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CHAPTER VIL

COORDINATION OF SIMPLE ELEMENTS. TRANSCENDENTAL UNIFORM
FUNCTIONS.

120. WE have shewn in Chapter II (§§ 18, 19, 20), that all the funda-
mental functions are obtainable from the normal elementary integral of the
third kind. The actual expression of this integral for any given form of
fundamental equation, is of course impracticable without precise conventions
as to the form of the period loops, and for numerical results it may be more
convenient to use an integral which is defined algebraically. Of such
integrals we have given two forms, one expressed by the fundamental
integral functions (Chap. IV. §§ 45, 46), the other expressed in the terms of
the theory of plane curves (Chap. VI. § 92, Ex. ix.). In the present Chapter
we shew how from the integral P, obtained in Chap. IV.*, to determine

algebraically an integral ¢'" for which the equation @ =@® has place;

z, @

incidentally the character of P, ., as a function of z, becomes plain; and

therefore also the character of the integral of the second kind, £ “, which
was found in Chap. IV. (§§ 45, 47).

This determination arises in close connexion with the investigation of
the algebraic expression of the rational function of # which was obtained in
§ 49 and denoted by ¥ (z,a; 2, ¢, ... ¢;). It was there shewn that every
rational function of # can be expressed in terms of this function. It is shewn
in this Chapter that any uniform function whatever, which has a finite
number of distinet infinities, which may be essential singularities, can be
expressed by such a function.

Further, it is here shewn how to obtain an uniform function of # having
only one zero, at which it vanishes to the first order, and one infinity; and
that any uniform function can be expressed in factors by means of this
function.

* For the integral of the third kind obtained in Chap. VI. the reader may compare Clebsch
and Gordan, Theorie der Abel. Functionen (Leipzig, 1866), p. 117, and, for other important results,
Noether, Math. Annal. xxxviL (1890), pp. 442, 448; also Cayley, Amer, Journal, v. (1882), p. 173,
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121. Let u”, ..., u," denote any p linearly independent integrals of
the first kind, vanishing at the arbitrary place a. Let ¢ denote the infinit-

esimal at x, and let Duj,...... , Du, denote the differential coefficients of the
integrals in'regard to ¢, all of which are everywhere finite. Let c, ..., c,
denote any p fixed places of the Riemann surface, so chosen that no linear
aggregate of the form

AMDu . + N Dy,

where A, ..., A, are constants, vanishes in all the places ¢, ..., ¢,, but such
that one linear aggregate of this form vanishes in every set of p — 1 of these
places*; and let w;(«) denote the linear aggregate, of this form, which
vanishes in all of ¢, ..., ¢, except ¢;, and is equal to 1 at the place c;.

Then o;(x) is expressible as the quotient of two determinants; the
denominator has Du;" for its (r, s)th element, the numerator differs from the
denominator only in the i-th row, which consists of the quantities Duy, ...,

Du; thus @, (@), ..., 0y (2) are determinable algebraically when Uy, oen,y Uy aTE
given. Conversely the differential coefficients of the normal integrals of the
first kind (§§ 18, 23) are clearly expressible by w, (), ..., @, (), in the form

Q)= () Q;(c) + ...... + wp (@) Q; (cp)-
We have already used +;“ as a notation for the normal integral

%rz f zﬂi (#) dt;. In this chapter we shall use the notation V"= f ’ w; (z) di.

If the period of the integral «; “ at the j-th period loop of the first kind +
be denoted by C;;, we can express v;'" as the quotient of two determinants,
the denominator having C;; for its (¢, j)th element, and the numerator being

different from the denominator only in the ¢th row which consists of the

z,
elements u?%, ..., u ‘,

122. Consider now the function of # expressed} by
e  § w, (2) T
z r=1 ‘r

2 being any place whatever. The function is clearly infinite to the first
order at the place z, like —t ', ¢, being the infinitesimal at z; it is also

infinite at each of the places ¢, ..., ¢y, and, at ¢;, like w; (2) t;l, t,, being the
infinitesimal at ¢;, The function has no periods at the period loops of the

* Thus there exists no rational function infinite only to the first order at each of ¢, ..., ¢p.
Cf. §§ 23, 26.
+ C,,; is the quantity by which the value of u;* on the left side of this period loop exceeds

the value on the right side. See the figure, § 18, Chap. II.
+ Klein, Math. Annal. xxxv1. p. 9 (1890), Neumann, loc. cit. p. 14, p. 259.
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first kind. At the 4th period loop of the second kind the function has the
period

Q)= 3 0.(2) Ui(er),
r=1

which, as remarked (§ 121), is also zero. Hence the function is a rational
Junction of «. It vanishes at the place a. We shall denote the function by
Vv (@, a; 2,0, ..., 6). Itis easy to see that it entirely agrees, in character,
with the function given in § 49.

For the places c,, ..., ¢, have been chosen so that no aggregate of the
form

M (@) + e +2,Q, (%)

vanishes in all of them. Hence (Chap. III. § 37) the general rational function
having poles of the first order at the places 2, c,, ..., ¢, 1s of the form Ag+ B,
where ¢ is such a function, and A4, B are constants. These constants can be
uniquely determined so that the residue at the pole, 2z, is — 1, and so that
the function vanishes at the place a.

Ez. TFor the case p=1, if we use Weierstrass’s elliptic functions, the places z, a, 2, c,
being represented by the arguments u, a, v, ,, and put x=@u, y=¢’ (u) etc., we may
take, supposing » not to be a half period,

Zs

« 1 _eo
L - g t-tan-2e-0 ], 0= G2,

P::a=_@(1_h) [(<u—71)—§(a—yl)—%(u—a):l,
and obtain
V(r,a; z cl)=—§71,v{§(u—v)—{(u—-yl)__((a_fy)+£(a_yl)}’
or

v n ey [CO=DEE =) ¢ a0t =y,
TR L P—0)-P(-y)  Pla—0)-Pla-y)]’
and any doubly periodic function can be expressed linearly by functions of this form,
in which the same value occurs for y; and different values for ». (Cf. § 49, Chap. IV.)

123. Since w;(2), = diit— Vf’ °, is a linear function of Q,(2),..., £,(2), it
Z

follows that ;(2) / % is a rational function of z; and I'7? = % 2,
e

is a rational function of z; hence

_ d z, a dz . * TV a idf
_((EHZ,C) & is such that I‘: /dt

* Throughout this chapter such an expression as f (z) g—j is used to denote the limit, when a

variable place { approaches the place z, of the expression f(£) %, t being the infinitesimal for
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V(z, a5 2, ¢ ..., Cp) / 3—: is a rational function of z. It is easy also to see,

from the determinant expression of ;(z), that w;(2) %ll% is a rational function
of ¢, ..., Cp

Hence ¥ (2, a; 2, ¢, ..., cp)/ % s a rattonal function of the variables of
all the places x, a, 2, c,, ..., cp.

Further, as depending upon 2z, ¥ (z, @ ; 2, ¢, ..., ¢,) is infinite only when

['®? is infinite; and I % = - II” %, is infinite only when z is at x or at a.
z z dtz z,a

At the place z, l": ¢ is infinite like dig— log ¢, namely like the inverse of the
infinitesimal at the place z.

Hence ¥ (z, a; 2, ¢, ..., ¢), regarded as depending upon z, is infintte only
when z is in the neighbourhood of the place x, or in the neighbourhood of the
place a. At the place z, ¥ (2, a; 2, ¢, ..., ¢p) s nfinite like the positive
tnverse of the infinitesimal, at the place a it is infinite luke the negative inverse
of the infinitestmal. The rational function of z denoted by

dz
Y(z, a; 20, ..., cp)/‘%

will therefore be infinite at the place x like
B
w,+1z—a
wind at the places @, a respectively; and will be infinite at every branch

and at the place a
w+1z—2

like — , where w, + 1, w, + 1 denote the number of sheets that

place, like t being the infinitesimal at the place, w 4+ 1 the number

A
(w+1)”
of sheets that wind there, and 4 the value of ¥ (z, a; 2 ¢, ..., ¢p) when z is
at the branch place.

The actual expression of the function ¥ (z, @; 2, ¢, ..., ¢p) is given below
§ 130).
124. From the function Y (2, a; 2, ¢, ..., ¢p) We obtain a function,

'z ?
— V(@ a5 z,0,..., cp)dtz n*é-zs vrer>®
E(w’ z):efc ’ ! , =€ me a7

wherein ¢ is an arbitrary place, which has the following properties, as a
function of .

3

the neighbourhood of the place z. When 2z is not a branch place :% =1; when w+1 sheets wind

at z, Z—i:(w+1) tv (cf. §§ 2, 3; Chap. I.). Ample practice in the notation is furnished by the
examples of this chapter.
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(1) It isan uniform function of 2. For the exponent has no periods at
the period loops of the first kind, and at the sth period loop of the second
kind it has the period

2™ — & VF° i (c,)
r=1
which, as follows from the equation
Q;(2)=w,(2) Qi (c)) + ...... + 0, (2) Q; (¢p),
is equal to zero. Further the integral multiples of 2r¢, which may accrue

to I17 % when z describes a contour enclosing one of the places 2, ¢, do not
alter the value of the function.

(i1) The function vanishes only at the place z, and to the first order.
(iii)) The function has a pole of the first order at the place c.
(iv) The function is infinite at the place ¢;, like R t., being the

infinitesimal at the place. We may therefore speak of ¢, ..., ¢, as essential
singularities of the function.

125. In order to call attention to the importance of such a function
as this, we give an application. Let R (x) denote a rational function, having

simple poles at ay, ..., a,, and simple zeros at B3i, ..., B,n. We suppose these
places different from the fixed places ¢, @, ¢,, ..., ¢,. Then the product
E &, ) e E(z, ap

E( /31 veveee B (@, Br)’
is an uniform function of #, which becomes infinite only at the placesc,, ... ¢,;
at ¢; it is infinite like a constant multiple of

m

por Br ¢
e r=1 %

Now, in fact, log F(«) is also an uniform function of z: for it is only

. . . = ar, Br z, @
infinite at the places ¢, ..., ¢y, and, at the place c;, like — ( 2V, )l"

r=1 @
Hence the integral f dlog F(z), = f o (.z') dez, taken round any closed area

on the Riemann surface which does not enclose any of the places ¢y, ..., ¢, is

certainly zero, and taken round the place ¢; is equal to — 2 v Br f dt %, taken

re1
round c;, and is, therefore, also zero.

But an uniform function of # which is infinite only to the first order at
each of ¢, ..., ¢, does not exist. For the places ¢, ..., ¢, were chosen
so that the conditions that the periods of a function, of the form

z, G 8, G
xlr‘cl Foinnns + )‘?Pc,, f
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wherein A,, ..., A, are constants, should be zero, namely the conditions
MO () + s + 2,0, (cp) =0, r=1,2...,p

are impossible unless each of Ay, ..., A, be zero.

m
Hence we can infer that 2 V:” fr=0,fori=1,2,..., p, and that F (z) is

r=1
a constant; this constant is clearly equal to F(a), for £ (a, z)=1 for all
values of z.

