CONTENTS.

CHAPTER I.
The subject of investigation.
§§ pages
1 Fundamental algebraic irrationality 1
2, 3 The places and infinitesimal on a Riemann surface 1, 2
4, 5 The theory unaltered by rational transformation 3-6
6 The invariance of the deficiency in rational transformation; if arational function exists of order 1, the surface is of zerodeficiency .7, 8
7, 8 The greatest number of irremoveable parameters is $3 p-3$. 9, 10
9, 10 The geometrical statement of the theory 11, 12
11 Generality of Riemann's methods 12, 13
CHAPTER II.
The fundamental functions on a Riemann surface.
12
Riemann's existence theorem provisionally regarded as fundamental 14
13 Notation for normal elementary integral of second kind 15
14 Notation for normal elementary integral of third kind 15
15 Choice of normal integrals of the first kind. 16
16 Meaning of the word period. General remarks 16, 17
17
Examples of the integrals, and of the places of the surface 18-20
Periods of the normal elementary integrals of the second kind 21
The integral of the second kind arises by differentiation from the integral of the third kind. -22, 23 19 24
Expression of a rational function by integrals of the second kind 20Special rational functions, which are invariant in rational trans-formation .25,26
22
Riemann normal integrals depend on mode of dissection of the surface 26
CHAPTER III.
The infinities of rational functions.
23 The interdependence of the poles of a rational function 27
24, 25 Condition that specified places be the poles of a rational function 28-30
26 General form of Weierstrass's gap theorem 31, 32
27
Provisional statement of the Riemann-Roch theorem 33, 34

§§		Pages
28, 29	Cases when the poles coalesce ; the p critical integers	34, 35
30	Simple anticipatory geometrical illustration	36, 37
31-33	The $(p-1) p(p+1)$ places which are the poles of rational fu of order less than $p+1$.	38-40
34-36	There are at least $2 p+2$ such places which are distinct	41-44
37	Statement of the Riemann-Roch theorem, with examples	44-4

CHAPTER IV.

Specification of a general form of Riemann's integrals.

38	Explanations in regard to Integral Rational Functions	47, 48
39	Definition of dimension; fundamental set of functions for the expression of rational functions	48-52
40	Illustrative example for a surface of four sheets .	53, 54
41	The sum of the dimensions of the fundamental set of functions is $p+n-1$	
42	Fundamental set for the expression of integral functions	55, 56
43	Principal properties of the fundamental set of integral functions	57-60
44	Definition of derived set of special functions $\phi_{0}, \phi_{1}, \ldots, \phi_{n-1}$	61-64
45	Algebraical form of elementary integral of the third kind, whose infinities are ordinary places; and of integrals of the first kind	65-68
46	Algebraical form of elementary integral of the third kind in general	68-70
47	Algebraical form of integral of the second kind, independently deduced	71-73
48	The discriminant of the fundamental set of integral functions	74
49	Deduction of the expression of a certain fundamental rational function in the general case	75-77
50	The algebraical results of this chapter are sufficient to replace Riemann's existence theorem .	78, 79

CHAPTER V.

Certain forms of the fundamental equation of the Riemann surface.

51	Contents of the chapter	80
52	When $p>1$, existence of rational function of the second order involves a (1,1) correspondence	81
53-55	Existence of rational function of the second order involves the hyperelliptic equation	81-84
56, 57	Fundamental integral functions and integrals of the first kind	8-86
58	Examples	87
59	Number of irremoveable parameters in the hyperelliptic equation; transformation to the canonical form	88-89
60-63	Weierstrass's canonical equation for any deficiency	0

