
CHAPTER I. 

T H E SUBJECT OF INVESTIGATION. 

1. THIS book is concerned with a particular development of the theory 
of the algebraic irrationality arising when a quantity y is defined in terms 
of a quantity x by means of an equation of the form 

doyn + (hyn~x + . -: + an-iy -f an = 0, 

wherein a0, alf..., an are rational integral polynomials in x. The equation is 
supposed to be irreducible; that is, the left-hand side cannot be written as 
the product of other expressions of the same rational form. 

2. Of the various means by which this dependence may be represented, 
that invented by Biemann, the so-called Riemann surface, is throughout 
regarded as fundamental. Of this it is not necessary to give an account 
here*. But the sense in which we speak of a place of a Riemann surface 
must be explained. To a value of the independent variable x there will in 
general correspond n distinct values of the dependent variable y—represented 
by as many places, lying in distinct sheets of the surface. For some values 
of x two of these n values of y may happen to be equal : in that case the 
corresponding sheets of the surface may behave in one of two ways. Either 
they may just touch at one point without having any further connexion in 
the immediate neighbourhood of the pointt : in which case we shall regard 
the point where the sheets touch as constituting two places, one in each 
sheet. Or the sheets may wind into one another : in which case we shall 
regard this winding point (or branch point) as constituting one place : this 
place belongs then indifferently to either sheet ; the sheets here merge into 
one another. In the first case, if a be the value of x for which the sheets 
just touch, supposed for convenience of statement to be finite, and x a value 

* For references see Chap. II. § 12, note. 
t Such a point is called by Kiemann "ein sich aufhebender Verzweigungspunkt": Gesam

melte Werke (1876), p. 105. 
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2 THE PLACES OF A RIEMANN SURFACE. [2 

very near to a, and if b be the value of y at each of the two places, also 
supposed finite, and yly y2 be values of y very near to b, represented by 
points in the two sheets very near to the point of contact of the two 
sheets, each of — , y2 — b can be expressed as a power-series in x — a 
with integral exponents. In the second case with a similar notation each 
of y1 — b,y2 — b can be expressed as a power-series in (x — a)% with integral 
exponents. In the first case a small closed curve can be drawn on either 
of the two sheets considered, to enclose the point at which the sheets touch : 

and the value of the integral „—. Id log (x — a) taken round this closed curve 

will be 1 ; hence, adopting a definition given by Riemann*, we shall say that 
x — a is an infinitesimal of the first order at each of the places. In the 
second case the attempt to enclose the place by a curve leads to a curve 
lying partly in one sheet and partly in the other; in fact, in order that 
the curve may be closed it must pass twice round the branch place. In this 

case the integral ~—. / d log [(x — a)*] taken round the closed curve will be 1 : 

and we speak of (x — a)% as an infinitesimal of the first order at the place. 
In either case, if t denote the infinitesimal, x and are uniform functions 
of t in the immediate neighbourhood of the place ; conversely, to each point 
on the surface in the immediate neighbourhood of the place there corre
sponds uniformly a certain value of t'f. The quantity t effects therefore a 
conformai representation of this neighbourhood upon a small simple area in 
the plane of t, surrounding t = 0. 

3. This description of a simple case will make the general case clear. 
In general for any finite value of x, x=*a, there may be several, say k, branch 
pointsJ; the number of sheets that wind at these branch points may be 
denoted by w1 -f 1, w2 + 1, ...,wk+l respectively, where 

(w, + 1 ) + (w2 + 1 ) + ... + (wk + 1 ) = n, 
so that the case of no branch point is characterised by a zero value of the 
corresponding w. For instance in the first case above, notwithstanding that 
two of the n values of y are the same, each of wlt w2i ..., wk is zero and is 
equal to n : and in the second case above, the values are = n — 1, wx = 1, w2 = 0, 
w3 = 0, ..., wk — 0. In the general case each of these branch points is called a 

l l 

place, and at these respective places the quantities (x- a)w»+1, ..., (x— a)Wk+1 

* Gesammelte Werke (1876), p. 96. 
t The limitation to the immediate neighbourhood involves that t is not necessarily a rational 

function of x, y. 
It may be remarked that a rational function of x and can be found whose behaviour in 

the neighbourhood of the place is the same as that of t. See for example Hamburger, 
Zeitschrift ƒ. Math, und Phys. Bd. 16, 1871 ; Stolz, Math. Ann. 8, 1874 ; Harkness and Morley, 
Theory of Functions, p. 141. 