Hence, any rational function can be expressed as a product of uniform
functions of , in the form

R(2)=R(q) g(w, B)...... g(x, Bm) ’
E(z, a)...... E(z, an)
where a,, ..., a,, are the poles and B,, ..., B,, the zeros of the function. We

have given the proof in the case in which the poles and zeros are of the first
order. But this is clearly not important.

Further, the zeros and poles of a rational function are such that

12" Viur’c= g Vf,-»", i=1, 2, s
r=1 r=1
¢ being an arbitrary place. This is a case of Abel’s Theorem, which is to be considered in
the next Chapter. We remark that in the definition of the function X (z, z) by means of
Riemann integrals, the ordinary conventions as to the paths joining the lower and upper
limits of the integrals are to be regarded ; these paths must not intersect the period loops.

Ez 1. For the case p=0, l:[:":=log <:‘::~'Z Z%Z) and Z (x, z)=§-%§ .

Ez. ii. For the case p=1, supposing the place ¢ represented by the argument v, we
have

V(@ a5 2 ey &)= —ﬁv){f(u—v)—c<u—y1>—c<a—v)+<<a—n>}

tog B, 9= [ 4003 5,61 s )82 == [ do g =)=t lu—y)= L a=) ¢ (a=)

~1og ZE=D 220 - ¢ (w—y) ~¢ @),

and therefore
_o(u=2)a(a—y) @-nEE-y)-¢a-y)]
SRl e P s '
Exz. iii. Prove, if &, ¢ denote any places whatever, that

— — A o ’
E@)E @, d)_, n:’ :’f,— s Ve rj-“
= = .= » & =1 i .
E(x, ¢) E(d, 2) ' ‘

Ez. iv. The rational function of 2, ¥ (z, {; 2, ¢;, ..., ¢,), Will, beside ¢, have p zeros,
84y Y1, -« ¥p, Such that the set ¢, y;, ..., ¥, is equivalent with or coresidual with the set
2, ¢y, ooy Cp (§§ 94, 96, Chap. VL). Hence, in the product

V(@ 5 500, s ) (25 & Y1y oes Yo
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the zeros of either factor are the poles of the other, and the product is therefore a constant.
To find the value of this constant, let x approach to the place z. Then the product

becomes equal to
—t e [ D (%25 & Y1y oo s Yodle=s-

It is clear from the expression of y(#, @; 7 ¢, ..., ¢,) which has been given, that
D (x, a; 2 cq ..., ¢y) does not depend upon the place @. Thus, by the symmetry, we
have the result

‘l’ (x) €3 2 Cry eens ) “’(xa z; & Y15 «-es ')’p)= —D,*{r(z, as; ¢ Yis «o0y 'Yp)
= —Dg‘l’(fa @35 2 Cpy eney cp)’

where a is a perfectly arbitrary place, and the sets z, ¢,, ..., ¢,, {; y15 --.» ¥p are subject to
the condition of being coresidual.

Hence also if W (z; 2, ¢y, ..., ¢,) denote the expression
DI[“’ (Z, a5 2 ¢y ..uy cp)_rz,a],

W(z; ¢ V15 oers Yp)= W((5 2615 oees o)y
provided only the set z, ¢, ..., ¢, be coresidual with the set ¢, v, ..., vp.

we have

Ez.v. Prove, with the notation of Ex. iv., that
V(@ a5 20 s )V (205 & Y1y oees V)=V (& 5 5 015 ey )V (@5 @5 6 1y ooy 'Yp)'

126. These investigations can be usefully modified*; we can obtain
a rational function r(z, @; z c¢), having the same general character as
V(2 a; 2 ¢, ..., ¢p) but simpler in that its poles occur only at two distinct
places z, ¢, of the Riemann surface, and we can obtain an uniform function
K (x, z) having only one zero, of the first order, at the place 2z, which is
infinite at only one place, ¢, of the surface.

The limit, when the place # approaches the place ¢, of the rth differential
coefficient of Q;(x) in regard to the infinitesimal at the place ¢, will be
denoted by Q% (c), or simply by Q. We have shewn (Chap. IIL § 28)
that there are certain numbers &, ..., k&, such that no rational function
exists, infinite only at the place ¢, to the orders k;, ..., k. The periods of a
function of the form

-1y, a k-1 o, a fep—1 @
DEITEe A DI —2, DEPITEY,
wherein A,, ..., A, are constants, and D’c‘_1 F:’“ denotest the limit, when z

approaches ¢, of the kth differential coefficient of the function II? ¢ in regard
to the infinitesimal at ¢, u being an arbitrary place, are all of the form

D0V =2 Q7Y (=12, ..., p).
These periods cannot all vanish when % is any one of the numbers
ki, ..., kp; thus the determinant formed with the p? quantities Qik”'l) does

* Giinther, Crelle, cix. p. 199 (1892).
1 For purposes of calculation, when ¢ is a branch place, it is necessary to have care as to the
definition.
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not vanish; but A,, ..., A, can be chosen to make all these periods vanish
when £ is not one of the numbers £, ..., k,.

127. Consider now the function

Y(za;20=|T7" , L@, ., Q) || Q8D ., ol
Dkr—l I—W, a, Q(kr-l)’ ., Q(kr‘l) ! QU@-I)’ . Q(kw-l)
4 ¢ 1 P i 1 P

wherein r=1, 2,..., p.

Since the period of T % at the ith period loop of the second kind, is

0;(2), the periods of the elements of the first column of the first deter-
minant are the elements of the various other columns of that determinant.
Thus the function is a rational function of .

We shall denote the minors of the elements of the first column of the
first determinant, divided by the second determinant, by 1, — w, (2), ..., — 0, (2),
although that notation has already (§ 121) been used in a different sense.
Before, w; (z) was such that w;(c,)=0 unless r =17 in which case w; (¢;)=1;
now, as is easy to see, [D’:"l @; (2) ;= is 0 or 1 according as » is not equal or

is equal to 2. The integrals f ’ w;(2) dt, are linearly independent integrals of
the first kind (cf. Chap. III. § 36).

Then the function can be written
P _
T e

the function is infinite at z like — t:, t, being the infinitesimal at the
place z, and is infinite at ¢ like *

Bi—1la (2)t] 5 4 ... + k= 1.0, (2) 8",

t. being the infinitesimal at the place ¢. It is not elsewhere infinite. The
function vanishes when x approaches the place a. As before (§ 123)

dz . . . .
V(z,a; 2 c)/ g s rational function of all the quantities involved; and
/
V¥ (z, a; z, ¢), as depending upon z, is infinite only at the places z, @, in each
case to the first order.
* This is clear when ¢ is not a branch place, since then, when z is near to ¢, I'"® is infinite
like — xi—c ; and the (k-1)th differential coefficient of this in regard to ¢ is — [k-1(z-c)™

When ¢ is a branch place, exactly similar reasoning applies if we first make a conformal repre-
sentation of the neighbourhood of the place, as explained in Chap. II. §§ 16, 19.
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128. If now R (z) be a rational function with poles of the first order at
the places 2, ..., 2,,, it is possible to choose the constants A,, ..., A, so that
the difference

R(z) =M (2, 05 2, ¢) = Ay (@, @5 25, ) — ... = AV (%, @5 2, C)

is not infinite at any of the places 2, ..., 2,; this difference is therefore
infinite only at the place ¢, and is infinite at ¢ like

—(Ay =1t 4+ Ay — 127",
where
A; =Nw; (2'1) + eeen + Ano; (Zm), (’i =12 ..., p)
But, a rational function whose only infinity is that given by this ex-
pression, can be taken to have a form
A+ADATITR 4 L + A, D T e,
wherein A is a constant; and we have already remarked (§ 126) that the
periods of this function cannot all be zero unless each of 4, ..., 4, be zero.
Hence this is the case, and we have the equation
R@)y=A4A+rP (2, a5 z1,0)+ ...l + A (2, @5 2, ©),

whereby any rational function with poles of the first order is expressed by
means of the function Y (z, a; 2 ¢). It is immediately seen that the
equations 4,=0=...= 4, enable us to reduce the constants X, ..., A,, to
the number given by the Riemann-Roch Theorem (Chap. III. § 37).

When some of the poles of the function R (z) are multiple, the necessary
modification consists in the introduction of the functions

Dy (z, a; 2, ¢), D:\p‘(w, a; 2,€),enn-.. .

Ez. If ,(2), ..., ©p(¢) denote what are called w,(2), ..., w,(#) in § 121, and the
notation of § 127 be preserved, prove that

P ki—-l
@ (2)= 2 lwi (2) Dc @, (¢),
ie
and that R
—1
Vv(@ a; 2 c)=‘l' (@, a5 2 1y ey cﬁ)—z"’i(z) Dci ‘l’(x’ Q5 CyCpy anny cp)
V(2 a5 2 ¢y ooy )=V (%, @5 2 ¢)—Z0; () ¥ (2, a5 ¢, c).
129. From the function ¥ (z, a; 2, ¢) we derive a function of z, given by

z r -1
Y(x, a; 2, ¢)dt: ) 1 y=epr-ipme
E(z z)=eJ’c ’ —e T ‘

bl ) 3

r
where, in the notation of § 127, V2 = f ®, (2) dt,, which has the following
Je
properties :
(1) It is an uniform function of #; there exists in fact an equation

. 4 X -1
20} ¢ = 2] voe .Q(ik' ),
=
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(ii) The function vanishes to the first order when the place = approaches
the place z; and is equal to unity at the place a.

(iii) The function is infinite only at the place ¢, and there like

o EvEeik-lgh
t e T

As before we can shew that any rational function R (z), with poles at ay, ..., a,,, and
zeros at By, ..., Bm, can be written in the form

.E(Z‘, 3 ) A E(x, Bm) b
RO ) B a)’

this being still true when some of the places a,, ..., a,, or some of the places B,, ..., B
are coincident.

130. We pass now to the algebraical expression of the functions which
have been described here*. We have already (Chap. IV. § 49) given the
expression of the function Y (2, @; 2, ¢;, ..., ¢p) in the case when all the
places a, z, ¢, ..., ¢, are ordinary finite places. In what follows we shall
still suppose these places to be finite places; the necessary modifications
when this is not so can be immediately obtained by a transformation of
the form z=(&—k)™, or by the use of homogeneous variables (cf. § 46,
Chap. IV., § 85, Chap. VL).