§§		Pages
64-66	Actual formation of the equation .	93-98
67, 68	Illustrations of the theory of integral functions for Weierstrass's canonical equation.	99-101
69-71	The method can be considerably generalised	102-104
72-79	Hensel's determination of the fundamental integral functions	105-112
	CHAPTER VI.	
	Geometrical investigations.	
80	Comparison of the theory of rational functions with the theory of intersections of curves	113
81-83	Introductory indications of elementary form of theory	113-116
84	The method to be followed in this chapter	117
85	Treatment of infinity. Homogeneous variables might be used	118, 119
86	Grade of an integral polynomial ; number of terms; generalised zeros	120, 121
87	Adjoint polynomials ; definition of the index of a singular place	122
88	Pliicker's equations; connection with theory of discriminant	123, 124
89, 90	Expression of rational functions by adjoint polynomials .	125, 126
91	Expression of integral of the first kind	127
92	Number of terms in an adjoint polynomial ; determination of elementary integral of the third kind	128-132
93	Linear systems of adjoint polynomials ; reciprocal theorem	133, 134
94, 95	Definitions of set, lot, sequent, equivalent sets, coresidual sets	135
96, 97	Theorem of coresidual sets; algebraic basis of the theorem . .	136
98	A rational function of order less than $p+1$ is expressible by ϕ polynomials	137
99, 100	Criticism of the theory ; Cayley's theorem	138-141
101-104	Rational transformation by means of ϕ-polynomials	142-146
105-108	Application of special sets	147-151
109	The hyperelliptic surface; transformation to canonical form	152
110-114	Whole rational theory can be represented by means of the invariant ratios of ϕ-polynomials; number of relations connecting these	153-159
115-119	Elementary considerations in regard to curves in space	160--167

CHAPTER VII.

Coordination of simple elements. Transcendental uniform FUNCTIONS.
120 Scope of the chapter 168
121 Notation for integrals of the first kind 169
122, 123 The function $\psi\left(x, a ; z, c_{1}, \ldots, c_{p}\right)$ expressed by Riemann integrals 170, 171
124 Derivation of a certain prime function 172
125 Applications of this function to rational functions and integrals 173
§§ pages
126-128 The function $\psi(x, a ; z, c)$; its utility for the expression of rational functions 174-176
129 The derived prime function $E(x, z)$; used to express rational functions 177
130, 131 Algebraic expression of the functions $\psi\left(x, a ; z, c_{1}, \ldots, c_{p}\right)$, $\psi(x, a ; z, c)$ 177, 178
132 Examples of these functions; they determine algebraic expres- sions for the elementary integrals 179-182
133, 134 Derivation of a canonical integral of the third kind; for which interchange of argument and parameter holds; its algebraic expression; its relation with Riemann's elementary normal integral 182-185
135 Algebraic theorem equivalent to interchange of argument and parameter. 185
136 Elementary canonical integral of the second kind 186, 187
137 Applications. Canonical integral of the third kind deduced fromthe function $\psi\left(x, a ; z, c_{1}, \ldots, c_{p}\right)$. Modification for the func-tion $\psi(x, a ; z, c)$188-192
138 Associated integrals of first and second kind. Further canonicalintegrals. The algebraic theory of the hyperelliptic integralsin one formula.193, 194
139, 140 Deduction of Weierstrass's and Riemann's relations for periods of integrals of the first and second kind 195-197
141 Either form is equivalent to the other 198
142 Alternative proofs of Weierstrass's and Riemann's period relations 199, 200
143 Expression of uniform transcendental function by the function$\psi(x, a ; z, c)$201
144, 145 Mittag-Leffler's theorem 202-204
146 Expression of uniform transcendental function in prime factors 205
147 General form of interchange of argument and parameter, after Abel 206
CHAPTER VIII.
Abel's Theorem. Abel's differential equations.

148-150	Approximative description of Abel's theorem	207-210
151	Enunciation of the theorem	210
152	The general theorem reduced to two simpler theorems	211, 212
153, 154	Proof and analytical statement of the theorem	212-214
155	Remark; statement in terms of polynomials	215
156	The disappearance of the logarithm on the right side of the equation .	216
157	Applications of the theorem. Abel's own proof	217-222
158, 159	The number of algebraically independent equations given by the theorem. Inverse of Abel's theorem	222-224
160, 16	Integration of Abel's differential equations	225-231
162	Abel's theorem proved quite similarly for curves in space .	231-234

CHAPTER IX.

