with the lower limits a,, ..., ¢, may
undergo a change. But in the general case we may equally put, for example,
in equations (A), (B),

f"d1+fx’dl,=f’d1+f" ar+ [“ar+ ["ar=["ar+["ar
a, ay a &, A ay a, Ja,

with proper conventions as to the paths; hence the condition that dZ shall
not be zero to higher than the first order at any stage of the integration may
be discarded also, with a certain loss of definiteness. The most general form
of equation (A), when each of the @ paths of integration are arbitrary, is of
course

wr P, +ui =M +...... + Myw;, p+ M@ +...... + M, ' ,, (C)

where ;,, ..., s, are the periods of uf’“ and M, ..., M, are rational
integers, independent of 7. We shall subsequently see that this equation is
sufficient to prove that the places «;, ..., #, are coresidual with the set
Ay, oeny Qg ’

If, in equation (B), we substitute for Z(z) any one of its rational
expressions, say* 6,(z)/6,(x), we shall obtain

2,0 2y, 9(5)/9(7)
Pty + P =
by 6.6/ b.(v)’
where, now, 0,(z), 6,(x) are any two polynomials, integral in « and y, of
which, beside common zeros, 6,(z) has =, ..., @, for zeros, and 6, (z) has
@y, ..., agy for zeros. If in this equation we suppose any of the coeflicients in
0, (z) to vary infinitesimally in any way, such that the common zeros of 6, (=)

* @ (x) is, for shortness, put for what would more properly be denoted by 6 (y, )
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and 0, (z) remain fixed, 6,(z) changing thereby into 6, (z)+ 86, (x), the places
£y, ..., g changing thereby to ; + da,, ..., x4 + dxg, we shall obtain

APy, apPg’ 0. ()

=2 dag; + ... —5Y dpe=281 ,

o dz, + + dr, % og XC)

which is slightly more general than any equation before given, in that the
places z, + dw;, ..., z,+dzy, though coresidual with @, ..., z,, are not

necessarily such that the function 6,(z)/6, () has the same value at all of

them. This general equation is obtained by Abel in the course of his proof
of his theorem.

For any Abelian integral we have, similarly, the equation
dl dl dl
d—xleLLl+ ...... +d—%d.zq—[a2810g0(w)l_l,
which, also, may be regarded as a complete statement of Abel’s theorem.

156. In equation (B) the logarithm of the right hand will disappear if
Z (&) = Z (), namely if the infinities of the integral be places at which the
function Z () has the same value.

One case of this may be noticed ; if ¥ (y, ) be an integral polynomial. of
grade (#—1) o +n — 3 (cf. Chap. VI. §§ 86, 91), which is adjoint at all places
except those two, say A, A’, which correspond to an ordinary double point of
the curve represented by the equation f(y, #) =0, the integral

yHe = {“l" , m)da,

o Sy
will be an integral of the third kind having 4, A" as its infinities. Hence, if
in forming the function Z(z), =6,(x)/6, (x), the places 4, A" have been
disregarded, so that the polynomials 6, (z), 6,(z) do not vanish in these
places, the function Z (x) will take the same value at 4 as at A4’, and
we shall obtain
Vet . + V% =0.

Hence we obtain the result: if, in the formation of the integrals of the
first kind for a given fundamental curve, we overlook the existence of a
certain number, say 8, of double points, we shall obtain p + 8 integrals, where
p is the true deficiency of the curve; and these integrals will be linear
aggregates of the actual integrals of the first kind and of § integrals of the
third kind. If in the formation of the rational functions also we overlook
the existence of these double points, Abel’s theorem will have the same form
of equation for the p + & integrals as if they were integrals of the first kind
(cf. §§ 83, 90, and Abel, @uvres Comp., Christiania, 1881, Vol. L p. 167).

For example, let a,, ..., a, be arbitrary places in which 7+1 ¢-poly-
nomials vanish (Chap. VI. § 101, 93). Take q (=Q —p + 7 + 1) arbitrary
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places ¢, ..., ¢g, and so determine the set ¢, ..., ¢q coresidual with a,, ..., a,.
A rational function, ¢(z), which has the places a,, ..., a, for poles and the
places ¢y, ..., ¢, for zeros is quite determinate save for a constant multiplier.
Let &, ..., #y be any set of places at which & () has the same value, 4 say,

so that y, ..., #, are the zeros of {(«) — 4 ; then, as a,, ..., a, are the poles
of ¢ (z) — A, we have
w2 va E(c)— 4
Qrre
Pj“ez +oeennns +P:“c! _logC(cg)—A ,

and as &(c,) = £ (c,) =0, the right hand is zero.

Hence, calling the places where a definite rational function has the same
value a set of level points for the function, we can make the statement—the
level points of a definite function satisfy the equations

de‘: s C3 d'P:Q » Cp
,%l» day +...... + —‘m de =0,

¢, ¢, being any two of the zeros of the function.

In particular, when ¢ =1, the sets of level points are the most general
sets coresidual with the poles or zeros of the function. Hence, if @y, ..., Ty
be any set of places coresidual with a fixed set ¢, c,, ..., ¢p4s, in which no
¢-polynomials vanish, we have the equations

dpP;
by 4. + -2 dy,, = 0.
! dxp+1 P
1567. Ewx. i. We give an example of the application of Abel’s theorem.
For the surface associated with the equation

YP=4a®tl—ga®-1_g P i—, g,
the integral

I=fx1’+clx"‘1+...+cp das
Y
is of the second kind, becoming infinite only at the (single) place x=w. Consider the
rational function
g YrAeP+ Ber 7+ A+ Kot L
y+Apr+Bar—1+.. + Kp+ L’
which, for general values of 4,..., L, is of the (2p+1)th order, its zeros, for instance,
being given by