If, s being the value of y when z =z, we denote the expression

n-1
(5 + 2 60590, 3, )
(z=a)f (s
byt (2, x), and use the integrands w,(z), ..., w,(z) defined in § 121, the

rational expression of Y (z, a; 2, ¢, ..., ¢,), which was given in § 49, can be
put into the form ’

V(2 a; 20, ..., ¢)=(2,z)— (2, a)— rg o, (2) [(¢;, ) — (c;, @)].

In case z be a branch place, the expression (z, #) is identically infinite in
virtue of the factor f'(s) in the denominator, and this expression can no
longer be valid. But, then, the limit, as § approaches z, of the expression

* It is known (Klein, Math. Annal. xxxvi. p. 9 (1890); Giinther, Crelle, cix. p. 199 (1892)) that
the actual expressions of functions having the character of the functions y (z, a; z, ¢y, ..., ¢p),

E (x, z), Q:’:, have been given by Weierstrass, in lectures. Unfortunately these expressions have

not yet (August, 1895) been published, so far as the writer is aware. Indications of some value
are given by Hettner, Gotting. Nachr. 1880, p. 386; Bolza, Gitting. Nachr. 1894, p. 268;
Weierstrass, Gesamm. Werke, Bd. ii. p. 235 (1895), and in the Jahresbericht der Deuts. Math.-
Vereinigung, Bd. iii. (Nov. 1894), pp. 403—436. But it does not appear how far the last of these
is to be regarded as authoritative; and it has not been used here. The reader is recommended
to consult the later volumes of Weierstrass’s works.

+ This notation has already been used (§ 45). It will be adhered to.

B. 12
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& = %, wherein ¢ is the infinitesimal at the place z, is finite* ; if we denote

this limit by (z, w)gf, and introduce a similar notation for the places
G, ..., Cp, we obtain the expression
dz 2 dc,;
V(@ a; 2,0, 0)=[(z2) (2] 5 - 2 ©.(2). [(a, 2) = (5, )] 7
r=1
which, as in § 49, has the necessary behaviour, for all finite positions of
2, @, 0, ..., Cp.
From this expression we immediately obtain (§ 45)

z
— VY@a; e, en)dt pe_ & pre e an%i
E(z, z),=eJ‘c =g mem B Lo -len al gy

131. In a precisely similar way it can be seen (see § 127) that

V(z, a; 2 0)=[(z 2) — (2 a)]‘é—i - é‘,l w, (2) D’:"l {[(c, z)—(c, @)] %} )

wherein D™ {[(c’ ) — (¢, a)] Zl—l—;} = limit,_. [( é_it_c )kr‘ { (& z) = (& a)] %}] ;

for this expression can be written as the quotient of two determinants, in
the manner of § 49, and the integrands Q, (2), ..., Q,(2) are linear functions
of the p integrands

¢, (2)dz 2¢,(2) dz i (2) dz ¢ (2) dz .
SrEde fr(s) de ) dt’ f(s) db T
these latter quantities can therefore be introduced in the determinants in
place of Q,(2), ..., Q,(2), the same change being made, at the same time,
for the quantities Q,(c), ..., Qp(c), throughout. Then it can be shewn
precisely as in § 49 that the expression is not infinite when « is at infinity.
In regard to finite places, it is clear that the expression

_ de kr e,
D e, ) - e ) Gt = DY P2,
regarded as a function of «, has the same character, when « is near to ¢, as
the function D’:’ -1 ree,

Hence, also, it follows that £ (=, z) has the form
e B o_ze k-l de
E (1:', Z) — ePz.a - ,21 V'r Dc {[(cv ‘1:) - (c! a’)] d—t} .

* f’(n), when 7 is very nearly s, vanishes to order i +-w, and d¢/dt to order w (see Chap. VI.
§ 87). Or the result may be seen from the formula

(2, )~ (2, a)=diz P

z,a

(Chap. IV. § 45).
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132. Ex.i. For the case (p=1) where the surface is associated with the equation

92=(-7/'a D
if the values of the variables z, y at the place a be respectively «, b, and the values at the
place ¢, be ¢,, d, respectively, then

. d, dz s+
(a) when (¢, d;) is not a branch place o, (z)=§ T (2, )= CTye yx)
and
. [ sty  s4bd T|dz dydz[ di+y d,+b
V@ a5 5e)=| g (z—2) 2s(z—a)ldt s dt| 2d,(c,—x) 2d;(c,—a)

_1lds iy_s+b_d +y+d1+b
2 dt]z i—a - ¢-a

(B) when (¢, d;) is a branch place, in the neighbourhood of which
At+y

A dz de; . .
r=ci+12 y=At+..., ‘o‘(z)=ﬁ- e (¢, x)ﬁ:hmlt of 2At(cl—x)'2t=11(cly—.r)’
and
. [ sty  s+b Tde_4 de y b
V(@ a; 5 cl)_[2s(z-—x) 2B (z—a)|dt 2sdt\d(,—xz) A(c,—a)
_Lldefsty stb g _b-}
T Bdt -2 z-a ¢—x c—af’
If (s, z) be not a branch place, 21—'; %— 5 ; if (s, 2) be a branch place, in the neighbour-
hood of which x=z+#, y=Bt+..., 21 :jt’ =limit of —; B =%.

Ex. ii. For the case (p=2) where the surface is associated with the equation y2=f(z),
where f(x) is an integral function of # of the sixth order, we shall form the function
¥ (2, a; 2 ¢, c;) for the case where ¢, ¢, are branch places, so that f(¢,)=f(c;)=0, and
shall form the function ¢ (#, @; 2, c) for the case when ¢ is a branch place, so that f(c)=0.

When ¢,, ¢, are branch places, in the neighbourhood of which, respectively, z=c, +¢,2,
y=At,+..., and x=c,+ 1% y=Axty+..., so that 4.2=7"(c,), A22=f’(cz), we have

z2—cy A, dz

B 4, dz z2—¢ Ayde 1/ ¥ ___b_)
wl(z)_cl—q s a’ 2= cz—c, 2 dt’ [, )= (e, a)] dt T4 \a-2 ¢-a)’

and

. [ sty s+b T dz ldzzcz(y_ b)
‘P(x’a’2’01’02)_[2s(z—x)—2s(z-a) dt 2sdt{ —\e—2 ¢—a

it (_9, b )} .
C— 0 \C—% C3—a
When ¢ is a branch place, in the neighbourhood of which x=c+2, y=A4¢t+ B3+
so that A%2=f"(¢), the numbers %,, %, are 1, 3 respectively (Chap. V. § 58, Ex. ii.). In the
definition of the forms o, (2), w,(2) (§ 127) we may, by linear transformation of the 2nd,
3rd, ..., (p+1)th columns of the numerator determinant, and the same linear transforma-
tion of the columns of the denominator determinant, replace ©,(z), ..., ,(z) by the

differential coefficients of any linearly independent integrals of the first kind. In the case
now under consideration we may replace them by the differential coefficients of the

integrals dz f %‘lf . Hence the denominator determinant becomes

12—2
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limit, _, 1 da x d =limit,_, 2 c+2 9
ydi ’ 3%y di 241 ’ odi
Dt (ldﬁ D z dx a\? t d\2/ t(c+12%)
e \2y dt)? T \2y dt | \dt At+Bt3+...)’ (oTt) At+ B3 +...
= 1 p , =2/42
4 A
2B 2 l_gg)
T4 4 4) |
2 ... 1dz z dz i 1dz
Hence m,(z)ﬁ—lunlt,,=c Bdi ' md@ {A2 z+A (l_f)}f a5
1 do 2 (& dx
D =\2y dt) 2.gy §>
1d;
Az[A+B(z N5
and
(z)—g-—-li it, lde zde|  ldsc—z
@)= T e | 95 Gadt | T B dt 4
Lldz zdv
2y dt’ 2y dt
Hence
1 d: 1 d:
o ()=[4+BE-0l5 5,  w@=346-0g -
Further [(e, ) — (e, a)]———(%” —ﬁ), as in Example i.,
but
2 de . d\? At+ B3 +
2 {16 =)~ 1 g }=timiteea | () {] sy o

At+Bi3+b 2y 2b
" S+ BE) c—a+ ) 2‘}]‘ T B@-ol g [4-B(a=0)

Hence the function ¥ (z, @ ; 2, ¢) is given by the expression

s+y s+b Tdz A+B(z—c) 1dz y _ b
2s(z—xz) 2s(z—a) |dt V. 2s dt c—a,
4 ¢ ldz(A B(x ¢) A-B(a- c) )

Td sde (x—c)? y- (a—c)?

Ez. iii. Apart from the algebraical determination of the function ¥ (z, @ ; 2, ¢, ..., ¢p)
which is here explained, it will in many cases be very easy* to determine the function by
the methods of Chapter VI. It is therefore of interest to remark that, when the function
¥ (@, a3 2 ¢, ..., ¢) is once obtained the forms of independent integrals of the first and
second kinds can be immediately obtained as the coefficients in the first few terms of the
expansion of the function in the neighbourhood of its poles, in terms of the infinitesimals
at these poles,

* An adjoint polynomial ¥ of grade (n—1)e+n—-2 which vanishes in the p+1 places
2, €y, ..., ¢p Will vanish in n+p -3 other places. The general adjoint polynomial of grade
(n—1) ¢ +n -2 which vanishes in these n+p -3 places will be of the form \¥ + 16, where \ and
u are constants. The function y(z,a; 2, ¢, ..., ¢p) is obtained from A+ u6/¥, by determining
M and p properly. Cf, Noether (loc. cit.) Math. Annal. xxxvii,
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In fact, if ¢; be the infinitesimal in the neighbourhood of the place c;, and X,,; denote

. de; 1
Dv‘ [(crs ci) %] 3 M;';i denotmg {Dz [(ci’ '7") a + t:]} ’
z=¢;

the expansion of ¥ (7, a; 2, ¢}, ..., ¢,), as a function of z, in the neighbourhood of the
place ¢;, has, as the coefficient of ¢;~1, the expression o; (2), which is one of a set of linearly
independent integrands of the first kind, while the coefficient of ¢; is

Dc‘ I:(z’ ) %] —rgl @ (2) My -

Now the elementary integral of the second kind obtained in Chap. IV. (§§ 45, 47)
with its pole at a place ¢, when z is the current place, is E:' *= f ‘ dz D, (2, ¢), whether ¢ be
a

a branch place or not, and when z is near a branch place this must be taken in the form

B f zdt,D,, [(z, P) g::l.

Hence the coefficient of ¢; in the expansion of ¥ (x, a; 2, ¢y, ..., ¢p), when z is near to ¢;,
is equal to

2 p
D, Ej; ¢ - rEI‘"r (2) M,

This is the differential coefficient of an integral of the second kind, with its pole at ¢;,
the current place being 2. We shall see that the integral of the second kind with its pole
at any place z can be expressed by means of the functions Z, ..., E,, (§ 135, Equation x.).