Jacobi's inversion Problem.

CHAPTER X.

Riemann's theta functions. General theory.

173	ns	246
174	Convergence. Notation. Introduction of matrices	7, 248
175, 176	Periodicity of the theta functions. Odd and even functions	249-251
177	Number of zeros is p	252
178	Position of the zeros in the simple case	254
179	The places m_{1}, \ldots, m_{p}	55
180	Position of the zeros in general	56, 257
181	Identical vanishing of the theta functions	258, 259
182, 183	Fundamental properties. Geometrical interpretation of the places m_{1}, \ldots, m_{p}	259-26
184-186	ometrical developments; special inversion problem; contact curves	268-273
187	Solution of Jacobi's inversion problem by quotients of theta functions .	, 275
188	Theory of the identical vanishing of the theta function. Expression of ϕ-polynomials by theta functions	276-282
189-191	General form of theta function. Fundamental formulae. Periodicity	283-286
192	Introduction of the ζ functions. Generalisation of an elliptic formula	287
193	Difference of two ζ functions expressed by algebraic integrals and rational functions	288
194-196	Development. Expression of single ζ function by algebraic integrals	89-292
197, 198	duction of the φ functions. Expression by rational functions	292--295

CHAPTER XI.

The hyperelliptic case of Riemann's theta functions.

199	Hyperelliptic case illustrates the general theory.	.
200	The places m_{1}, \ldots, m_{p}. The rule for half periods	.
201,202	Fundamental set of characteristics defined by branch places	.
	297,298	
$209-301$		

§§ PAGES
203 Notation. General theorems to be illustrated 302
204, 205 Tables in illustration of the general theory 303-309
206-213 Algebraic expression of quotients of hyperelliptic theta functions. Solution of hyperelliptic inversion problem 309-317
214, 215 Single ζ function expressed by algebraical integrals and rational functions 318-323
216 Rational expression of φ function. Relation to quotients of thetafunctions. Solution of inversion problem by φ function . . 323-327
217 Rational expression of ρ function. 327-330
218-220 Algebraic deduction of addition equation for theta functions when $p=2$; generalisation of the equation $\sigma(u+v) \sigma(u-v)$ $=\sigma^{2} u . \sigma^{2} v .(\varphi v-\varphi u)$ 330-337
221 Examples for the case $p=2$. Göpel's biquadratic relation 337-342
CHAPTER XII.
A Particular form of fundamental surface.
222 Chapter introduced as a change of independent variable, and as introducing a particular prime function 343
223-225 Definition of a group of substitutions; fundamental properties 343-348
226, 227 Convergence of a series; functions associated with the group 349-352
228-232 The fundamental functions. Comparison with foregoing theory of this volume.233-235 Definition and periodicity of the Schottky prime function.359-364
236,237 Its connection with the theta functions 364-366
238 A further function connected therewith 367-372
239 The hyperelliptic case 372, 373

CHAPTER XIII.

Radical functions.

240	Introductory	374
241, 242	Expression of any radical function by Riemann's integra by theta functions	375, 376
243	Radical functions are a generalisation of rational functions	377
244, 245	Characteristics of radical functions	378-381
246--249	Bitangents of a plane quartic curve	381-390
50, 251	Solution of the inversion problem by radical functions	390-392

CHAPTER XIV.

Factorial functions.

252 Statement of results obtained. Notations 393, 394
253 Necessary dissection of the Riemann surface
254 Definition of a factorial function (including radical function). Primäry and associated systems of factorial functions.