4P+l g 21— —go,—(AaP+.. .+ L)2=0.
To evaluate the expression
(ﬁ L
dt Z— B/l >

the place #=cc being the only one to be considered, we put x=¢-2 and obtain

2
:’/=t—2p—ﬂ (1-3 g1t =Lg 6 —...... )
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g L+ddit..... _

R EE Y e 143 (d—dg) t4 e,
1 1 é
il g ¥ g F)z ...... ,

1
al g Faems teee s
a2 =
prr1(1=dgi =)

1 ’
= - 7(1 +o e tit.l) (T+3 g, 8400,

=———c1 (ca+3g) t8—.ins ,
and therefore
dl 1 1 1, d-4,1 ¢
@ Z=p" i—peti AT T Top

wherein the coetticient of ¢~ 1 is § (4 —dy) (1—p)~2

Hence, if %, ..., 2, be the zeros, and a,..., u“,H be the poles of Z, we have
170 O Pt Bapta= — 3 (4 — A,) j =~ = )

Now the zeros of Z are zeros of the polynomial
y+U(x)=y+ AxP+ BxP~! +......+ Kz+L=0;
denoting the values of ¥ by #;,...,¥up+1, and using F(x) for (w—2y).uun. (@—2pyy),
where (21, #1); 05 (@p+1, Yp+1) are any p+1 of the places (21, #1) +ees (Fzp+15 Yap+1) We
have, from the p+1 equations

'?/'7+A.1I,;p+B.Z‘,;p—1+......+KJ«',;+L=O, (L‘—‘ 1, 2,000, (p-'-l)),

ng e [ e L W P L) I

2 Py L2 o—m) F) 2 =) F' (@) F (@) lr=on

and hence, if b, b,,... be the values of y when x=a;, @y, ..., and Fy(z)=(z—a,)...
(z—ay ), we have

p+1 p+1 b
1% i T = 3 F'(x.) T ma

If in the integral / the term x? be absent, the value obtained for the sum

Iv %4, 4 I%apt1? T2pnn
will be zero. :

The reader will notice that for p=1, we obtain an equation from which the equation

— t )= ) ¢ () =3 = B

can be deduced, wu,, w,, #; being arguments whose sum is zero; and that the algebraic
equation whose roots are &y, ..., #,,,, gives

pt+1 ‘g/ 2
E S A O +ay, =4 di=1 ( A )
1 2 2p+1= 4 i i IF (xt)
which for p=1 becomes

@ () +9 () +9 ()= (=)
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Ex. ii. If ¥, Z be any two rational functions, and « any integral of the first kind,
prove by the theorem ¢

L B o
(Y=b)(Z—c) dz dt Jt-1
that the sum of the values of (¥ —b)~1du/dZ, at all places where Z=¢, added to the sum
of the values of (Z—c¢)~1du/dY at all places where Y=, is zero.
It is assumed that all the zeros of the functions ¥ —b, Z—c are of the first order.

Hence prove the equation

O du R fdu, Z(x)—

p> = 3 (g ik
r=1)ar®—b i=1 (d$10g Z(x)_">i’

where a,, ..., a, are the places at which Z (z)=v, 2y, ..., %, the places at which Z(z)=p,

and the suffix on the right hand indicates that the values of the expression in the brackets

are to be taken for the » places of the surface at which x=b.

It is assumed that there are no branch places for »=9.

Ex. ili. If ¢ (x) be any integral polynomial in 2, y2=(x, 1),, .4, =/ (x) say, and M (2),
N (x) be any two integral polynomials in z of which some coefficients are variable, and
f(x). M2 (2)— N2 (2)=K (x=&)) verur. (T —2),
where A is a constant or an integral polynomial whose coefficients do not depend upon
the variable coefficients in M (#), N (), and y,, ..., ¥, be determined by the equations
Yi M (;)+ N (#;)=0, then, on the hypothesis that z is not one of the quantities 2y, ..., #,,
and is not a root of f(x)=0, prove that
W, [0 1 NOTUONTE_p,
(w-2)y ==y Nf@)

ENQ-H NG

where C is a constant, and R is the coefficient of :lv in the development of the function

$ @) 1oy ¥ @)+ HNF@)
@=Nf@ V(@)= H@)Wf()

in descending powers of & ; herein the signs of ~/f(z), N7 (2) are arbitrary, but must be
used consistently.

Shew that the statement remains valid when f (2) is of order 2p+1 (in which case the
development from which # is chosen is to be regarded as a development in powers of ~/z);
prove that  is zero when ¢ () is of order p, or of less order. Obtain the corresponding
theorem when z is a root of f(z)=0.

Ex.iv. The result of Ex. iii. is given by Abel (Fuvres Compl., Vol. i. p. 445), with a
direct proof. We explain now the nature of this proof, in the general case. Let f (y, +)=0
be the fundamental equation, and let 6 (¥, 2) be a polynomial of which some of the
coefficients are variable ; if yy, ..., 7, be the » conjugate roots of f (y, #)=0 corresponding
to any general value of 2, the equation

r(2)=8 (¥1, ¥) 8 (Yz, ) «.vve. 0 (Y, £)=0,
gives the values of & at the finite zeros of the polynomial 8 (y, +). Suppose that the
left-hand side breaks into two factors F| (») and F'(#), of which the former does not
contain any of the variable coefficients of 6 (y, x). Let & be a root of F'(x)=0, and
N5 .-+ M b€ the corresponding values of ¥ ; then one or more of the places (¢, ), ...... ,
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(& nr) are zeros of 6 (y, «); tix attention upon one of these, and denote it by (£, ). Then
if, by a slight change in the variable coefficients of 8 (y, ), whereby it becomes changed
into 8 (y, x)+86 (y, 2), F (2) become F (r)+8F (), the symbol & referring only to the
coefficients of 4 (y, ), and & become £+d§, we have the equations