Ex. iv. Similar results hold for the expansion of the function y (z, @ ; 2, ¢), as a func-
tion of #, when z is in the neighbourhood of the place c. If ¢, be the infinitesimal at this
place, the terms involving negative powers are

k-1 kp—1
by ml(z)+...+L

tckl t,_."r - %(z)’

of which the coefficients of the various powers of ¢, are differential coefficients of linearly
independent integrals of the first kind ; the terms involving positive powers are

& d P
2 (ag)-Feord,
where P;, ;. is the limit, when the place x approaches the place ¢ of the expression
. d | =1
D¢c -D{f‘-l (C, .Z‘) f +_‘k_.‘ .
dt 23

Among the coefficients of these positive powers of ¢, only those are important for
which £ is one of the numbers #,, ..., %,. This follows from the fact that D*~1T7% when
% is not one of the numbers £,, ..., k,, is expressible by those of

th_ll':'a, aeey Dz‘p'l I’f'a,

of which the indices 4, —1, £,—1, ..., are less than &£ — 1, together with a rational function
of z (Chap. III. § 28).
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Ez. v. In the expansion of the function ¥ (x, @; z c¢) whose expression is given in
Example ii., the terms involving negative powers are

A4 B(z—c)dz 1 +5 z—c¢ ,dz 1
2s dt' 1, dt’t3 i
and the terms involving positive powers are
1 dz A 1 dz
R e A R S [ A=)
1 1 dz 4 B c
+§dt ot d [(—z_c)3+(z TGt t D EG- c):|+ s

where the quantities 4, B, ..., E are those occurring in the expansion of ¥ in the neigh-
bourhood of the place ¢; this expansion is of the form y=A¢+ B+ Ct5+ D+ B +....

Ex. vi. If in Ex. v. the integrals of the coefficients of ¢, # and # be denoted by
Ff, FS, F, find the equation of the form

FS=)\F+uF; +integrals of the first kind + rational function of (s, z)

which is known to exist (Chap. IIL. §§ 28, 26 ; Chap. V. § 57, Ex. ii.), A and p being
constants.

Prove, in fact, if the surface be associated with the equation

Pr=(@ = +p; (&= )P+ py (w— ) +ps (& — P+ p, (2 —cP+py (¢ -c)

dz [3, *+4 +5,
f z[ 3P4 (2 — ¢) +4 p:)gz ¢)+5p; +2p,+p, (- c):l )3+constant

that

133. We pass now to a comparison of the two forms we have obtained
for each of the rational functions ¥ (z, a; 2, ¢, ..., ¢p), ¥ (2, a; 2, ¢), one
of which was expressed by the Riemann integrals, the other in explicit
algebraical form.

The cases of the two functions are so far similar that it will be sufficient
to give the work only for one case ¥ (2, @; 2, ¢, ..., ¢p), and the results for
the other case.

From the two equations (§ 122, 130)

2 ‘
Y (@, a3 26, ene, Cp) =10 — '21 w; () T5°%
i=

Y@ a5 50 e =60 -6l - 2 e@ 9 - @ 0l G,
we infer, denoting the function
T2~ (5 2) = (5 )] o2 ()
by H>“ that
H:’“=§1 wi(z) B> (ii).
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The function H7® is not infinite at the place z, but is algebraically
infinite at infinity; it has the same periods as I' “.  The equation (ii) shews

that H : @ / g—: is a rational function of 2, while the equation

=[G o) -Gl g+ 5 e B2 (i)

gives the form of I'7 * Z—; as a rational function of z.

Integrating the equation (iii) in regard to 2z, we obtain
T, @ 2y 2 2, Z, @ .
Hz, c = ‘Pa:,:'z + i§1 Vi ’ Hc; (lv)’

where ¢ is an arbitrary place, and P7 ¥ is the integral of the third kind, as a
function of z, which was determined in Chap. IV. (§ 45, 46).

Since the integral of the second kind E7“ obtained in Chap. 1V.
(§ 45, 46), is equal to D, P}, we deduce from the last equation, inter-

changing # and z, and also @ and ¢, and then differentiating in regard to 2,
2

E7"+ 2 Vi®DH;°=D1;,, =DI;;, =I7* (v),

1=

and thence, using equation (iii) to express '}’ %
E7 " =[(z, z) — (2, a)] g—f + _%1 [wi(He = V7 *DH ] (vi),
i=
which* gives the form of E a/ z—i as a rational function of z.

The difference of two elementary integrals of the second kind must needs be a function
which is everywhere finite, and therefore an aggregate of integrals of the first kind. The

equation (v) expresses the difference of E*“ and I''“ in this way. But it should be

noticed that the coefficients of the integrals of the first kind in this equation, which
depend upon z, become infinite for infinite values of z. They are the quantities

D, H"".
0

z

From the equation (iv) we have

Xy @ X, @ p Z, @ ZC
Pol=mi- 2 VPUHE,

2z C Z C .
* * =1

wherein the coefficients of V;°® on the right may be characterised as integrals of the
second kind. From this equation also, if the periods of V;"“ at the jth period loops of the

* An equation of this form is given by Clebsch and Gordan, 4bel. Functnen. (Leipzig, 1866),
p. 120.
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first and second kind be denoted by C;,; and (';,; respectively, we obtain, as the corre-
sponding periods of P’ "

a p 'y
(Pj:c)j= - 30 1
(P ) —mrige— EC’",H“-

from these equations the periods of B’ “ are immediately obtainable. These equations
may be used to express the integrals Z*° in terms of the periods of P at the period
loops of the first kind.

134. But all these equations are in the nature of transition equations;
they connect functions which are algebraically derivable with functions whose
definition depends upon the form of the period loops. We proceed further
to eliminate these latter functions as far as is possible, replacing them by
certain constants, which, in the nature of the case, are not determinable
algebraically.

The function of x expressed by H.'” is not infinite at the place .
Hence we may define p* finite constants 4; , by the equation '

Ai,r = -Dc,- H:" 5

where ¢ is an arbitrary place. And if, as in § 132, Ex. iii, we use the
algebraically determinable quantities given by

M;,=D, [(Gi, cr) Z_?:l! M ; { [(c,, z) = dt ;]}z_c )

we have
M+ 4i,y =D, T =D T0 =M, i+ Ay,

Mi,i-l'Ai,i’—'[ (FZ +tl)]z_,,i'

Then, from equation (v), putting therein ¢, for z,

H? “=P§Lm—[(cr,x)—(cna)]%ctr=Ef —[lena)—(erna)) 5

and

d°’+ 3 4, Ve (vid)

&
and thence, since E5.* = f dz D,, (z, ¢,)
a

dx
D:vHZa:-Dcr [(-% cr) a’z:] [:(cr; .’E) dt] Az rwz(w)
If in this equation we replace # by z and ¢ by » and then substitute
in equation (v), we obtain

e m2s 37D, e %] - 0.0 %]+ & 4 )

i=1
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and thus, if we define an, algebraically determinable, integral by the equation
G:' a=E:’ “+ § V:‘:’ * {Dci l:(z) ci) %{l [(cu 2) dcw]
i=1

-1 r2=',1(M,,i -M; o, (z)} (viii),

we have
P

=@+ S V2" S (4,431, - M) o, (2),
=1 r=1
or

o= 6" + *ﬁ-.%l yee él (i + 4sr) 0,(2), (vii),

from which, by integration in regard to z, we obtain an equation
Gr=[erta=nnl -y Y A 4 ) VIOV )

either of these expressions being, by equai‘;.i.on (viii), also equal to

Pz + 2 vy “[ = [(es, 2)—(ci, )] dc‘]

+3 % E(V” VEi-VetvEYMi, - M) (ix).

1=1r=1

The equation (ix) shews that the integral @ * is such that
o=

while every term of (ix)’ is capable of algebraic determination.

135. From the equation (ix), when none of the places z, 2, ¢,, ..., ¢, are
branch places, we obtain

rG; 9

D
a—w&‘ (.’.l?, Z) + 1§

w,(w)[ (2, ¢) — 5 (ct,z)]

1

+12 & (0@ 0.0 -0 @u@I M, - M0 ),

and hence, from the characteristic property 3 aa Qf .= Qi o we infer

awa
2wi-L et} @[ 2 @a-Lea|-am[Leo-Leo ]

+1 E E [wi (%) 0, (2) — 0, (z) w; (2)] [M;,, — M, ;] =0 (xi),

t=1 r=1

wherein every quantity which occurs is defined algebraically. The form
when some of the places are branch places is obtainable by slight modi-
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fications. This is then the gemeral algebraic relation underlying the funda-
mental property of the interchange of argument and parameter, which was
originally denoted, in this volume, by the equation 117 =117,

The relation is of course independent of the places ¢, ..., ¢,. For an expression in
which these places do not enter, see § 138, Equation 17.

The equation (xi) can be obtained in an algebraic manner (§ 137, Ex. vi.). The method
followed here gives the relations connecting the Riemann normal integrals and the particular

integrals obtained in Chap. IV., with the canonical integrals G%"%, Q:. e

It should be noticed, in equation (xi), that in the last summation each term occurs
twice. By a slight change of notation the factor 4 can be omitted.

The interchange of argument and parameter was considered by Abel; some of his
formulae, with references, are given in the examples in § 147.

136. From the equation (viii)’ we have
o= G2+ 52 (A i+ 45, ) V2
From this equation, and the equation (viii), we infer that
@ a@er =1 =L a1

=’\P‘(d;, Q5 2, Gy vy cp) (Xii),

which result may be regarded as giving an expression of the function
¥ (z,a; 2,0,..., ¢p) in terms of the integrals G ; but, written in the form

z, a , @ d i
R O VR (RO B CT) - R O) (O RO,

the equation (xii) has another importance; if we call @]'7 an elementary

canonical integral of the third kind, and G:’ e =D2Q:’ :, an elementary

canonical integral of the second kind, we may express the result in words
thus—The elementary canonical integral of the second kind with its pole at
any place z 1s expressible in the form

2
.E,l w, (2) G:;a +(rational function of , 2, ¢, ..., ¢p) / dz

wherein the elementary canomical integrals occurring, have their poles at p
arbitrary independent places c,, ..., .

Further, by equation (xii) the function Z (z, 2), of § 124, can be written
in the form
QGe-2vicerne
e

E(, z)= =1 (x1i1).
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If we put
K="~ (2, 2) — (2 )] Z—: (xiv),
the equation following equation (xii) gives
E™*= % o, () K*° (xv),
i=1 i
and therefore, also
Qx'a=P”’a+§p3 |45 G (xvi),
g ¢ gc ;-1 ¢ ¢

and
d dz z,c Z,a ..
D, ((z, z) ch) - D, ((.z', z) EZ) = él[wi (2) DK, —w;(2) D; K ., 1 (xvii)

which is another form of equation (xi).