î Cf. Forsyth, Theory of Functions, p. 171. Prym, Creile, Bd. 70. 
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are infinitesimals of the first order. For the infinite value of x we shall 
similarly have n or a less number of places and as many infinitesimals, say 

( t f ) " ^ ' •'•' ( ) ^ ' w h e r e (^i + 1 ) + ••• + K + 1) = w. And as in the par
ticular cases discussed above, the infinitesimal t thus defined for every place 
of the surface has the two characteristics that for the immediate neighbour
hood of the place x and y are uniquely expressible thereby (in series of 
integral powers), and conversely t is a uniform function of position on the 
surface in this neighbourhood. Both these are expressed by saying that 
t effects a reversible conformai representation of this neighbourhood upon a 
simple area enclosing t = 0. I t is obvious of course that quantities other 
than t have the same property. 

A place of the Riemann surface will generally be denoted by a single 
letter. And in fact a place {xy y) will generally be called the place x. 
When we have occasion to speak of the (n or less) places where the inde
pendent variable x has the same value, a different notation will be used. 

4. We have said that the subject of enquiry in this book is a certain 
algebraic irrationality. We may expect therefore that the theory is practi
cally unaltered by a rational transformation of the variables x, y which is of 
a reversible character. Without entering here into the theory of such trans
formations, which comes more properly later, in connexion with the theory 
of correspondence, it is necessary to give sufficient explanations to make it 
clear that the functions to be considered belong to a whole class of Riemann 
surfaces and are not the exclusive outcome of that one which we adopt initially. 

Let £ be any one of those uniform functions of position on the funda
mental (undissected) Riemann surface whose infinities are all of finite order. 
Such functions can be expressed rationally by x and y*. For that reason we 
shall speak of them shortly as the rational functions of the surface. The 
order of infinity of such a function at any place of the surface where the 
function becomes infinite is the same as that of a certain integral power of 

the inverse - of the infinitesimal at that place. The sum of these orders of 
z 

infinity for all the infinities of the function is called the order of the function. 
The number of places at which the function £ assumes any other value a is 
the same as this order : it being understood that a place at which £ — a is 
zero in a finite ratio to the rth order of t is counted as r places at which £ is 
equal to af. Let v be the order of f. Let rj be another rational function of 

* Forsyth, Theory of Functions, p. 370. 

t For the integral — / d l o g ( | - a ) , taken round an infinity of log(£-a), is equal to the 

order of zero of £ - a at the place, or to the negative of the order of infinity of £, as the case may 
be. And the sum of the integrals for all such places is equal to the value round the boundary of 
the surface—which is zero. Cf. Forsyth, Theory of Functions, p. 372. 
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order fi. Take a plane whose real points represent all the possible values of 
f in the ordinary way. To any value of £, say £ = a, will correspond v 
positions Xly ..., Xv on the original Riemann surface, those namely where £ 
is equal to a : it is quite possible that they lie at less than v places of the 
surface. The values of 77 at Xly ..., Xv may or may not be different. Let 
H denote any definite rational symmetrical function of these v values of 77. 
Then to each position of a in the £ plane will correspond a perfectly unique 
value of H, namely, üT is a one-valued function of £. Moreover, since 77 and 
£ are rational functions on the original surface, the character of H for values 
of f in the immediate neighbourhood of a value a, for which H is infinite, is 
clearly the same as that of a finite power of f — a. Hence H is a rational 
function of £. Hence, if HT denote the sum of the products of the values of 
77 at Xl9 ..., Xvy r together, rj satisfies an equation 

whose coefficients are rational functions of f. 

It is conceivable that the left side of this equation can be written as the 
product of several factors each rational in £ and 77. If possible let this be 
done. Construct over the f plane the Riemann surfaces corresponding to 
these irreducible factors, 7/ being the dependent variable and the various 
surfaces lying above one another in some order. I t is a known fact, already 
used in defining the order of a rational function on a Riemann surface, that 
the values of 77 represented by any one of these superimposed surfaces in
clude all possible values—each value in fact occurring the same number of 
times on each surface. To any place of the original surface, where £, 77 have 
definite values, and to the neighbourhood of this place, will correspond there
fore a definite place (£, 77) (and its neighbourhood) on each of these super
imposed surfaces. Let 77̂  ...,tfr be the values of 77 belonging, on one of 
these surfaces, to a value of f : and 77/, ..., 77/ the values belonging to the 
same value of £ on another of these surfaces. Since for each of these surfaces 
there are only a finite number of values of f at which the values of 77 are 
not all different, we may suppose that all these r values on the one 
surface are different from one another, and likewise the s values on the other 
surface. Since each of the pairs of values (£, 77̂ , ..., (£, 77r) must arise on 
both these surfaces, it follows that the values 77̂  ..., 77,. are included among 
Vi> •••> Vs- Similarly the values 77/, ..., 77/ are included among t)u ..., 77,.. 
Hence these two sets are the same and r = s. Since this is true for an 
infinite number of values of f, it follows that these two surfaces are merely 
repetitions of one another. The same is true for every such two surfaces. 
Hence r is a divisor of v and the equation 