OF (£)+F" (§) dE=0,
Fy (&) 8F (§)=dr (§)= 5%16 (715 &) +enve 0 (nio1,8) 0 (is15 &) vevee 6 (1, £) 36 (mi; £),

where F' (§)=dF (¢)/dE.  Denote now by U (x) the rational function of 2, given by

n
U()= % 001, ) weres 0 Gims ) 0 (Yiars @) ovns 8 (s 2) 30 (05, 205
1=
then if R (#, y) be any rational function of & and y, we have

R (s) '7) d§= -R (S) ") F (g') (15;')1 (é) ’

where, on account of 4 (3, £)=0 we can write

U=t 00 (&

and
R U= éllf (& i) 6 (05 £) eennee 0 (Mi1y &) ity &) cvnnee 0 (1n, £) 36 (ns, &)

=¢ (£), say,

¢ (£) being a rational function of £ only. Taking the sum of the equations of this form,
for all the zeros of 8 (y, x), we have

SR (& n)dé=~ F ((z)(lg;l (g)

herein the summation on the right hand can be carried out, and the result written as the
perfect differential of a function of the variable coefficients of 8 (y, x), in fact in the form

(260531086 () |,
as we have shewn.
For example, when
fy, 2)=3+23 - 3ayr—1, 8 (y, )=y —mx — n, we have F{, ()=1,
F (2)=2+(ma+n)3 - 3ar (mr+n)—1,

and
Endé 3EndF (£) _  3&nf (n) (E3m+8n) _ 3§ (mf+n) (§6m+8n) v a5
-at O P& f () F(§) F'(§) TF (&
, Vv(z)_  3mdm 3 v (&)
Now P~ Trmt 2 R P&
and hence gndg oy (&) | 3zmdm =38 (mn -—a) ’

r, — a,E F(z)  14m3

as is easily seen. From this we infer
3 [z .zyda mn—a mn —a v =Xy
2 fo P -3 Txm? +3 <1+m3>, —(41+.Lz+uc3) —

n:l
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In this example it is easily seen that the integral is only infinite when 2 is
infinite; putting x=¢"1, the equation f (y, £)=0 gives y= —wt~!- aw?+ ¢+ B +......,
where =1, or (—1+4/—3)/2; then logd (y, x) dl/dt, =log(y—mx-n) [vy/(y®—ax)]
dz/dt, has (aw?+n) 0?/(@+m) for coefficient of ¢~1, and we easily find

a+n  ao’tn aF)tF?L _3 (e—mn)
m+l" mre © Tm¥er T miyl

Ex.v. If Y, Z denote any two rational functions (in # and y), such that there is no
finite value of x for which both have infinities, and = (¥Z) denote the sum of the =

conjugate values of ¥YZ for any value of », and [3 (¥ Z )](I_ a1 denote the sum of the

coefficients of (#— a)™! in the expansions of the rational function of z, 3 (¥Z), for all finite
values of x for which Y is infinite, and [$ (Y Z)],_, denote the coefficient of #~1 in the

expansion of = (¥Z) in descending powers of «, it is easy (cf. § 162 below) to prove that
Yd“"Z)’ =[s(YzZ Tz
m t-l_[ ( )]x—l_[z ( )](x-a)-“
wherein, on the left hand, the dash indicates that the sum is to be taken only for the

Jinite places at which Z is infinite. Hence if 7 be any Abelian integral, =[R(z, ) dx,
we have

(‘g& log 6 (, x)) I: (i—i& log 6 (¥, x))]x_l—[E (Z;ZB log 8 (7, x))]

Hence, if we assume that 8 (y, ) has no variable zeros at infinity, we can obtain
Abel’s theorem in the form

2—-dﬁ-—[ (d Bloga(_z/, r)>:| l: < BlogG(J,q)):'(x_a)_l,

wherein the summation on the left refers to all the zeros of 8 (g, #).

@-a)-1’

This is the form in which the result is given by Abel (@uvres Compl., Christiania, 1881,
Vol. i. p. 159, and notes, Vol. ii. p. 296), the right hand being obtained by actual
evaluation of the summation which we have written, in the last example, in the form

¢ (&)
RO F®

The reader is recommended to study Abel’s paper*, which, beside the theorem above,
contains two important enquiries ; first, as to the form necessary for the rational function
dI/dz, in order that the right-hand side of the equation of Abel’s theorem may reduce to a
constant, next, as to the least number of the integrals in the equation of Abel’s theorem,
of which the upper limits may not be taken arbitrarily but must be taken as functions
of the other upper limits. Though the results have been incorporated in the theory here
given (§§ 156, 151, 95), Abel’s investigation must ever have the deepest interest.

Fr. vi. Obtain the result of Ex. i. (§ 157) by the method explained in Ex. iv.

* Which was presented to the Academy of Sciences of Paris in Oct. 1826, and published by
the Academy in 1841 (Mémoires par divers savants, t. vii.). During this period many papers were
published in Crelle’s Journal on Abel’s theorem, by Abel, Minding, Jiirgensen, Broch, Richelot,
Jacobi and Rosenhain. (See Crelle, i—xxx. I have not examined all these papers with care,
Jiirgensen uses a method of fractional differentiation.)
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Ez. vii. Prove that the sum of the values of the expression
U.v
J b
wherein v is any linear expression in the homogeneous coordinates #z, y, z, U is any
integral polynomial of degree m+n—3, J is the Jacobian of any two curves =0, $=0,
of degrees n and m, and the line v=0, and the sum extends to all the common points
of f=0 and ¢ =0, vanishes, multiple points of f=0, ¢ =0 being disregarded.
Hence deduce Abel’s theorem for integrals of the first kind.
(See Harnack, Alg. Diff. Math. Annal. t. ix.; Cayley, Amer. Journ. Vol. v. p. 158 ;
Jacobi, theoremata nova algebraica, Crelle, t. xiv. The theorem is due to Jacobi; for
geometrical applications, see also Humbert, Liouwille's Journal (1885) Ser. iv. t. i. p. 347)*.