It is easy to see that

G;-“=E:-“_,}§1(Mi's M, ) V=

137. Ez.i. Prove that the most general elementary integral of the third kind, with
its infinities at the places z and ¢, and vanishing at the place a, which is unaltered when
x, z are interchanged and also @ and ¢, is of the form

P P
X, a Ly O yr2y C
mi- 3 3 a, VPOV,
i=1r=1

wherein a;, , are constants satisfying the equations a;, ,=a,, ;.

Ez.ii. If the integral of Ex. i. be denoted by ¢, and D, ¢" * be denoted by &',
prove that
_ P —a
V(@ a5 201 0eny )= z.a_ § “’s(z)Ga:: .

Ex.iii. Tf, in particular, ¢ 7 be given by

.
zC

2 2 s 2,
&i-33 3 (it ey,
1=1r=

prove that
—, P .
Gz;“=Ez'“— EIMM vee.
r=

i

o

This is the integral, in regard to z, of the coefficient of ¢ in the expansion of
¥ (T, @3 2 €1y «oey Cp), a8 & function of z, in the neighbourhood of the place ¢; (§ 132,
Ex. iii.).

The integral QZ f is algebraically simpler than the integral @:;’, of this example, in
that its calculation does not require the determination of the limits denoted by A, ;.

Ez. iv. For the case p=1, when the fundamental equation is of the form

Yr=(w, 1)y,
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if the variables at the place ¢, be denoted by x=¢,, y=d,, the place not being a branch
place, prove that

25 )= g6 =g [/ (4= )+ 1S, (o=

and calculate @7 7, from the equation xi, in the form

,a “ys+f(x,2)drd: 1 , z dx (% dz
Q:"’_/a. ¢ 2(@-2?¢ y s f (cl)[ ? —>

where, if y?=f(x)=ay2t+ 4a,23+ 6a,2%+4a;2+a,, the symbol f(z, z) denotes the sym-
metrical expression

22 (ay2? + 20,24+ ag) + 22 (0,2% + 2,2+ a5) + (@22 + 2052+ a,).
Prove also that in this case M, ;= —f"'(¢;)/4f ().

Calculate the integral Q” * when the place ¢, is a branch place, and prove that in that

) wherein x=c,+1t2 y=A¢+ B3+ ..., vanishes.

case M, , =limit,_ °(A P

Ex.v. For the case (p=2) in which the fundamental equation is

yr=f (=),
where f(x) is a sextic polynomial, taking ¢;, ¢, to be the branch places (¢, 0), (c;, O), in
the neighbourhood of which, respectively, x=c¢,+4?2 y=4,¢+ B ¢3+..., and z=c,+¢,2
y=Ayt,+ Byt,3+..., prove that

mo_ [Fdz 4, z—cy 1dz, dey _ 1 s | 4
(A 28 2—¢’ 0 (2)= Alc  —Cy 28 i’ (e 2) dt dye-2’ Ml’z—Al(cl—c,)
and infer that
Al + 4,2 1dz1 dx

[0, (%) w3 (2) — 03 (%) 1 (2)] [H3y 1— M1, 5]= ("1 )? (z— )23 %@ i’

Supposing # and z have general positions, deduce from equation (ix) that

s (v=2t 5 = Q —gys= +3 L) +{’)(02) (=2 +f () (x-2)+2f(2)
f'( )+f'(z)]( e)-2f@) 2= _ [ () +f @)][z-c] -2 () z—c
oy {[ * (== cf) ' ame  G-oF = clz} ’

where 4,2, 4,2 have been replaced by f' (¢,), f' (¢,) respectively.
Prove that this form leads to

where, if f(z) be agab+6a,2°+ 15a2m4+20a3.z'3+15a4x2+6a5a:+a5, f(x, z) denotes the
expression
23 (g +3a, 22+ 3ay2 +az) + 322 (@, 2% + 3,22 + 3a32 + o)
+32 (a8 4 3a32% + 30,2+ ag) +(@;23 + 32,22 + 3a; 2+ ag),
and L, M, N are certain constants depending upon ¢, and c,.

Ez.vi. Let R(x) be any rational function. By expressing the fact that the value of
the integral [R(x)dx taken round the complete boundary of the Riemann surface, is equal
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to the sum of its value taken round all the places of the surface at which the integral is
infinite, we shall (cf. also p. 232) obtain the theorem

s [R(a;) g“f]tﬂ:(”

where the summation extends to all places at which the expansion of R (z) :iT': , in terms of

the infinitesimal, contains negative powers of ¢, and [R (z) %:, ,—1 Teans the coefficient of
t~1in the expansion. If all the poles of R (z) occur for finite values of z, this summation
will contain terms arising from the fact that j—f contains negative powers of ¢ when z is
infinite, as well as terms arising at the finite poles of R(z). If however R(x) be of the
form U(z) g—z V(x), wherein U(x), V(x) are rational functions of x, whose poles are at

finite places of the surface, there will be no terms arising from the infinite places of the
surface.

Now let ¢ denote the current variable, and x, z denote fixed finite places: prove, by
applying the theorem to the case* when

BO=4 (6,33 5 a0 0 &) ¥ (6 @3 2,01 ey 6
that

Dy (@, 9= Db (4 5)= 3 fox @) [¥ @, 2, ~ax( ¥ (3 9] ),

where y (, 2) is written for shortness for ¥ (z, a; 2, ¢y, ..., ¢p), and [V (=, z)]: denotes the
¢

coefficient of #, in the expansion of ¥ (2, ), regarded as a function of z, in the neighbour-

hood of the place c;.

Shew, when all the involved places are ordinary places, that this equation is the same
as equation (xii) obtained in the text.

Prove also that
P P P
DzD.Q:' : —%izl Slm(w) @ (2) (Mry i+ My ) =D, ¥ (2, )+ ,le:(x) ¥ (=, Z)]: .
—1r= i= ()

Hence, as the forms w; () are also obtainable by expansion of the function v (z, ), every
term on the right hand s immediately calculable when the form of the function ¢ (z, z)
s known; then by integrating the right hand in regard to x and z we obtain an integral
of the third kind for which the property of the interchange of argument and parameter
holds. (Cf. Ex. iii. p. 180.)

Ex. vii. By comparison of the two forms given for the function - (z, a; 2, ¢) (§§ 126,
131), we can obtain results analogous to those obtained in §§ 133—136 for the function

#’(‘”’ A5 2, Cpy eeey cP)'

Putting, as before, H:' ¢ = I‘:’ *—[lz, ) — (2, )] % ,and, when z is a branch place, under-

standing by D:—l H?“ the expression D: (u; }— P*%), and, further, putting

- - de 1
Bi;r=(D:rD:‘ IH:,m)'=” Niyr":[D:r D: l((c: z)a"'t_c):l' )

=c

* @Giinther, Crelle, cix. p. 206.
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wherein m is an arbitrary place and ¢, the infinitesimal at the place ¢, so that

k-1, k.~ d. d.
Kiyr=Niyr— N, i,=Br):'_B:'H'=‘[-Dac -Dzr l[D: ((‘”’ z) d_f) ~D, ((Z, z) ‘7;)]}:=c’

2=c
prove, in order, the following equations, which are numbered as the corresponding equa-
tions in §§ 133—136 ;

P k; — as
HY'= 3 wi() D)} tHR (i),
7 x, a P o xa k-l gzm .
F:, m= nz, m= izl Vi Dc Hc (IV),

1

B~ )~ @) G+ £ (@) D7 B - Ve D0 HETY (o)
=

E.—1 k=1, a, dc P z, ..

D mr =D B e )= 6 N G} + B B (vii,

wherein, when ¢ is a branch place, the first term of the right hand is to be interpreted as
kr 'y ]
Dc (P:;-Pacc,mu);
also the equations
bi-1 pzm k=1 dz de 4
DD} "H!"=D, D,{ (2, c) @) D, ((c, 2) (Tt) +f§1 B,,; 0. (2),

V@ % a P z,a k=1 QZ dc
=B+ 3 VP D [Dc((z, 0 dt)-p,((c, 2) di)]

P P xa
+ 2 3 4, Vi o (2),
t=1r=1

and thence, that the algebraically determinable integral
P -
@ '="+ 3 77 DY D, (5,0 %) - D, ((c, %
z z i=1 ° ¢ dt dt
2 P #a
-3 32 2 (Npyi—NN) Vi o (2),
i=1lr=1
is equal to
= @ 22 za
L, —%3 2 V" 0 (2) (BryitBisr) (viii) 5
t=17r=1
and, finally, that the integral
p p i .
Crn=Ton=33 3 V2"V" B+ Biyy) (i),
i=1r=1
which, clearly, is such that @' = z,’z, can be algebraically defined by the equation

P - de
Ca=Prat 2 VDT B[00~ (o m) G}
S (VOVET VROV K,y (i),
rr
Further shew that the function ¢ (z, a ; z, ¢) can be written in the form

V(@ a;z=6""- £ o Dt (xii).
=1

s
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The algebraical formula expressing the property of interchange of argument and parameter
is to be obtained from the equation

D.D, =D ((52) )+ Eaute) D7 {1)c ((z, 9%)-D. ((c, 2 Z_j)}
+4 22 [0 (2) 0r (2) — @y (2) 0 (2)] Kis » ).
Lastly, if L (2) denote the coefficient of #*/|% (% positive) in the expansion of the function
¥ (%, @; z c) as a function of z in the neighbourhood of the place ¢, so that (Ex. iv. § 132)
L@=0¢(60%) - 5 o) P,

where P;, ; denotes a certain constant such that P;,; is ¥, ., prove, by equating to zero
the sum of the coefficients of the first negative powers of the infinitesimals in the expan-

sions of the function of & Y (& a; 7 ¢) Deyr (€, a; z,¢), at all places where negative
powers occur, that

D, Y@ a; 2 C) _Ds‘l’ (2 a5 2, C)=i§1 ["’i (x) Lk-; (z) —w;(2) Lki (.Z')] (A)7

wherein, on the right, only functions Z;(z) occur for which % is one of the p numbers
kyy Ky, ..., kp, and that

DDGE-3 5 B ai(@)r (@) Wit Ny ) =Dt (5, @5 2, )+ 5 ay(2) L)) (B);
i=1r=1 =1

thus an elementary integral of the third kind, permitting interchange of argument and
parameter, is obtained immediately from the function y(z, @; 7, ¢) by integrating the
right hand of equation (B) in regard to x and -

Prove also, that if
s s dz
K" =G [0 - a3,

we have the formulae

p .
E;%= 3 o)) DN ED (xv)
i=1
» ki —1
7, & s @ % a 2 m .
Qz’m= 2’1"+i=21Vi D' K; (xvi)

P . P
D, ((z, 2) ‘;—Z-) - D,((x, 2) ‘(’%) = 3o D, DY K" i) D, DN R (avit)
i

Ez. viii. To calculate the integral @ " for the case (p=2) where the fundamental
equation is

y*=f (@),
wherein f(z) is a sextic polynomial divisible by = — ¢, which is expansible in the form
f@)=42(xz—-0)+Q (x—c2+R(z—c)3+...,
we may use the equation (xi) of Ex. vii. When z, z are near the place ¢, putting
z=c+t? z=c+t)? 3/=Atl+é% 4., s=At2+29Z t3+...,
prove that

D, ((x, z) %—f) -D, ((z, z) Z—j) = ‘% (2,2 - t,%) + cubes and higher powers of ¢, and 7,,
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and thence (see Ex. ii. § 132) that

Ky [0 () 03 (2) — w3 (#) @, (z)]=R(fT;z) ‘(% %z .