77" - Hrf-1 + ... + ( - ) "#„ = 0, 
when reducible, is the v/rih power of a rational equation of order r in 77. I t 
will be sufficient to confine our attention to one of the factors and the (£, 77) 
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surface represented thereby. Let now Xlt . . . , Xv be the places on the original 
surface where £ has a certain value. Then the values of rj a t .. , Xv will 
consist of v/r repetitions of r values, these r values being different from one 
another except for a finite number of values of f> Thus to any place (f, rj) on 
one of the v/r derived surfaces will correspond v/r places on the original 
surface, those namely where the pair (f, rj) take the supposed values. Denote 
these by PlfP2, — Let Y be any rational symmetrical function of the v/r 
pairs of values (xlt ) , (x2, y2)>..., which the fundamental variables x, y of the 
original surface assume at Plt P 2 , — Then to any pair of values (£, rj) will 
correspond only one value of Y—namely, Y is a one-valued function on the 
(f, rj) surface. I t has clearly also only finite orders of infinity. Hence Y is 
a rational function of f, rj. I n particular x-[ y x2, • • • ai e the roots of an 

equation whose coefficients are rational in £, 77—as also are ylt y2}  

There exists therefore a correspondence between the (£, rj) and {x, y) 

surfaces—of the kind which we call a | 1 , - J correspondence: to every place 

of the (x} y) surface corresponds one place of the (f, rj) surface; to every 

place of this surface correspond - places of the (xt y) surface. 

The case which most commonly arises is tha t in which the rational 
irreducible equation satisfied by r) is of the z/th degree in rj : then only one 
place of the original surface is associated with any place of the new surface. 
I n tha t case, as will appear, the new surface is as general as the original 
surface. Many advantages may be expected to accrue from the utilization of 
tha t fact. W e may compare the case of the reduction of the general equation 
of a conic to an equation referred to the principal axes of the conic. 

5. The following method* is theoretically effective for the expression of #, y in terms * 
of £, 9. 

Let the rational expression of £, rj in terms of #, y be given by 

(^ ) - ^ ) = °> ( ,| ) - ^ ( ?» )=°1 
and let the rational result of eliminating , between these equations and the initial 
equation connecting #, be denoted by F(£, ) = 0, each of , ..., ^, ^denoting integral 
polynomials. Let two terms of the expression ( , y)-fy(x, y) = 0 be ^ - ' *'. 
This expression and therefore all others involved will be unaltered if a, b be replaced by 
such quantities a+h, b+k, that A# r y=£b; r y . In a formal sense this changes F{^ rj) 
into 

where X ̂  1, and F is such that all differential coefficients of it in regard to a and b of order 
less than X are identically zero. 

Hence the term within the square brackets in this expression must be zero. If it is 
possible, choose now r=rf + l and s=s', so that h—hx\^. 

* Salmon's Higher Algebra (1885), p. 97, § 103. 
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Then we obtain the equation 

6* \l) $ + + ( H da" °-

This is an equation of the form above referred to, by which x is determinate from f and 
7. And is similarly determinate. 

I t will be noticed tha t the rational expression of x, by £, 7, when i t is possible 
from the equations 

{ , )-&( , )=0, M # , y ) - w ( ^ , y ) = 0, / ( ^ , y ) = 0, 
will not be possible, in general, from the first two equations : it is only the places xi   

satisfying the equation f(x, y) = 0 which are rationally obtainable from the places £, 7 
satisfying the equation F(£, rj) = 0. There do exist transformations, rationally reversible, 
subject to no such restriction. They are those known as Cremona-transformations*. 
They can be compounded by reapplication of the transformation x : : 1 = rj : f : £7. 