Ez. viii. For the surface
P=¢ (@) ¥ @), =f(2)
wherein ¢ (), ¥ («) are cubic polynomials in 2, prove the equation
1, 1y 25 M2 g; y
P PP T2 log (WE ) VG ) ¥ @2 VT T =0,

wherein x;, ,, £ and m,, m,, y are coresidual with the roots of ¢ (#)=0, and &, 7 are the
places conjugate to £ and y; conjugate places being those for which the values of x are
the same.

158. When the places , ..., 2o are determined as coresidual with
the fixed places a,, ..., a9, p—7—1 of the places z,, ..., zg are fixed by
the assignation of the others. Hence the p + 1 relations, which are given by
Abel’s theorem,

w4, +ujr =0,
Potp o+ P 0= log [Z(8)/Z ()],

cannot be independent. We prove now first of all that the last may
be regarded as a consequence of the other p equations. [In fact, if ), ..., xq
and a,, ..., ag be any two sets of places, such that, for any paths of integration,

g,
w4, +ur = Mw;y+ ...... + Mywip+ M5, + ...... + Mypo's p,

]

(E=1,2, ...,p), wherein uy°, ..., u; “ are any set of linearly independent
integrals of the first kind, w;,, ..., @, are the periods of the integral u;' °, and
M, ..., M', are rational integers independent of i, then there exists a rational
function having the places a,, ..., ag for poles and the places a4, ..., xq for
zeros.

For if +7% ..., v:’a be the normal integrals of the first kind, so that we
have equations of the form,
vy =Couy +Cipu,

* Further algebraical consideration of Abel’s theorem may be found in Clebsch-Lindemann-
Benoist, Lecons sur la Géométrie (Paris 1883) Vol. iii. Geometrical applications are given by
Humbert, Liouville’s Journal, 1887, 1889, 1890 (Ser. iv. t. iii, v. vi.).
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wherein C;,, ..., C; , are constants, and therefore, also,

Ciroj+.one. + C;, pwp,j =0 or 1, according as i % j, or ¢ =3,

and
/
C,;,la)',,]-+ ...... +C’,:,pwp,j=r,1,j,
we can deduce
z,,a, Zg By
7R +o " =M M 4 e+ My,
Consider now the funetion
Z, ¢ Z, C . Z, ¢
o +N2°  _%wi(M T .. M 5
Z(z)=e "™ %9 g 'y I (),

¢ being an arbitrary place.

Herein an integral, TI7 ’, , suffers an increment 27 when z makes a
circuit about the place z,; but this does not alter the value of Z (z). And

in fact Z(z) is a single-valued function of #; for the functions II; *, have
it 2

no periods at the first p period loops, while, if # describe a circuit equivalent
to crossing the i-th period loop of the second kind, the function Z () is only
multiplied by the factor

15

. a 29, .
2mri (vi L N +vi9 aQ) =2wi(M'y75, 1+ ... + M'p1;,p)

or ¢¥M; whose value is unity.

Further the function Z (z) has no essential singularities; for it has poles
at the places a,, ..., aq, and is elsewhere finite.

Since the function has zeros at ,, ..., g and not elsewhere, the state-
ment made above is justified.

Ez.i. 1t is impossible to find two places y, £ such that each of the p integrals uf Yis
zero. For then there would exist a rational function, given by

Z, @
€&y,

having only one pole, at the place y. (Cf. § 6, Chap. I.) Tt is also impossible that the
equations

vfy7=‘M'l+Mllfi,l+ ----- -+M,p"'i,p7

wherein M, ..., My, M',..., M', are rational integers independent of 7, should be
simultaneously true.

Ez. ii. If p equations, of the form
'vf""+vf”*=}{,~+M’1 Ti1Feeens M

exist, y; and y, are the poles of a rational function of the second order, and the surface is
hyperelliptic. (Chap. V. § 52.)
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159. In regard now to the equations

which express that the places ,,...,xy are coresidual with the places
&y, ..., aq, if T+ 1 be the number of ¢-polynomials which vanish in the places
@, ..., aq (Chap. VI. § 93), or (Chap. IIL § 27, 37) the number of linearly
independent linear aggregates of the form

C (@) + ... + CoQ, (),

wherein C,,...,C, are constants, which vanish in these places, then,
Q—p+7+1 of the places #,,...,29 can be assumed arbitrarily, and the
equations are therefore equivalent to only p — 7 —1 equations, determining
the other places of @y, ..., #g in terms of those assumed. This can be stated
also in another way : the p differential equations

du,- dui _ .
d—x—ldw,+ ...... +dwqde—0’ @=12,...,p),

express that the places =, ..., 2, are coresidual with the places «, + dz,, ...,
xy + dag; if the places #,, ..., 2, have quite general positions these equations
are independent ; if however 7+ 1 linearly independent linear aggregates, of
the form,

du du
C,=24 . =2 =
1 d..’L' + + Op dx 01
wherein C,, ..., €, are constants, vanish in the places z,, ..., x,, then the p

differential equations are linearly determinable from p — v — 1 of them.

Ex.i. A rational function having x,, ..., 7, as poles of the first order, and such that
ALy ..., A, are the coefficients of the inverses of the infinitesimals in the expansion of
the function in the neighbourhood of these places, can be written in the form

x ’
the conditions that the periods be zero are then the p equations
Qi (@) + o +2, Qi (2)=0, (i=1,2,...,p).