Also, when z is not a branch place, if ¢, be a place near to ¢, and the expansion of the

function I:E% (2 cl)—a—az (€1, z):l (fiitl in powers of the infinitesimal at ¢, contain the terms
1

M+ . + Ne2+..., so that

U-[geo-zea|g,  w-p{[gEo-z@a] %)
prove that
A Ol=d -2 @)
245 (z—c)?
§ 34260 [A2+3 Q-]+ () . (=) [4° -3 @ (= )] =% () [24° -3 @ (s~ c)]
243s(z—c)®

substituting these results in the formula (xi) of Ex. vii., prove that -

09 _ystflzmz) 1 oY % 1% /

axaz W -— 240 (.Z‘ C) (Z C) a(,"4+6 (-Z'+Z 20) + 12 ys,
where f(z, z) has the same signification as in Example v. The part within the brackets
{ 1} is of the form ys33a;,,w; (%) @, (2), Where a;,,=a,,;.

Obtain the same result by the formula (B) of Ex. vii., using the form of ¥ (z, a; z ¢)
found in Ex. ii. § 132.

138. The formulz in § 133—136 enable us to express the form of a
canonical integral of the third kind, in the most general case; and to
calculate the integral for any fundamental algebraic equation, when the
integral functions are known. But they have the disadvantage of presenting
the result in a form in which there enter p arbitrary places ¢,,...,c,. We
proceed now to shew how to formulate the theory in a more general way ;
though the results obtained are not so explicit as those previously given,
they are in some cases more suitable for purposes of calculation.

Let uy % ..., u> * denote any p linearly independent integrals of the first

kind; denote Dyu"® by u;(z). Let the matrix whose (7, j)th element is
i (¢;) be denoted by u, ¢, ..., ¢, being the places used (§ 121) to define
the quantities o, (), ..., wp(z). Let »;; denote the minor of the (3, j)th
element in the determinant of the matrix u, divided by the determinant
of u; so that the matrix inverse * to u is that whose (7, j)th element is »;, ;.
Then we clearly have

o, (@) =vi (@) + ...... + v, pap () =12 ..., p).

* Since u 4 s u:° are linearly independent, and the places c,, ..., ¢, are independent

(see §§ 23, 121), the matrix ! can always be formed,
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Let a denote any symmetrical matrix of p* quantities, a;;, in which
a;, j=a; ;. Then we define p quantities by the p equations

Lf’“:yl,iH:'“+v2,iH§;"+ ...+up,,-H:“—2(a,:,1uf‘"+ ...+a,-,,,u:’“),
and call them fundamental integrals of the second kind associated with the
integrals "% ..., u:’"
t=j, in which case »; ;=1 Thus by taking a; ; =} (4, ;+4; ), the
integrals K% ..., K:;“ (p. 187. xiv.) are a fundamental system associated

with the set V"%, ..., V:’“.

For instance when u;(#)= ;(z), v; ;=0 unless

It will be convenient in what follows to employ the notation of matrices
to express the determinant relations of which we avail ourselves *. We shall
therefore write the definition given above in the form

L*%=vH™" — 2qu™ @,
wherein L*“ stands for the row of p quantities L7'", ..., L™, H™ " stands

for the row of p quantities H"", ..., H"“ and 7 denotes the matrix obtained
1 ‘p

by changing the rows of v into its columns, and is in fact equal to the
matrix denoted by p™*, so that we may also write

L*“=pH" " - 2qu® ¢, =p K™ — 2a'um @,
where (§ 137)
T, 0 __ pra,a [ z, a
H = K3+ 5 (4, i+ 45 V",

Explicit forms of the integrals K’ have been given (§§ 134, 136).

Then, from the equations defining the integrals L7 we have

2 2 P ,
IH:'a Sy ipmi(e)—2 2% 2 amu: ap,g(z),

=1 r=1s=1

= § wj(z)H’:_’“-—2 § § a,,su:’am(z),

i=1 4 r=1 s=1

' p p ’

= :a_2 P> ar,su: “Fvs(z)Q
r=1 s=1

and this is an important result. For, putting for z in turn any p independent

places, the p functions L?“ are determined by this equation. Thus the

functions L7 ..., L;’ “ do not depend upon the places ¢, , ¢,, ..., Cp.

* See for instance Cayley, Collected Works, vol. ii. p. 475, and the Appendix II. to the present
volume, where other references are given.

B. 13
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Also, from this equation we infer

D, [(z, 2) %—Zt] D, [(w, 2) %ﬂ —D,H**— D,H""
2 z,C z,
- £ W@ DL - @ DI (D)

¢ being any arbitrary place. Now it is immediately seen that if R,(=),...,
R, (z) be any rational functions of # such that

£ (w(@ LY - () DaLi *1= 2 (@ Re(@) — s () Bs @),

then R; (z) can only be a form of D,L?“, obtained from D,L;“ by altering
the values of the constant elements of the symmetrical matrix a. Hence
the equation (17) furnishes a method of calculating the integrals L “, when-

ever it is possible to put the left-hand side into the form of the right-hand
side.

The equation (17) shews that the expression
dz 2 z, e
D, ((w, z) %> + 31 wi(z) D, L; ",

is unaltered by the interchange of z and z. This expression is also
equal to
D.(@a %) +0.8:-2 £ 3o um@m(@)
r=1 g=1
and, therefore, to
DI?—2 5 % a, (@) (2).
r=1 s=1

Hence, the formula (§ 134, ix.)

T, a z¢
Qp, s Uy Us
1

ch’_P:a+2 :cach___Hza §

r=1

)
Il M

=Qr.+13 $ 3 (Ar o4+ A ) V2V =2 $ % ay, sy “ul

r=1 s=1 r=1 s=1
gives us a form of canonical integral of the third kind not depending upon
the places ¢, ..., c,, and immediately calculable when the forms of the

. z,a
functions L;"" are found.

The formula
" =z, ) — (2, a')]dt+ 3 ,a.t(z)L’a “+2 2 2 Ay, s Uy e (2)

serves to express any integral of the second kind in terms of the integrals

Ly....L
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Ez.i. For the surface y?=f(x), where f(x) is a rational polynomial of order 2p+2,
the function

_n df N\ _1[ FEO %@
R“"s(&-z)'d&(y(é—x))’ 2ys{<e—x><s—z> EF )

wherein s2=7(z), n?=f(£), is a rational function of £ (without 5). Prove by applying the
theorem, = I:R €3] g—f =0, (Ex. vi, § 137) that
t-1
o, . @ Rl
EIODEICPES £ IS LN (oS Al

where £, ' represent in turn every pair of unequal numbers from 0, 1, 2, ..., 2p, whose
sum is not greater than 2p, # being greater than %, and the coefficients X are given by the
fact that

P=F(@)=N+NT+ A2+ o g 1 8P4 Rgp 2P+ 2

Hence, a set of integrals of the second kind associated with the integrals of the first kind

J’x@ = xdx f"xp“ldz
S ) e ) a——y g eerees . 7 ,
is given by
x,a z gy k=2p+1-7 . .
i' = i, 2 )\k+1+i(k+l—l)xk1 (z=1, 2,'-'713);
a4.'l/ k=i

and a canonical integral of the third kind is given by
© [eds dz [2ys+2f () +f () (w—2) , B P 7¢ —i , ]
.[afc%@ (z—2) AT 4 1= hepr i |-
This is equal to

pt1
v (s dp dis 2ys+ iEOx‘z‘ [2Agi + Agi 41 (2 +2)]
fa [c 2s 2y (z—2)? ’

which is clearly symmetric in # and 2.

The value of % (2 ) — a—az (x, z) used in this example is given by Abel, Euvres Complétes
(Christiania, 1881), Vol. i. p. 49.

FEz. ii. Shew in Ex. i, for p=1, that the integral associated with f To_l;_v is
a |

4y

4 2
/ Azt A2 dz ; and express these in the notation of Weierstrass’s elliptic functions
a
when the fundamental equation is y2=4a3—gx—g,.
q Y 92X — 93

s

139. Suppose now that the integrals uy " ..., u,  are connected with
the normal integrals 27", ..., v, by means of the equations
g, () =Ny, Qi () + ..o + 7 22, (2),
which, since Q; (z) = 2niDv;" “, are equivalent to
uf'“=2(7\.,’lvf’a+ ...... +7L,,pv:'a.

Then the periods of the integral u, “, at the first p period loops, form the

rth row of a matrix, 2\, and the periods of the integral wr® at the second
13—2
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p period loops form the »th row of a matrix 2xr; we shall write @ =2 and
o =7, so that w; j=2A;;. The two suffixes of the quantities w; ; will
prevent confusion between them and the differential coefficients w; ().

Let the periods of L at the jth period loops of the first and second kind
be denoted by — 27; ; and — 2'; ; respectively. The matrix whose ¢th row
consists of the quantities %, ,, ..., 7; p Will be denoted by #; similarly the
matrix of the quantities #’; ; will be denoted by %" The matrix of the

periods of the integrals H,, “ ..., H; *“ at the first period loops is zero; the
(%, j)th element of the matrix at the second -period loops is the jth period of
H : *“ namely Q;(c;). We shall denote this matrix by A.

By the definitions of the integrals L7 “ we therefore have
25, ;=4 (0, 01,5 + ... +a;pwp 5), #7=12...,p)
20's, =4 (a5, 10+ oo + 85, p 0, ) = (1, Q5 (0) + ... vy, 5 Qi (),
and all these equations are contained in the equations
7 = 200,
7 =200’ — $vA =200’ — Fp A
Now from the equations connecting u, (z) and €, (z), we obtain
LN (A D VKON () 1 + A, 0 Qp(c2),

wherein u, (¢;) is the (3, r)th elemen_t of the matrix u, and the right hand is
the (¢, r)th element of the matrix A\ ; hence we may put

mip = AN
If then we denote the matrix $x—A by %, we have
2ANR = 2miph = miA = A,
and infer that 202 =%, and thence that 2hA = 7. Thus 2ho =11, 2he’=miT.