We may give an example of both of these transformations— 

For the surface 

-5 *( 2 + +\) + 5 ( 2+ +1)2-2 ( 2+ +1)2=0 

the function £=y2/(x2+x+l) is of order 2, being infinite a t the places where x2+x+l=0, 

in each case like (x — a)~°, and the function rj—x/y is of order 4, being infinite a t the 

places x2+x+l = 0, in each case like (x — a)~^, a being the value of x a t the place. 

From the given equation we immediately find, as the relation connecting £ and 7, 

and infer, since the equation formed as in the general statement above should be of 
order 2 in 7, that this general equation will be 

( 2 7 - ^ + 5 ^ - 5 ) 2 = 0 . 

Thence in accordance with tha t general statement we infer tha t to each place (£, 7) on 
the new surface should correspond two places of the original surface : and in fact these are 
obviously given by the equations 

12£= 2/( 2+ +1), y=x/rj. 

If however we take 

£=y2/(x2+x + l \ V=yl(x-<o2), 

where is an imaginary cube root of unity, so that 7 is a function of order 3, these 

equations are reversible independently of the original equation, giving in fact 

and we obtain the surface 

, 2 - i ( l - < » 2 ) > ? l ( l 2 - 5 f + 5 ) - a > 2 | = 0 , 

having a (1, 1) correspondence with the original one. 

I t ought however to be remarked tha t it is generally possible to obtain reversible 
transformations which are not Cremona-transformations. 

6. When a surface (#, y) is (1, 1) related to a (£, rj) surface, the defi
ciencies of the surfaces, as defined by Biemann by means of the connectivity, 
must clearly be the same. 

* See Salmon, Higher Plane Curves (1879), § 362, p. 322. 
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It is instructive to verify this from another point of view *.—Consider at 
1 Cm 

how many places on the original surface the function ~ is zero. I t is infinite 

at the places where f is infinite: suppose for simplicity that these are 
separated places on the original surface or in other words are infinities of 
the first order, and are not at the branch points of the original surface. At 

a pole of f, —- is infinite twice. I t is infinite like — at a branch place (a) 

where x — a = tw+l: namely it is infinite %w = 2n + 2p-2 timesf at the branch 
places of the original surface. I t is zero 2w times at the infinite places of the 
original surface. There remain therefore 2v -f 2n + 2p - 2 — 2n = 2v + 2p - 2 

dP 
places where -^ is zero. If a branch place of the original sufface be a pole 

-I ny -1 

of £, and £ be there infinite like - , -^ is infinite like —̂— , namely 2 + w 
t ctx z . z 

times: the total number of infinities of -^ will therefore be the same as 
ax 

dP 
before. Now at a finite place of the original surface where -£ = 0, there are 

two consecutive places for which £ has the same value. Since - = 1 they can 

only arise from consecutive places of the new surface for which £ has the 
same value. The only consecutive places of a surface for which this is the 
case are the branch places. Hence -f* there are 2v+2p — 2 branch places of 
the new surface. This shews that the new surface is of deficiency p. 

When vjr is not equal to 1, the case is different. The consecutive places 
of the old surface, for which £ has the same value, may either be those arising 
from consecutive places of the new surface—or may be what we may call 
accidental coincidences among the vjr places which correspond to one place 
of the new surface. Conversely, to a branch place of the new surface, 
characterised by the same value for £ for consecutive places^, will correspond 
v/r places on the old surface where % has the same value for consecutive 
places. In fact to two very near places of the newT surface will correspond 
vjr pairs each of very near places on the old surface. If then G denote the 
number of places on the old surface at which two of the vjr places corre
sponding to a place on the new surface happen to coincide, and w' the number 
of branch points of the new surface, we have the equation 

w'- + C=2v + 2p-2, 
r * 

* Compare the interesting geometrical account, Salmon, Higher Plane Curves (1879), p. 326, 
§ 364, and the references there given. 

t Forsyth, Theory of Functions, p. 34^ 
X Namely, near such a branch place £ = , £ - a is zero of higher order than the first. 
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and if p be the deficiency of the new surface (of r sheets), this leads to the 
equation 

(2r + 2p' - 2) - + G = 2v + 2p - 2, 

from which 

0=2 -2-(2 '-2)$. 

Corollary*. If p =p'} then G = (2p - 2) ( l - -) • T h u s ^ > L s o t h a t 

(7 = 0, and the correspondence is reversible. 