§§		Pages
255	Factorial integrals of the primary and associated systems	397, 398
256	Factorial integrals which are everywhere finite, save at the fixed infinities. Introduction of the numbers $\boldsymbol{w}, \sigma+1$.	399
257	When $\sigma+1>0$, there are $\boldsymbol{\sigma}+1$ everywhere finite factorial functions of the associated system .	400
258	Alternative investigation of everywhere finite factorial functions of the associated system. Theory divisible according to the values of $\sigma+1$ and $\sigma^{\prime}+1$	401, 402
259	Expression of these functions by everywhere finite integrals	403
260	General consideration of the periods of the factorial integrals	404
261, 262	Riemann-Roch theorem for factorial functions. When $\sigma^{\prime}+1=0$, least number of arbitrary poles for function of the primary system is $\boldsymbol{w}^{\prime}+1$	405, 406
263	Construction of factorial function of the primary system with $\omega^{\prime}+1$ arbitrary poles	406, 407
264, 265	Construction of a factorial integral having only poles. Least number of such poles, for an integral of the primary system, is $\sigma+2$.	407, 410
266	This factorial integral can be simplified, in analogy with Riemann's elementary integral of the second kind	411
267	Expression of the factorial function with $\boldsymbol{\omega}^{\prime}+1$ poles in terms of the factorial integral with $\sigma+2$ poles. The factorial function in analogy with the function $\psi\left(x, a ; z, c_{1}, \ldots, c_{p}\right)$.	411-413
268	The theory tested by examination of a very particular case	413-419
269	The radical functions as a particular case of factorial functions	419, 420
270	Factorial functions whose factors are any constants, having no essential singularities	421
271, 272	Investigation of a general formula connecting factorial functions and theta functions	422-426
273	Introduction of the Schottky-Klein prime form, in a certain shape	427-430
274	Expression of a theta function in terms of radical functions, as a particular case of $\S 272$	430
275, 276	The formula of § 272 for the case of rational functions	431-433
277	The formula of § 272 applied to define algebraically the hyperelliptic theta function, and its theta characteristic	433-437
278	Expression of any factorial function by simple theta functions; examples .	437, 438
279	Connection of theory of factorial functions with theory of automorphic forms.	439-442

CHAPTER XV.

Relations connecting products of theta functions-introductory.

280	Plan of this and the two following chapters	443
281	A single-valued integral analytical function of p variables, which is periodic in each variable alone, can be represented by a series of exponentials	

§§ PAGES
282, 283 Proof that the $2^{2 p}$ theta functions with half-integer character- istics are linearly independent 446-447
284, 285 Definition of general theta function of order r; its linear expres- sion by r^{p} theta functions. Any $p+2$ theta functions of same order, periods, and characteristic connected by a homo- geneous polynomial relation 447-455
286 Addition theorem for hyperelliptic theta functions, or for the general case when $p<4$ 456-461
286, 288 Number of linearly independent theta functions of order r which are all of the same parity 461-464
289 Examples. The Göpel biquadratic relation 465-470

CHAPTER XVI.

A direct method of obtaining the equations connecting theta PRODUCTS.

290	Contents of this chapter	471
291	An addition theorem obtained by multiplying two theta functions.	471-474
292	An addition theorem obtained by multiplying four theta functions	474-477
293	The general formula obtained by multiplying any number of theta functions	477-485

CHAPTER XVII.

Theta relations associated with certain groups of characteristics.

294	Abbreviations. Definition of syzygetic and azygetic. References to literature (see also p. 296)	486, 487
295	A preliminary lemma	488
296	Determination of a Göpel group of characteristics	489, 490
297	Determination of a Göpel system of characteristics	490, 491
298, 299	Determination and number of Göpel systems of the same parity	492-494
300-303	Determination of a fundamental set of Göpel systems	494-501
304, 305	Statement of results obtained, with the simpler applications	502-504
306-308	Number of linearly independent theta functions of the second order of a particular kind. Explicit mention of an important identity	505-510
309-311	The most important formulae of the chapter. A general addition theorem. The \wp function expressed by quotients of theta functions	510-516
-317	ther applications of the principles of the chapter. The expression of a function $\vartheta(n v)$ as an integral polynomial of order n^{2} in 2^{p} functions $9(v)$	517

CHAPTER XVIII.