Also the integrals ur u:’ ‘. s vf’ A v;’ ® are connected by the
equation hu® @ = 2h\v® @ = miv® 2,
140. The four equations
2ho =i, 2he' =mwit, 7=20aw, 7 =2aw’ —h (A)

will prove to be of fundamental importance in the theory of the theta
functions. They express the periods %, %' independently of the places
¢y, .-, Cp, used in defining L"e.

If beside the symmetrical matrix 7, and the arbitrary symmetrical matrix
a, we suppose the matrix A, which is in general unsymmetrical, to be
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arbitrarily given, the integrals u;’” ..., u, ° being then determined by the
equation hu® ® = wv® 2, the first equation, 2hew = 71, gives rise to p* equations
whereby the p? quantities w;; are to be found, and similarly the other
equations give rise each to p? equations determining respectively the quantities
@5, j, M, j» Mi,j. But, thereby, the 4p® quantities thus involved are deter-
mined in terms of less than 4p® given quantities. For the symmetrical
matrices @, 7 involve each only 4p(p +1) quantities, and the number of
given quantities is thus only p(p+1)+p% There are therefore, presumably,

dp'—[p’+p(p+1)), =2p*—p,

relations connecting the 4p? quantities w; ;, @' j, 7;;, 7 ;; We can in fact
express these relations in various forms.

One of these forms is
on=70, @7 =70, 50 -0y =3m=0'71—7o, (B)

of which, for instance, the first equation is equivalent to the 4p(p —1)
equations

2

2 (@5, i =My, i@ 4,5) =0,

r=1
in which ¢=1,2, ...,p,j=1,2,...,p, and ¢ is not equal to . The second
equation is similarly equivalent to §p (p —1) equations, and the third to p*
equations. The total number of relations thus obtained is therefore the
right number p*+p(p—1), In this form the equations are known as
Weierstrass’s equations.

Another form in which the 2p* — p relations can be expressed is
v =0, 17 =97 on—oy=%im=n0 -7 ©)

These equations are distinguished from the equations (A) as Riemann’s
equations.

141. The equations (B) and (C) are entirely equivalent ; either set can be deduced
from the equations (A) or from the other set. A natural way of obtaining the set (B) is
to use the equation (17). A natural way of obtaining the set (C) is to make use of the
Riemann method of contour integration.

The equations (A) give, recalling that a=¢, o'=or, 7=,

an=20aw ,=f, say, a symmetrical matrix,
By =2aw — oh=280w0T — ho=8r—}mi.

Hence 70’ =for=Br=Rr,
and because & =r®a,

&'y =1on =rBr—kmir,
and thus, as rBr=78r, we have

an=qw, &7 =7, jo' =&y =§ri=a"n—n'e,
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which are the equations (B). And it should be noticed that these results are all derived
from the three o'=wr, @y=p4, &y =pr—4§ri, assuming only that 8 and r are symmetrical.

From the equations (B), putting &n=pB, &7n'=y, so that 8 and y are symmetrical

matrices, we obtain*
1=@)7 '8, " =y(w’)" L and thence &' (@) 18—y(@) lo=4n.
Hence, if w~lw'=k, 50 that wx=w', &' =ka, &'(@) 1=k, and x 1=(w")"lo, we have
kB—yx~=%mi, or xBx—y=4mik,
and therefore, as the matrices kB8« and y are symmetrical, so also is the matrix «; and thus
0 1lo'=&'(@)"1, and therefore wa'=o0'®,

which is one of the equations (C).

Further
on' =f0' — i =nok—§nri=Bc—4n,
and therefore No=kB8—§mi=xB— 4,
leading to o' =BG — w3,

and the right hand is a symmetrical matrix, and therefore equal to &n'jw; thus also
7' =1,

which is the second of the equations (C).

Finally (0 — on) 0 = 0o — o (@' - $77) - 0’6y — 0d'n +4mie =(0'd - 0d' )+ 4ric

=}nio,
and thus
'y —on'=4%ni, =, therefore, na' —n'a,

which is the third of equations (C).

We have deduced both the equations (B) and (C) from the equations (A). A similar
method can be used to deduce the equations (B) from the equations (C).

Other methods of obtaining the equations (B) and (C) are explained in the Examples
which follow (§ 142, Exx. ii—v).

142. Ex.i. Shew that the p integrals given by the equation

AP =t HY "+t  H O,
where ¢;, ; is the minor of ©;(c;) in the determinant of the matrix A (§ 139), divided by the
determinant of A, namely by the equation
Ame=A~LH™

are a set of fundamental integrals of the second kind associated with the set of integrals
of the first kind 2raf* %, ..., 2miv) % and are such that

0. (69 %) -2 (0 9%)

3 (m,- (@) D, B~ w; ()) D, H “)= .fvfl 0 (%) D, K" —ay(5) D, K"
i= *

~ ~.
Il Mz Il M

(2@ 0,470, D47 )= £ (@) DL - () D).
=1

* The determinant of the matrix w, =M\, cannot vanish, because wi’“, s u:"' are linearly

independent. The determinant of the matrix r does not vanish, since otherwise we could deter-
mine an integral of the first kind with no periods at the period loops of the second kind
(cf. Forsyth, Theory of Functions, § 231, p. 440).
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Prove that the function A]"  has only one period, namely at the ith peried loop of the
second kind, and that this period is equal to 1. For the sets

. 2,a . z,0 za za
2wy, eees 21rwp' y ALy ey AS,
we have in fact w=1r1:, o =i, n=0, q'=—§.

Shew that these values satisfy the equations (B) and (C).

Ez. ii. From Ex. i. we deduce

» »
20 S (o) AN —or AT = 3 (u LY - LY.
i=1 i=1

Hence, supposing « and z separately to pass, on the dissected Riemann surface, respec-
tively from one side to the other¥* of the rth period loop of the first kind, and from one
side to the other of the sth period loop of the first kind, we obtain, for the increment of
the right-hand side

b4

_4.21("’:'"'1:’,!_'16’r‘l’in)y
i=

which is the (7, s)th element of the matrix —4 (@y—7). For the functions on the left-
hand side the matrix @y —jw vanishes (Ex. i.). Hence the same is true for those on the
right hand.

Supposing x to pass from one side to the other of the 7th period loops of the first kind,
and z from one side to the other of the sth period loop of the second kind, we similarly
prove that @y’ —jje’ has the same value for the functions on the two sides of the equation,
and therefore, as we see by considering the functions on the left hand, has the value — .

While, if both # and z pass from one side to the other of period loops of the second kind |
we are able to infer o'n=n'w.

‘We thus obtain Weierstrass’s equations (B).

Ex.iii. If UD, ..., U7 * be any integrals, the periods of U7 “ at the jth period loops
of the first and second kind be respectively ¢;,;, ¢i,;, and the matrices of these elements
be respectively denoted by ¢, ¢'; and WP*, ..., W7 be other integrals for which the

corresponding matrices are £ and £, prove that the integral f UP“dW;™®, taken positively
round all the period-loop-pairs has the value

?
2 (Cin' gj;r“(liyr &;r)s
r=1 .
which is the (3, /)th element of the matrix ¢&' — {'£.
Ez. iv. If R;(x) denote the rational function of x given by
P de,
Bi(@)= = vp,iller, 2)—(cry @)] a?
r=1

the function L?“+R;(») is infinite only at ¢, ..., ¢, and has the same periods
L?", Denote this function by ¥**.

* To that side for which the periods count positively (see the diagram, § 18).
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Prove that if the expansion of the integral ¥ in the neighbourhood of the place ¢,
be written in the form

€

yoo= _”if"+fil,+g,-,, t+ o,
then
Gioa=v1,i (Ay, o+ My, )+ ... +vp, i (4p, o+ M, ),

where 4;, ,, M;,, are as defined in § 134, and are such that 4, ,+¥; ,=4, + M, ;.
Hence shew that the sum of the values of the integral f ) ol d¥;"“ taken round all

the places ¢, ..., ¢, is zero.

ELx.v. Infer from Exs. iii. and iv., by taking
(a) Ul.a:' a=uf' = Wiz' 7, that wa'=w'a,
(8) U,.'t' = y> wr a=uf‘ ® that 76 —n'd=4m,
(‘y) L‘vl.‘r’ = YLZ' = Wlx' % that qrj' =r”i’.
These are Riemann’s equations.
K. vi. If instead of the places c,, ..., ¢, and the matrix p, we use a matrix depending
only on one place ¢, the ith row being formed with the elements D’c“_] () enesy D'c""'1 wp(€),
we can similarly obtain a set L, ..., L7 associated with the set AN A

Shew that the periods of L, ..., L “ thus determined are independent of the posi-
tion of the place c.
Ez. vii. If the differential coefficients u, (#), ... , pp (), be those derived from a set of

p independent places b, by, ..., by, just as w; (), ..., 0, (#) are derived from ¢y, ..., ¢p, 80
that w;(6;)=1, u;(,)=0, prove that v,,;=w,(b;) and that

; : x, @ 2, @
L7 =H""—-2(a;, v "+ oo +apw) ).
v

143. We conclude this chapter with some applications * of the functions
V(2 a; 2 c), E(x, z) to the expression of functions which are single-valued
on the (undissected) Riemann surface. Such functions include, but are
more general than, rational functions, in that they may possess essential
singularities.

Consider first a single-valued function which is infinite only at one place;
denote the place by m, and the function by F (z).

Since Y («, «; 2, c)] %f is a rational function of z, the integral

fF(z) [\p(w, a; z, c);, zll—j] dz, or J.F(z)\b(x, a; z, c)dt,

taken round the edges of the period-pair-loops, has zero for its value. But
this integral is also equal to the sum of its values taken round the place ,

* Appell, dcta Math. i. pp. 109, 132 (1882), Giinther, Crelle cix. p. 199 (1892).
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where F(z) is infinite, and the places # and a at which ¥ (z, a; 2, ¢) is
infinite.

Now, when z is in the neighbourhood of the place m, since ¥ (2, a; 2, ¢) 1 Odi:

is a rational function of z, we can put
, o g
Y(z,a; 2,c)= 2 _’.: D ¥ (z, a; m,c),
r=0 LA

where t,, is the infinitesimal at the place m.

Thus the integral f F(2)¥ (z, a; 2, c)dt, taken round the place m, gives

© A, '
2m 2 o D) Y (z,a; m, o),

r=0 ’:’_‘_
where A, is the value of the integral —2% [ tr F (z)dt, taken round the
place m.