We have, herein, excluded the case when some of the poles of f are of 
higher than the first order. In that case the new surface has branch places 
at infinity. The number of finite branch places is correspondingly less. The 
reader can verify that the general result is unaffected. 

Ex. In the example previously given (§ 5) shew that the function £ takes any given 
value at two points of the original surface (other than the branch places where it is 
infinite), 7 having the same value for these two points, and that there are six places at 
which these two places coincide. (These are the place (#=0, y=0) and the five places 
where x— — 2.) 

There is one remark of considerable importance which follows from the 
theory here given. We have shewn that the number of places of the (#, y) 

surface which correspond to one place of the (£, rç) surface is - , where v is the 

order of £ and r is not greater than v, being the number of sheets of the (f, 77) 
surface ; hence, if there were a function f of order 1 the correspondence would 
be reversible and therefore the original surface would be of deficiency 1. 

7. This notion of the transformation of a Riemann surface suggests an 
inference of a fundamental character. 

The original equation contains only a finite number of terms : the original 
surface depends therefore upon a finite number of constants, namely, the 
coefficients in the equation. But conversely it is not necessary, in order that 
the equation be reversibly transformable into another given one, that the 
equation of the new surface contain as many constants as that of the original 
surface. For we may hope to be able to choose a transformation whose 
coefficients so depend on the coefficients of the original equation as to reduce 
this number. If we speak of all surfaces of which any two are connected by 
a rational reversible transformation as belonging to the same class -j", it becomes 
a question whether there is any limit to the reduction obtainable, by rational 
reversible transformation, in the number of constants in the equation of a 
surface of the class. 

* See Weber, Creile, 76, 345. 
t So that surfaces of the same class will be of the same deficiency. 
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It will appear in the course of the book* that there is a limit, and that 
the various classes of surfaces of given deficiency are of essentially different 
character according to the least number of constants upon which they depend. 
Further it will appear, that the most general class of deficiency p is 
characterised by Sp — 3 constants when p > 1—the number for p = 1 being 
one, and for p = 0 none. 

For the explanatory purposes of the present Chapter we shall content 
ourselves with the proof of the following statement—When a surface is 
reversibly transformed as explained in this Chapter, we cannot, even though 
we choose the new independent variable f to contain a very large number of 
disposeable constants, prescribe the position of all the branch points of the 
new surface ; there will be Sp — 3 of them whose position is settled by the 
position of the others. Since the correspondence is reversible we may regard 
the new surface as fundamental, equally with the original surface. We 
infer therefore that the original surface depends on Sp — 3 parameters— 
or on less, for the Sp — 3 undetermined branch points of the new surface may 
have mutually dependent positions. 

In order to prove this statement we recall the fact that a function 
of order Q contains*}" Q— p + 1 linearly entering constants when its poles 
are prescribed: it may contain more for values of Q<2p— 1, but we 
shall not thereby obtain as many constants as if we suppose Q > 2p — 2 
and large enough. Also the Q infinities are at our disposal. We can then 
presumably dispose of 2Q — p + 1 of the branch points of the new surface. 
But these are, in number, 2Q + 2p — 2 when the correspondence is reversible. 
Hence we can dispose of all but 2Q + 2p - 2 — (2Q — p + l) = 3p — 3 of the 
branch points of the new surface J. 

Ex. 1. The surface associated with the equation 
y2=x(l -x)(l-k2x)(l-\2x)(l-fi2x)(l-p2x)(l-p2x) 

is of deficiency 3. It depends on 5 = 2 p - 1 parameters, 2, X2, / 2, p2, p2. 

Ex. 2. The surface associated with the equation 

f+f(x, \\+ ( , l)2 + (x, 1)4 = 0, 
wherein the coefficients are integral polynomials of the orders specified by the suffixes, is 
of deficiency 3. Shew that it can be transformed to a form containing only 5 = 2p -1 
parametric constants. 

* See the Chapters on the geometrical theory and on the inversion of Abelian Integrals. The 
reason for the exception in case ^ = 0 or 1 will appear most clearly in the Chapter on the self-
correspondence of a Eiemann surface. But it is a familiar fact that the elliptic functions which 
can be constructed for a surface of deficiency 1 depend upon one parameter, commonly called 
the modulus : and the trigonometrical functions involve no such parameter. 

t Forsyth, p. 459. The theorems here quoted are considered in detail in Chapter III. of the 
present book. 