But, if we take consecutive places coresidual with «,..., 2, and 7,...,¢, be the
corresponding values of the infinitesimals at 2, ..., 7,, we also have
Q (@) tiF uenne +9; () t,=0;

thus, if the first ¢ (=@ —p+7+1) of ¢, ..., ¢, be taken proportional to A, ..., A,, we shall
have the equations
LA = eerene =ty /A,

Ex.ii. When the set #,...,%,, beside being coresidual with a,...,q,, has other
specialities of position, Abel’s theorem may be incompetent to express them. Forinstance,
in the case of a Riemann surface whose equation represents a plane quartic curve with
two double points, there is one finite integral ; if @, ..., @, represent any 4 collinear points,
and ay, ..., &, represent any other 4 collinear points, the equation of Abel’s theorem is

2], @ Ty G .
wH Bttt H=03
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but this equation does not express the fwo relations which are necessary to ensure that
Zy, ..., 2, are collinear; it expresses only that x,, »,, 3, 2, are on a conic, S, passing
through the double points, or that z,, z,, #,, z, are the zeros, and @, ..., @, are the poles
of the rational function S/LL;, where L=0 is the line containing a,, ..., a, and L,=0 is
the line joining the double points.

160. From these results there follows the interesting conclusion that
the p simultaneous differential equations

‘dzy =0, (¢=12,...,p),

have algebraical integrals, @ being > p,and u,, ..., u, being a set of p linearly
independent integrals of the first kind. The problem of determining these
integrals consists only in the expression of the fact that a,, ..., 2, con-
stitute a set belonging to a lot of coresidual sets of places.

The most general lot will consist of the sets coresidual with @ arbitrary
fixed places a,, ..., ag, in which no ¢-polynomials vanish. But the lot does
not therefore depend on € arbitrary constants; for in place of the set
@, ..., ay we can equally well use a set 4,,..., 44, whereof ¢, = @ — p, places
have positions arbitrarily assigned beforehand ; in other words, all possible
lots of sets of @ places with multiplicity ¢ can be regarded as derived from
fundamental sets of @ places in which ¢ places are the same for all. A4 lot
depends therefore on Q —q, =p, arbitrary constants, and this number of
arbitrary constants should appear in the integrals of the equations (Chap. V1.
§ 96).

We may denote the @ arbitrary places, with which #,, ..., 2, are coresidual,
by 4,,...,44, a,,...,a,, so that A4,,..., 4, are arbitrarily assigned before-
hand, in any way that is convenient, and the positions of a,, ..., «, are the
arbitrary constants of the integration.

Then one way in which we can express the integrals of the equations is
as follows: form the rational function with poles, of the first order, in the
places z,, ..., 2y, and determine the ratios of the ¢ + 1 homogeneous arbitrary
coefficients entering therein, so that the function vanishes in 4,,..., 4,.
Then the function is determined save for an arbitrary multiplier, and
must vanish also in a,, ..., @,. The expression of the fact that it does so
gives p equations, each containing one of a,, ..., @, as an arbitrary constant.

From these p equations we may suppose p of the places =, ...,xz,, say
@y, ..., &p, to be expressed in terms of a,,...,a, and x4, ..., 2, (and
4,,...,4,). The resulting equations may be derived also by forming the
general rational function with its polesin a,, ..., a,, 4,, ..., 4, and eliminating
the arbitrary constants by the condition that this function vanishes in
&j, &pia, Tpya, -+-, Lo, ¢ being in turn taken equal to 1, 2, ..., p.

B. 15
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For example, for Q=p +1, if ¥ (2, a; 2, ¢,..., ¢p) denote the definite
rational function which has poles of the first order in the places z, c,, ..., ¢,
the coefficient of the inverse of the infinitesimal at the place z being
taken = — 1, which function also vanishes at the place @ (Chap. VIL. § 122),
then a complete set of integrals is given by

V(a, A5 @, &1y, ) =0=.... =Y (ap, 4 Tpir, @1, ..., Zp),
and a complete set is also given by
V(@ Tpa; A, 0, een, @) =0= oo = (&, Tppas A, 4y, ap).
The first of these integrals is in fact the equation
du, du, du, -0,

I 3 .
dz,’ dx, > dapy

duy  du, dup
d$l ] d 2 - s dwp-l-l
dP dP dP

d"Tw"l, ﬂ;: . ) dwp+1
wherein P=P7" %, and may be regarded as derived by elimination of
dzy, ..., dzyy, from the p given differential equations and the differential of
the equation (§ 156)

Z, C
s €y P Tp1
P+ A PO =0,

which holds when (zy, ..., #p1.), (1, ..., Cpt1), and (4, a,, ..., a,) are coresidual
sets.

Ex. i. For p=1, the fundamental equation being y%2=(z, 1),=MA%*+..., shew that the
differential equation

d‘_z‘l+d‘_z'2=0

K71 Y2

Nitd \, _atd
.vl—w+hxl_x2—a+m2’
where b2=(a, 1),. (Here the place 4 has been taken at infinity.)
Shew also that this integral expresses that the places (z, %), (%g, ¥3), (@, —b), are the
variable zeros of the polynomial —y+p+ gz —Az? when p and ¢ are varied.

has the integral

Ez. ii. For p=2, the fundamental equation being z%2=(z, 1)4=A%%+..., using the
form of the function y (z, @; 2, ¢, ..., ¢p) given in Ex. ii. § 132, Chap. VIL, and putting
the place 4 at infinity, obtain, for the differential equations

%+o!£2+d_x3=0, xld.@',+x2dx2+x3dx3=0’
. B Y Ys K3 Y2 Y3
the integral
N + Y2 + KA + b =-2
(wy—a) F' (z)) ~ (vy—a) F'(23) " (23— a) F' (23) * F (a)

wherein F (2)=(x—,) (v — x;) (v—x3), b2=(a, 1);, and the position of the place (a, b) is
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the arbitrary constant of integration. By taking three positions of (&, b) we obtain a
system of complete integrals.

Shew that this integral is obtained by eliminating p, ¢,  from the equations which

express that the places (21, 9y), (%, ¥2)» (%3, ¥s), (@, b) are zeros of the polynomial
—Y = AP+ pat+gzr+r.