When z is in the neighbourhood of the place z, ¥ (#, @; 2, ¢) is infinite

like £; ", ¢, being the infinitesimal at the place x, and therefore, taken round
the place «, the integral

fF(w)\p(x, a; z c¢)dt,

gives

2 F ().
Similarly round the place a, the integral gives — 27t F (a).
Hence the function F (z) can be expressed in the form

) -Ar
F(z)=F(a)- Eo ED;«[r(a,, a; m,c),

the places a and ¢ being arbitrary (but not in the neighbourhood of the
place m).

For example, when p=0, ¥ (7, a; z, ¢)=— (.z%_z - &L—z> , and

@ 1 1
F(z)-F(a)= TioAr [(x-— my+t" (a—my+ 1:, ’
wherein
A,= 2—11” / (z—m)" F(2) dz, the integral being taken round the place m.
A similar result can be obtained for the case of a single valued function with only a
finite number of essential singularities. When one of these singularities is only a pole,
say of order y, the integral / t; F(z) dz, taken round this pole, will vanish when »=p, and

the corresponding series of functions D:‘ ¥ (@, @y m, ¢) will terminate.
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144. We can also obtain a generalization of Mittag Leffler’s Theorem.
If ¢,, c,, ... be a series of distinct places, of infinite number, which converge*
to one place ¢, and fi(z), f.(%),... be a corresponding series of rational
functions, of which f;(z) is infinite only at the place c;, then we can find a
single valued function F (z), with one essential singularity (at the place ¢),
which is otherwise infinite only at the places ¢, ¢,, ..., and in such a way
that the difference F () — f; (x) is finite in the neighbourhood of the place ¢;.

Since fi(x) is a rational function, infinite only at the place ¢;, and
v (z, a; £, c) does not become infinite when z comes to ¢, we can put

N A
fl(x) =fi(a)_r§0 {_er:i‘[’(w: a; G, 6), (A)

wherein @ is an arbitrary place not in the neighbourhood of any of the
places ¢,, ¢,, ..., ¢, and A; is a finite positive integer, and 4, a constant.

Also, when z is sufficiently near to ¢, and z is not near to ¢, we can put

w g
Y(z,a; 2,0)= =% t_" [D’z‘\[r(w, a; 2, 0)l=c,
k=0 |/c

wherein t, is the infinitesimal at the place ¢. Thus also, when z is near to c,
Dy (z, a; z,¢)= kz tf Ry (), (B),

=0

wherein Ry () is a rational function, which is only infinite at the place c.
There are p values of & which do not enter on the right hand; for it can
easily be seen that if k,, ..., k, denote the orders of non-existent rational
functions infinite only at the place ¢, each of the functions

[D’Z‘"—1 Y (2, a3 2,C) ey onne- R [D’:”_1 Y (z, a5 2, Clee

vanishes identically. Let the neighbourhood of the place ¢, within which 2
must lie in order that the expansions (B) may be valid, be denoted by M.

Of the places c;, ¢s, ..., an infinite number will be within the region M
let these be the places ¢gyy, Csys, -..; then s will be finite and, when 4 > s,
we have

S
D:i ‘Ir (w) a; G C) = k%() t‘i Ri, k(w))
wherein ¢; is the value of ¢, in the equation (B), when z is at ¢;. Hence also,

from the equation (A), wherein there are only a finite number of terms on
the right hand, we can put

Fi@—fi@)= 5 68, (a), ©),

wherein S; ; is a rational function, 7 > s, and # is not near to the place c.

* so that ¢ is what we may call the focus of the series ¢, ¢,, ... (Héufungsstelle).
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It is the equation (C) which is the purpose of the utilisation of the
function yr (2, @; 2, ¢) in the investigation. The functions S;;(z) will be
infinite only at the place c. The series (C) are valid so long as x is outside
a certain neighbourhood of c. We may call this the region M.

Let now €41, €42, ... be any infinite series of real positive quantities, such
that the series
€41+ €540+ €543+ ...

is convergent ; let u; be the smallest positive integer such that, for ¢ > s, the
terms

a 3

2t Sie(x),

k=p;+1

taken from the end of the convergent series (C), are, in modulus, less than ;,
for all the positions of # outside M’; then, defining a function g;(z), when
i > 8, by the equation

¥
9(@)=fi (@) ~fi(@~ 2 t Six (@),
we have, for 7 > s,
I 9 (.‘L‘) I < €;.
Thus the series

I A@-fi@)+ 3 g@)

is absolutely and uniformly convergent for all positions of z not in the
neighbourhood of the places ¢, ¢, ¢,, ..., and represents a continuous single
valued function of . When « is near to ¢;, the function represented by the
series is infinite like f; ().

The function is not unique; if yr (z) denote any single-valued function
which is infinite only at the place c, the addition of Y (2) to the function
obtained will result in a function also having the general character required
in the enunciation of the theorem. As here determined the function
vanishes at the arbitrary place a; but that is an immaterial condition.

For instance when p=0, and the place m is at infinity, the places m,, my, ms, ...,
being 0, 1, , 1+, ..., p+qw, ..., Wherein o is a complex quantity and p, ¢ are any
rational integers, let the functions f (), fo(#), ... be 271 (z-1)"1 (#—w)7} ...,

(x-p—gqo)~L ....
- 2_ g2 —ad
Here ¢(x,a;z,c)=—<—l——-—1—>—-x @, B-a F-a

T—2 a-z)

= T -‘—2-3‘—4'7—4' v
when z is great enough and |z| < |z], |a|<]z].

Also
1 1

r—m; a-—m;

1 x—a+x2—a'3+
= - 9 T cee
a—m; m? m3 ’

when m; is great enough, and | 2| <|m;|, |a|<|m;].

¥ (@ a;my, )
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Now the series

2‘7;—3 =22|(1¢qu@"

is convergent. Hence when » and a are not too great

’xz—az »P—ad

+..<e€
mia m{i v

where ¢; is a term of a convergent series of positive quantities. This equation holds for
all values of z except ¢=1, in which case m;=0.

Hence we may write

1 1 r—a
r—m;  a—m;  m?

9i ()=
and obtain the function
1 1 @ ® 1 1 r—a
-z s s -
2Tt q=—w[x-p—9m a-p—qw+(p+qw)2]’
which has the property required. This function is in fact equal, in the notation of
Weierstrass’s elliptic functions, to ¢ (z]1, 0)-((all, ).

145. We can always specify a rational function of # which, beside being
intinite at the place c,is infinite at a place ¢; like an expression of the form

4, 4, A’&
—t5+. + = T
to £ £
namely, such a function is
A A
- 2 _'D:\[r(w,a,, Ci,c),
r=0 ,7‘ i

and this may be used in the investigation instead of the function f; (z) — f; (a).

Hence, in the enunciation of the theorem of § 144, it is not necessary
that the expressions of the rational functions f;(«) be known, or even that
there should exist rational functions infinite only at the places ¢; in the
assigned way. All that is necessary is that the character of the infinity
of the function F, at the pole ¢;, should be assigned.

Conversely, any single-valued function F whose singularities consist of
one essential singularity and an infinite number of distinct poles which
converge to the place of the essential singularity, can be represented by
a series of rational functions of &, which beside the essential singularity have
each only one pole.

146. Let the places c,, ¢, ..., ¢ be as in § 144. We can construct a
single-valued function, having the places ¢, ¢;, ..., as zeros, of assigned
positive integral orders A,, A,, ..., which is infinite only at the place ¢, where
it has an essential singularity.
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For the function E (a;) z) = J-c\ll(:t,a; 2, c)dt:

is zero at the place z and infinite only at the place c. When z is near to ¢
we can put

® tr
D,logE (z,2)= 2 = [D;¥(x, a; 2 ¢))e=,

r=0 |I"
and therefore, when ¢; is near to ¢, and = is not near to the place ¢, we
can put

Mlog E(z, )= = t’i‘ R; (),
k=0

wherein R;j(x) is a rational function of z which is infinite only at the
place ¢, and ¢; has the same significance as in § 144.

Let the least value of ¢ for which this equation is valid be denoted by
s+ 1, and, taking €;4,, €44, ... any positive quantities such that the series

€1t €42+ ..o,

is convergent, let u; be the least number such that, for ¢ > s,

S 4 Ri(o)

k—yi-l-l

< €;.

Then the series
8 w L] k
S NlogE(z,c)+ 2 <)»,- log £ (z, m;)— 2 t; B; (w))
i=1 i=s+1 k=0

consists of single-valued finite functions provided z is not near to any of
G, Cs, ..., ¢, and, by the condition as to the numbers p;, is absolutely and
uniformly convergent.

Hence the product
@ L% ‘
11 (8 e T {1 oopee™ 254
i=1 i=s+1 _

represents a single-valued function, which is infinite only at ¢ where it has
an essential singularity, which is moreover zero only at the places ¢, ¢, ...
respectively to the orders A;, A, ....

With the results obtained in § 144—146, the reader will compare the
well-known results for single-valued functions of one variable (Weierstrass,
Abhandlungen aus der Functionenlehre, Berlin, 1886, pp. 1—66, or Mathem.
Werke, Bd. ii. pp. 77, 189).

147. The following results possess the interest that they are given by Abel; they
are related to the problems of this chapter. (Abel, uvres Complétes, Christiania, 1881,
vol. i. p. 46 and vol. ii. p, 46.)
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Er i, If ¢ (z) be a rational polynomial in #, =II (= + a;)P%,

and /() be a rational function of z, =Syr*4+3 —=%
(-'l' +Ek)“k

e/ ()~ .'(l)(t)(x) e/ (%)~ f(z)¢(x) o= 16 2 y ‘ -
T v [eraem w3 [Tge [reew s de

then

e~ J(®) /@ ¢ () e~ /@ dz e/@ ¢ (.7;)

-3 [ernrem) e ot 3im | crareFrige) Gray *
. : - . =10 ¢ (2)
The theorem can be obtained most directly by noticing that if ¢ (=, z)-———————¢ BICET)
then
$(X)
- S (X)) + 7
d v "')¢($){ ¢ (X) 1
¢ g =30 T E-» @9 (X-aa)ﬁ[l

is a rational function of X. Denoting it by R (X) and applying the theorem

aX
s [R(X)-—dt =0,
we obtain Abel’s result.

Ez. ii. With the same notation, but supposing f(x) to be an integral polynomial,
prove that

e~ 2% d
/rb(x, z)dx+/t§ ))¢(x, 2)dz =334y ¢( oG ; /@ ¢ () 2% d,
wherein 4, y, is a certain constant, and y () is the product of all the simple factors of
¢ (@).
This result may be obtained from the rational function
09

as in the last example.

Ew. iii. Obtain the theorem of Ex. ii. when f(2)=0, and ¢ (2)=[y (+)}". In the
result put m=—4%, and obtain the result of the example in § 138.

These results are extended by Abel to the case of linear differential equa-
tions. Further development is given by Jacobi, Crelle xxxii. p. 194, and by
Fuchs, Crelle Ixxvi. p. 177.