X Cf. Eiemann, Ges. Werke (1876), p. 113. Klein, Ueber Riemanrïs Theorie (Leipzig, 
Teubner, 1882), p. 65. 
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8. But there is a case in which this argument fails. If it be possible to 
transform the original surface into itself by a rational reversible transforma
tion involving r parameters, any r places on the surface are effectively 
equivalent with, as being transformable into, any other r places. Then the 
Q poles of the function £ do not effectively supply Q but only Q — r dispose-
able constants with which to fix the new surface. So that there are — 3 + r 
branch points of the new surface which remain beyond our control. In this 
case we may say that all the surfaces of the class contain Sp — 3 disposeable 
parameters beside r parameters which remain indeterminate and serve to 
represent the possibility of the self-transformation of the surface. I t will be 
shewn in the chapter on self-transformation that the possibility only arises 
for p = 0 or p = 1, and that the values of r are, in these cases, respectively 
3 and 1. We remark as to the case p = 0 that when the fundamental 
surface has only one sheet it can clearly be transformed into itself by 

a transformation involving three constants # = 5 — - , : and in regard to p = 1, 

the case of elliptic functions, that effectively a point represented by the 
elliptic argument is equivalent to any other point represented by an 
argument + 7. For instance a function of two poles is 

F — . 7? 

and clearly Fatß has the same value at as has Fa+ytß+y at + 7 : so that the 
poles (a, ß) are not, so far as absolute determinations are concerned, effective 
for the determination of more than one point. 

9. The fundamental equation 

* + ^if1'1 + . •. + «n = 0, 
so far considered as associated with a Riemann surface, may also be regarded 
as the equation of a plane curve : and it is possible to base our theory on the 
geometrical notions thus suggested. Without doing this we shall in the 
following pages make frequent use of them for purposes of illustration. I t is 
therefore proper to remind the reader of some fundamental properties*. 

The branch points of the surface correspond to those points of the curve 
where a line x = constant meets the curve in two or more consecutive points : 
as for instance when it touches the curve, or passes through a cusp. On the 
other hand a double point of the curve corresponds to a point on the surface 
where two sheets just touch without further connexion. Thus the branch 
place of the surface which corresponds to a cusp is really a different singu
larity to that which corresponds to a place where the curve is touched by a 

* Cf. Forsyth, Theory of Functions, p. 355 etc. Harkness and Morley, Theory of Functions, 
p. 273 etc. 
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line x — constant, being obtained by the coincidence of an ordinary branch 
place with such a place of the Riemann surface as corresponds to a double 
point of the curve. 

Properties of either the Riemann surface or a plane curve are, in the 
simpler cases, immediately transformed. For instance, by Plücker's formulae 
for a curve, since the number of tangents from any point is 

t = (ii-l)n-28-3K} 

where n is the aggregate order in x and yf it follows that the number of 
branch places of the corresponding surface is 

w = t + = (n- l)n - 2(8 + /c) 
= 2n- 2 + 2 {i - 1 ) (/ - 2) - 8 - }. 

Thus since w = 2n — 2 49p, the deficiency of the surface is 

i (n - 1) (n - 2) - 8 - , 

namely the number which is ordinarily called the deficiency of the curve. 

To the theory of the birational transformation of the surface corresponds 
a theory of the birational transformation of plane curves. For example, the 
branch places of the new surface obtained from the surface ƒ (xy y) = 0 by 
means of equations of the form (x} y) — f | ( , ) = 0, ( } ) — ( } ) —  
will arise for those values of £ for which the curve (x, y) — %yfr (x, y) = 0 
touches ƒ (x, y) = 0. The condition this should be so, called the tact inva
riant, is known to involve the coefficients of (x, y) — f \jr (x, y) = 0, and 
therefore in particular to involve £, to a degree* n (n — 3) — 28 — 3* + 2nn\ 
where n' is the order of ( y) — Çyfr (x, y) — 0. Branch places of the new 
surface also arise corresponding to the cusps of the original curve. The total 
number is therefore n (n — 3) — 28 — 2/c + 2nn' = 2p — 2 + 2nn'. Now nn' is 
the number of intersections of the curves ƒ (x, y) = 0 and (x, y) — £sjr (x, y) = 0, 
namely it is the number of values of arising for any value of £, and is 
thus the number of sheets of the new surface, which we have previously 
denoted by v : so that the result is as before. 