Ez. iii. For the case (p=3) in which the fundamental equation is of the form

I @ 2)=(2, s+ (@ 9)s+ (@ 9o+ (2, yh=0,

(@, ¥), being a homogeneous polynomial of the fourth degree with general coefficients, etc.,
prove that an integral of the equations

da, dx, dz, dz, 2,day pdz
] + 5 + % ] +etc-=0, E e ete. =
F@ e F e T Fu 7y
is given by
(21 3; 4) Ul+(31 11 4) Uz+(1: 2; 4) US‘(L 2a 3) U4=O,
where 2 3, 4)=| 2, z; x| etc,
Y2 Ys Ys
1 1 1
f(g Ly -Z‘.;)
and U;=

z; (2;— @) (?/i ~2 xi) ,

7 (b, @) being =0, and the position of (e, b) being the arbitrary constant of integration.
A complete system of integrals is obtained by giving (@, b) any three arbitrary positions.
To obtain these equations the place 4 has been put at z=0, y=0.

Ex. iv. When the fundamental equation is 2*+z*=1, shew, putting the place 4 at
z=1, y=0, that, as in Ex. iii, we have integrals of the form

(21 3, 4) Ul+(3) 1, 4) U2+(11 2, 4) Ua_(lv 2, 3) U4=01
wherein
22 (2a%2—a+1)—2;(a+1)2+a?—a+2

Ui= (@15~ (@m-1)b :

and a?+bt=1.

161. The method of forming the integrals of the differential equations
which is explained in the last article may also be stated thus: take any
adjoint polynomial ¥+ which vanishes in the @ places 4,, ..., 4,, a,, ..., ay;
let O, ..., Cp be the other zeros* of +r; let the general adjoint polynomial
of the same grade as 4, which vanishes in C,, ..., Cy, be denoted by

h‘\!" + M‘\h + ...... + Xqiqu,

A A, .., Ay being arbitrary constants. By expressing that the places
@i, Tpia, Lpis, .., Lo are zeros of this polynomial we obtain a relation
whereby =; is determined from 4, ..., %o in terms of the arbitrary positions

* Beside those where f’ (y) or F' (y) vanishes (cf. Chap. VI. § 86).
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t,...,ap (and A4,,..., 4,). By taking t=1,2,..., p we obtain a complete
system* of integrals.

Now instead of regarding the set 4,,..., 45, a,, ..., @, as the arbitrary
quantities of the integration, we may regard the set C,,..., C; as the
arbitrary quantities, or, more accurately, we may regard the p quantities
upon which the lot of sets coresidual with C,,..., C; depends, as the
arbitrary quantities. To this end, and under the hypothesis that no
¢-polynomials vanish in the places C,,..., O, imagine a set of places
B, ...,Bgp, by,..., b, determined coresidual with C,,..., Oz, in which
B,,..., By, have any convenient positions assigned beforehand, so that the
lot of sets coresidual with C,, ..., Cg depends upon the positions of b,, ..., b,.
Let a general adjoint polynomial with ¢ + R variable zeros be of the form

0O =pud+ /1-131 +..... + ,u.kS;,,

wherein g, ..., py are arbitrary constants, and % is for shortness written for
@+ R—p. Then an integral of the differential equations under con-
sideration is obtained by expressing that the places

Bl) asey BR-p’ bl) ceny bp, x;, Zpy15 Lptos «oe5 Lo

are zeros of the polynomial ®; and a complete system of integrals is
obtained by putting < in turn equal to 1, 2, ..., p.

Similarly a complete set of integrals is obtained by expressing that
the places
Zyyeeny Ty, Tpgay oovs Tg, 0g, By oony, Bpp

are zeros of the polynomial ®, ¢ being taken in turn equal to 1, 2, ..., p.

In this enunciation there is no restriction as to the value of R, save that
it must not be less than p.

Ez.i. For the general surface of the form

S (@ 2)=(# 9)s+ (2, ¥)a+ (%, 9)s+(7, ) +constant=0,
a set of integrals of the equations

4 day 4 zdr; & yde;

S =0, S 5——==0, 3%5==0

S @) o @)
is given by oy Bt om oy 1(=0,

T Ty Yt Ty Yo
Z? Tys Y T3 Y3
T mYy Y Ty Yy
a’ ab; b a; b

A2 AB B* A B

[ o

* And we can of course obtain quite similarly a set of p integrals, each conneeting
Zy, ..., Ty, 4y, ..., 4,, and one of the arbitrary positions a,, ..., ap.
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where f (b;, a;)=0, f (B, 4)=0, ¢=1, 2, 3, and the place (4, B) may be taken at any
convenient position.
Eg. ii. Taking as before =p+1, and considering the hyperelliptic case, the funda-
mental equation being
Yr=(y D)gp g =N+ 24y ¥l ,
we require a polynomial having £+p+1 variable zeros: such an one is
0= —y+AxPr 14+ FxP 4+ GaP~14...... + H,
R being equal to p, and we have
(A2atp+2ppatr 1y Y— QP ip For4 o+ H) =(u—-2\F) F (2) ¢ (),
where £ () =(x— &y)eene. (=241 G (@)=(x—0y)...... (@ —by).
An integral of the differential equations may be obtained by eliminating £, G, ..., #
from the equations expressing that the places
by vy bpy iy Tpay
are zeros of the polynomial ©, or from the equations expressing that
X1y ey py Tpi1y bi
are zeros of this pol‘.ynomial, and a complete system of integrals, in either case, by taking
Zin turn equal to 1, 2, ..., p.

Or a complete system of p integrals may be obtained by eliminating #, G,..., H from
the 2p+1 equations obtained by equating the coefficients of the same powers of » on the
two sides of the equation.

We may of course also take © in the form
—y+ExPt1 4+ Far4 .. +H;

then R=p+1, and the places B, ..., B,_, are not evanescent ; putting the place B, at
infinity we obtain E=X, as above.