Transformation of periods, especially linear transformation.
§§ PAGES
318 Bearings of the theory of transformation 528, 529
319-323 The general theory of the modification of the period loops on a Riemann surface 529-534
324 Analytical theory of transformation of periods and characteristic of a theta function. 534-538
325 Convergence of the transformed function 538
326 Specialisation of the formulae, for linear transformation 539, 540
327 Transformation of theta characteristics; of even characteristics;of syzygetic characteristics541, 542
328 Period characteristics and theta characteristics 543
329 Determination of a linear transformation to transform any evencharacteristic into the zero characteristic544, 545
330, 331 Linear transformation of two azygetic systems of theta charac- teristics into one another 546-550
332 Composition of two transformations of different orders; supple- mentary transformations 551, 552
333, 334 Formation of $p+2$ elementary linear transformations by thecomposition of which every linear transformation can beformed ; determination of the constant factors for each ofthese553-557
335 The constant factor for any linear transformation 558, 559
336
Any linear transformation may be associated with a change ofthe period loops of a Riemann surface .560, 561
337, 338 Linear transformation of the places m_{1}, \ldots, m_{p} 562
339 Linear transformation of the characteristics of a radical function 563, 564
340 Determination of the places m_{1}, \ldots, m_{p} upon a Riemann surface whose mode of dissection is assigned

565—567568
341 Linear transformation of quotients of hyperelliptic theta functions
342 A convenient form of the period loops in a special hyperellipticcase. Weierstrass's number notation for half-integer charac-teristics569, 570

CHAPTER XIX.

On systems of periods and on general Jacobian functions.

343 Scope of this chapter

344-350 Columns of periods. Exclusion of infinitesimal periods. Expression of all period columns by a finite number of columns, with integer coefficients

571-579
351-356 Definition of general Jacobian function, and comparison with theta function .

579-588
357-362 Expression of Jacobian function by means of theta functions. Any $p+2$ Jacobian functions of same periods and parameter connected by a homogeneous polynomial relation

588-598

CHAPTER XX.

Transformation of theta functions.

		GE
363	Sketch of the results obtained. References to the literature	600
364, 365	Elementary theory of transformation of second order	600-606
366, 367	Investigation of a general formula preliminary to transformation of odd order	-610
368, 369	The general theorem for transformation of odd order .	11-616
370	The general treatment of transformation of the second order	17-619
371	The two steps in the determination of the constant coefficients	619
372	The first step in the determination of the constant coefficients	19-622
373	Remarks and examples in regard to the second step	622-624
374	Transformation of periods when the coefficients are not integral	624-62
375	Reference to the algebraical applications of the theory	628

CHAPTER XXI.

Complex multiplication of theta functions. Correspondence of points on a Riemann surface.

376	Scope of the chapter	629
377, 378	Necessary conditions for a complex multiplication, or special transformation, of theta functions .	629-632
379-382	Proof, in one case, that these conditions are sufficient	632-636
383	Example of the elliptic case	636-639
384	Meaning of an (r, s) correspondence on a Riemann surface	639, 640
385	Equations necessary for the existence of such a correspondence	640-642
386	Algebraic determination of a correspondence existing on a perfectly general Riemann surface	642-645
387	The coincidences. Examples of the inflections and bitangents of a plane curve	645-648
388	Conditions for a ($1, s$) correspondence on a special Riemann surface	648, 649
389	When $p>1$ a (1,1) correspondence is necessarily periodic.	649, 650
390	And involves a special form of fundamental equation	651
391-393	When $p>1$ there cannot be an infinite number of $(1,1)$ correspondences	652-654
394	Example of the case $p=1$.	654-656

CHAPTER XXII.
Degenerate Abelian integrals.
395 Example of the property to be considered 657
396 Weierstrass's theorem. The property involves a transformation leading to a theta function which breaks into factors . . 657, 658

APPENDIX II.

On matrices.

Index of authors quoted 677,678
Table of some functional symbols
SUbJect index
.