In these remarks we have assumed that the dependent variable occurs 
to the order which is the highest aggregate order in x and together—and 
we have spoken of this as the order of the curve. And in regarding two 
curves as intersecting in a number of points equal to the product of their 
orders we have allowed count of branches of the curve which are entirely 
at infinity. Some care is necessary in this regard. In speaking of the 
Riemann surface represented by a given equation it is intended, unless the 
contrary be stated, that such infinite branches are unrepresented. As an 
example the curve y2 = (xy. 1)6 may be cited. 

Ex. Prove that if from any point of a curve, ordinary or multiple, or from a point not 
on the curve, t be the number of tangents which can be drawn other than those touching 

* See Salmon, Higher Plane Curves (1879), p. 81. 
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at the point, and be the number of cusps of the curve—and if be the number of 
points other than the point itself in which the curve is intersected by an arbitrary line 
through the point—then t + K-2v is independent of the position of the point. If the 
equation of the variable lines through the point be written — ijv = 0, interpret the result 
by regarding the curve as giving rise to a Eiemann surface whose independent variable 
is £* 

10. The geometrical considerations here referred to may however be 
stated with advantage in a very general manner. 

In space of any (k) dimensions let there be a curve—(a one-dimension
ality). Let points on this curve be given by the ratios of the k + 1 homo
geneous variables œlt . . . , afc+1. Let u, v be any two rational integral homo
geneous functions of these variables of the same order. The locus — £v = 0 
will intersect the curve in a certain number, say v, points—we assume the 
curve to be such that this is the same for all values of £, and is finite. Let all 
the possible values of f be represented by the real points of an infinite plane 
in the ordinary way. Let w, t be any two other integral functions of the 

W 
coordinates of the same order. The values of rj = — at the points where 

z 
— gv = 0 cuts the curve for any specified value of £ will be v in number. 

As before it follows thence that r\ satisfies an algebraic equation of order v 
whose coefficients are one-valued functions of f. Since rj can only be infinite 
to a finite order it follows that these coefficients are rational functions of £. 
Thence we can construct a Riemann surface, associated with this algebraic 
equation connecting f and 77, such that every point of the curve gives rise to 
a place of the surface. In all cases in which the converse is true we may 
regard the curve as a representation of the surface, or conversely. 

Thus such curves in space are divisible into sets according to their 
deficiency. And in connexion with such curves wTe can construct all the 
functions with which we deal upon a Riemann surface. 

Of these principles sufficient account will be given below (Chapter VI.) : 
familiar examples are the space cubic, of deficiency zero, and the most general 
space quartic of deficiency 1 which is representable by elliptic functions. 

11. In this chapter we have spoken primarily of the algebraic equation 
—and of the curve or the Riemann surface as determined thereby. But this 
is by no means the necessary order. If the Riemann surface be given, the 
algebraic equation can be determined from it—and in many forms, according 
to the function selected as dependent variable (y). I t is necessary to keep 
this in view in order fully to appreciate the generality of Riemann's methods. 
For instance, we may start with a surface in space whose shape is that of an 

* The reader who desires to study the geometrical theory referred to may consult:— 
Cayley, Quart. Journal, vu. ; H. J. S. Smith, Proc. Lond. Math. Soc. vi. ; Noether, Math. Annal. 
9 ; Brill, Math. Annal. 16 ; Brill u. Noether, Math. Annal. 7. 
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anchor ring*, and construct upon this surface a set of elliptic functions. Or 
we may start with the surface on a plane which is exterior to two circles 
drawn upon the plane, and construct for this surface a set of elliptic functions. 
Much light is thrown upon the functions occurring in the theory by thus 
considering them in terms of what are in fact different independent variables. 
And further gain arises by going a step further. The infinite plane upon 
which uniform functions of a single variable are represented may be regarded 
as an infinite sphere; and such surfaces as that of which the anchor ring 
above is an example may be regarded as generalizations of that simple case. 
Now we can treat of branches of a multiform function without the use of a 
Kiemann surface, by supposing the branch points of the function marked on 
a single infinite plane and suitably connected by barriers, or cuts, across which 
the independent variable is supposed not to pass. In the same way, for any 
general Riemann surface, we may consider branches of functions which are 
not uniform upon that surface, the branches being separated by drawing 
barriers upon the surface. The properties obtained will obviously generalize 
the properties of the functions which are uniform upon the surface. 

* Forsyth, p. 318; Riemann, Ges. Werke (1876), pp.89, 415. 