Ex. iii. The integration in the previous example may be carried out in various ways,
By introducing again a set of fixed places a,, ..., @y, 4, coresidual with xy, ..., 2, 2p+q,
we can draw a particular inference as to the forms of the coefficients 7, @, ..., H. For if
U (x) denote AzP*14+FzP+...+ @, and U, (2) denote what U (x) becomes when zy, ..., 2p
take the positions ay, ..., a,, 4, the coefficients F, G, ..., H being then F,, G, ..., H,,
and also Fj (z)=(x—a)...... (z—ap) (x—A), then, because each of the polynomials
—y+ U (), ~y+ U, (x) vanishes in the places by, ..., b,, the polynomial U (x)— U, (x)
must divide by ¢ (), namely U ()= U, (#)+¢ ¢ (), where ¢ is a variable parameter ;
or, if we write ¢ (z)=wP+¢, 2P~ 1+...... +12py 41y .eey tp being then regarded, instead of
b4y vuuy by, as the arbitrary constants of the integration, we have

F=F,+t, G=Gy+tt}, ......... , H=H,+1,,

and the quantities G —¢, F,..., H—t, F are constants in the integration, being unaltered
when the places 2, ..., Z,+, come to @y, ..., a,, 4. Hence we can formulate the following
result : let the p+1 quantities Fy, Gy, ..., H, be determined so that the polynomial
—y+ U, (#) vanishes in the fixed places ay, ..., a,, 4. Then denoting (z— a,)...(x —ay)
(x—A4) by F,(z), the fraction

[y*— U (@))/ Fy (2)

is an integral polynomial; denote it by (u—2FyX) (x¥+¢, aP~14...... +1t,), so that
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Pos £1s+ey tp are uniquely determined in terms of the places a,..., a,, 4, and put
F () for a;P+t1 P14 L. +¢,. Then #,,..., 2,, are the roots of the equation

=l f:)(:)t¢ (‘”)]2 —2F,7) Fy (2)—2t Uy ()-8 ¢ (x)=0;

and the set 2y,..., £y varies with the value of ¢, which is the only variable quantity
in this equation. By equating the coefficients of the various powers of z in the
polynomial on the left-hand side of this equation to the coefficients in the polynomial
(u—2Fy\) F (z), we can express each of the symmetric functions

hy=2 254 2125+ ...... 2 Zp sy
as rational quadratic functions of a variable parameter ¢, containing definite rational
functions of the variables at the places a,..., a,, 4 ; the place 4 may be given any

fixed position that is convenient ; the positions of the places a,, ..., @, are the arbitrary
constants of the integration.

Ex.iv. By eliminating ¢ between the p+1 equations obtained at the end of Ex. iii.
we obtain the complete system of p integrals. In particular any two of the quantities
hyy hgy ... are connected by a quadratic relation, and any three of them are connected by
a linear relation (Jacobi, Crelle, t. 32, p. 220).

Ez. v. From the equation

U(x)_ P“ Yr
F@y M2 @oa) F @)
we infer

F+)JL1— 2 F’ p—2FA=p+22\2%, ~ 2) 2 F

( F(a)’ F (z,)’
where ;=2 +...+%p4;; hence if a be the value of z at a branch place of the surface,
we have from Ex. ii.

p+1 r
Fla) [” Ny ae )] = (@ w2 - 3 2 )l

and if, herein, a be put in turn at any p of the branch places of the surface, the resulting
values of ¢ (a) may be regarded as the arbitrary constants of the integration, and the
resulting equations as a complete set of integrals ; and if A=0, as we may always suppose
without loss of generality (Chap. V.), we thus obtain the p integrals

p+1 .
(ai"'xl)‘"(ai_xn-l'l) 1(01'--'”1-) F’ (-% )]2 Cis (2=1, 2y cesrnsy P)

0, ..., C, being the constants of integration (Richelot, Crelle, xxiii. (1842), p. 369. In this
paper is also shewn how to obtain integrals by extension of Lagrange’s method for the

case p=1. See Lagrange, Theory of Functions, Chap. 1., and Cayley, Elliptic Functions,
1876, p. 337).

Ex. vi. By comparing coefficients of #2? in the equation of Ex. ii., we obtain
v— (NG + F)=(u—2\F) (t,~ hy),
where A;=x,+...+2,,,; hence prove that

Pl gy \? )
{r \F (xr)} —p (@t 2y ) N (2t oy )P == - 2N (G=FY) ;
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by Ex. ii. the right-hand side is a constant in the integration ; hence this equation is an
integral of the differential equations ; in particular if A=0, u=4, which is not a loss of
generality, we have the integral
p+1 2
Byt e+ Zpy +0= T
1 P+1 i' — 1 F (xr)

where C'is a constant ; this is a generalization of the equation, for p=1,

purpo+p et (580

(cf. Ex. i. § 157).

Ez. vii. Shew that if the fundamental equation be

Pr=(m, 1P +2=N2 2P+ 24 pa®+ 1, 4 L+ M,
then another integral is
+1
ey p 1’1-2 ¥ (x,.):' ( .Z‘,,lﬂ) ol ;1 o -”p+1) = Const.

(Richelot, loc. czt.)

Ez. vili. If ay, a; be the values of x at two branch places of the surface, obtain the
equations

(ag=2p).cai=2p41)  /(ag—21)eee... (ap=%p4y) .
(ag—A)......(a,-—Zp) (ag— A)vee(@g— ) =(1+ppi)?

wherein the quantities 4,..., @, are the values of # at fixed places coresidual with
Zyyeeey Zpe1y pi 18 an absolute constant, and u is a parameter varying with the places
Zyyeeey Tpseq. Take ¢ in turn equal to 1,2, ..., (p+1), and, eliminating u, we obtain a
complete set of integrals. In particular if the left-hand side of this equation be denoted
by G; we have such equations as

(G:—1) p; pr(pi — i) +(G5— 1) pr pi o — pi) + (G — 1) pi pj (pi — pj) =0.
(Weierstrass, Collected Works, Vol. 1. p. 267.)

162. The proof of Abel’s theorem which has been given in this chapter
can be extended to the case of an algebraical curve in space. Taking the
case of three dimensions, and denoting the coordinates by «, y, z, we shall
assume that for any finite value of =, say #=a, the curve is completely given
by a series of equations of the form

z=a+4H", z=a+ L%, L , &= + %,
y=P () , y=P @) ,......... yy=Pp (&) (D)
Z=Q1 (tl) N Z=Q3 (tz) 3 sesssraes B Z=Qk (tk) 5

wherein w, + 1, ..., wp+ 1 are positive integers, &, ..., & are infinitesimals,
and Py, @, ..., Py, Q, denote power series of integral powers of the variable,
with only a finite number of negative powers, which have a finite radius
of convergence. The values represented by any of these & columns, for all
values of the infinitesimal within the radius of convergence involved, are the
coordinates of all points of the curve which lie within the neighbourhood
of a single place (cf. § 3, Chap. 1.); the sum

(w+ 1)+ (w,+1)+...... +(wp+1)
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is the same for all values of z, and equal to n, the order of the curve. A

similar result holds for infinite values of z; we have only to write .}c for z — a.

We assume further that any rational symmetric function of the n sets
of values for the pair (y, z), which are represented by the equations (D), is a
rational function of .

Then we can prove that if R (z, y, z) be any rational function of «, y, z

the sum of the coefficients of ¢=! in the expression R (=, y, 2) C(% , at all the
k places of the curve represented by the equations (D), is equal to the

coefficient of ml; in the rational function of z,

U@=R(zy,z)+R (=10 2)+..... + R (2, Yn, 2n).
And further that the sum of the coefficients of ¢! in R (z, v, 2) % at all

.. . . 1. .
the places arising for =0 is equal to the coefficient of — L the expansion
of the same rational function of z, namely, equal to the coefficient of ¢~ in

dz 1
U () &’ when z=7.
Hence, the theorem

(v %],

which holds for any rational function, U (z), of a single variable (as may be
immediately proved by expressing the function in partial fractions in the
ordinary way), enables us to infer, in the case of the curve considered, that
also

dz
[B@ua% -0

By this theorem, applied to the case

1 d dz
[R (=, y, 2) dz Ry, 2) d_t:It“ =0,

we can prove that the number of poles of R («, ¥, z) is equal to the number
of its zeros, and therefore also equal to the number of places where R (z, y, 2)
has any assigned value u, a place being counted as r coincident zeros when
the expression, in R (z, y, 2), of the appropriate values for z, y, 2, in terms
of the infinitesimal, leads to a series in which the lowest power of ¢ is ¢";
similarly for the poles.
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Hence, if I be any integral of the form [E (, y, z) dz, we can apply
this theorem in the form
(d_f 1N )
dt Z — ;l,)t"‘ v

Z being any rational function of z, y, z, and so obtain, as before (§ 154, 155),
the theorem

Ty, @y Tps G _ dlfo i - )
% T "(EZ g lg (Z-w),,

and if Z is of the form 6, (z, y, 2)/6, (2, y, z), where 0,, 8, are integral poly-
nomials, we can put the right-hand side

A, 6,(z,9,2)
= [m 10g g (s y, z)]t"‘ ’

wherein @, ..., 2z are the places at which Z=0, or 6, (z, ¥y, 2)=0, and
@, ..., a; are the places where Z=ow or 6, (2, y,2)=0, and the places
to be considered on the right hand are the infinities of df/dt.

The reader may also consult the investigation given by Forsyth, Phil. Trans., 1883,
Part i. p. 337.

Take for example the curve which is the complete intersection of the cylinders

Y= (1-2)
2=z

For any finite value of z, except 2=0 or x=1, we have 4 places given by

y= i\/x_(IT.z), = t\/‘;

For infinite values of &, putting x=;l.~,, we have two places given by

.1 .1
y=1 t_2+"' , Yy=—1 t_2+"' ,

==

1 1
t ’ t

For =1, putting x=1+ ¢, we have two places given by

y=u+... , Y=1t+... ,

z=+(1+32+...), z=—(1+4624...) .
For =0, putting =12, we have two places given by

y=t (1-%2-...), y=—t(1-4%2— ),

=t B =t N

and, at ¥=0, y=0,:=0, do:dy :dz=2t:1:10or =2t :=1:1=0:1:10r =0:-1:1
s0 that there is a double point with @=0, y= + 7 for tangents.

Consider now = f Oy%' , from the intersections of z+ ax+by=0 to those of z4+d'x+b'y=0.
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dl  1dx

Put 7= f ‘;’“—Z ; then @’ when 2 is near to 0, has, for one value,

di’ "y d
1 2 2
1+-% o
. z+a'z+by t+a'?24+b't (1—42%..) 140 1+ "
while log z+azr+by =log t+at?+0t (1—422..) =log 1+b 142
+—+...
1+5
1+ o o
=log '1‘+—b—+(1+_b'—m) ... ,
T tZI zt+adz+by . 140
and the contribution to the sum ( & log e¥astby ) ;118 2 log 146

If we take the other place at =0 we shall get, as the contribution to
(CZI o z+a’x+b’g)
di 8 stax+by) -V’
1-¥
1-%°

Thus, on the whole we get, at £=0,

the quantity —2 log

140 1+4b
210g (ITb, 1—_—b .

It is similarly seen that no contribution arises at the places x=1, x=wo.

Thus on the whole

du; f dz, <1+b’ / l+b)
W _—glog (L7 / 1E2)
z »\/1—.2:,+ 2y N1 =2, B\i-v/ 1=

Now from the equations 2z, +ax, +by,=0, 2z,+ax,+by,=0, we find

_AaMTH
= ey m’
and thus
fx‘ i; fx‘ _df:=210 vz (1—"72)‘\/-%727(1_‘”1)“"\/@
zN1-z zNl-z \/xl(l_xz)—\/xz(q)-\/@+\/-;l

which is a result that can be directly verified.

[162

—Va +constant



