CHAPTER I.

THE SUBJECT OF INVESTIGATION.

şş		PAGES
1	Fundamental algebraic irrationality	1
2, 3	The places and infinitesimal on a Riemann surface	1, 2
4, 5	The theory unaltered by rational transformation	3-6
6	The invariance of the deficiency in rational transformation; if a	
	rational function exists of order 1, the surface is of zero	
	deficiency	7, 8
7, 8	The greatest number of irremoveable parameters is $3p-3$.	9, 10
9, 10	The geometrical statement of the theory	11, 12
11	Generality of Riemann's methods	12, 13

.

CHAPTER II.

THE FUNDAMENTAL FUNCTIONS ON A RIEMANN SURFACE.

12	Riemann's existence theorem provisionally regarded as fundamental	14
13	Notation for normal elementary integral of second kind	15
14	Notation for normal elementary integral of third kind	15
15	Choice of normal integrals of the first kind.	16
16	Meaning of the word period. General remarks	16, 17
17	Examples of the integrals, and of the places of the surface .	18-20
18	Periods of the normal elementary integrals of the second kind .	21
19	The integral of the second kind arises by differentiation from the	
	integral of the third kind	[.] 22, 23
20	Expression of a rational function by integrals of the second kind .	24
21	Special rational functions, which are invariant in rational trans-	
	formation	25, 26
22	Riemann normal integrals depend on mode of dissection of the	
	surface	26

CHAPTER III.

THE INFINITIES OF RATIONAL FUNCTIONS.

23	The interdependence of the poles of a rational function	27
24, 25	Condition that specified places be the poles of a rational function .	28-30
26	General form of Weierstrass's gap theorem	31, 32
27	Provisional statement of the Riemann-Roch theorem	33, 34

•

§§		PAGE8
28, 29	Cases when the poles coalesce; the p critical integers	34, 35
30	Simple anticipatory geometrical illustration	36, 37
3133	The $(p-1)p(p+1)$ places which are the poles of rational functions	
	of order less than $p+1$	38-40
34 - 36	There are at least $2p+2$ such places which are distinct	4144
37	Statement of the Riemann-Roch theorem, with examples	44-46

CHAPTER IV.

SPECIFICATION OF A GENERAL FORM OF RIEMANN'S INTEGRALS.

38	Explanations in regard to Integral Rational Functions	47, 48
3 9	Definition of dimension; fundamental set of functions for the	11, 10
99	expression of rational functions	4852
40	Illustrative example for a surface of four sheets	53, 54
41	The sum of the dimensions of the fundamental set of functions	
	is $p+n-1$	54, 55
42	Fundamental set for the expression of integral functions	55, 56
43	Principal properties of the fundamental set of integral functions .	57 - 60
44	Definition of derived set of special functions $\phi_0, \phi_1,, \phi_{n-1}$.	61-64
45	Algebraical form of elementary integral of the third kind, whose	
	infinities are ordinary places; and of integrals of the first	
	kind	6568
46	Algebraical form of elementary integral of the third kind in general	68-70
47	Algebraical form of integral of the second kind, independently	
	deduced	71 - 73
48	The discriminant of the fundamental set of integral functions .	74
49	Deduction of the expression of a certain fundamental rational	
	function in the general case	75—77
50	The algebraical results of this chapter are sufficient to replace	
	Riemann's existence theorem	78, 79

CHAPTER V.

CERTAIN FORMS OF THE FUNDAMENTAL EQUATION OF THE RIEMANN SURFACE.

51	Contents of the chapter	80
52	When $p>1$, existence of rational function of the second order	
	involves a (1, 1) correspondence	81
53 - 55	Existence of rational function of the second order involves the	
	hyperelliptic equation	8184
56, 57	Fundamental integral functions and integrals of the first kind .	8586
58	Examples	87
59	Number of irremoveable parameters in the hyperelliptic equation;	
	transformation to the canonical form	8889
60-63	Weierstrass's canonical equation for any deficiency	90—92

х

şş		PAGES
64—66	Actual formation of the equation	93—9 8
67, 68	Illustrations of the theory of integral functions for Weierstrass's	
	canonical equation	99—1 01
69—71	The method can be considerably generalised	
72 - 79	Hensel's determination of the fundamental integral functions	105112
	· · ·	

CHAPTER VI.

GEOMETRICAL INVESTIGATIONS.

80	Comparison of the theory of rational functions with the theory	
	of intersections of curves	113
81-83	Introductory indications of elementary form of theory	113-116
84	The method to be followed in this chapter	117
85	Treatment of infinity. Homogeneous variables might be used .	118, 119
86	Grade of an integral polynomial; number of terms; generalised	
	zeros	120, 121
87	Adjoint polynomials; definition of the index of a singular place .	122
88	Plücker's equations; connection with theory of discriminant	123, 124
89, 90	Expression of rational functions by adjoint polynomials	125, 126
91	Expression of integral of the first kind	127
92	Number of terms in an adjoint polynomial; determination of	
	elementary integral of the third kind	128 - 132
93	Linear systems of adjoint polynomials; reciprocal theorem	133, 134
94, 95	Definitions of set, lot, sequent, equivalent sets, coresidual sets .	135
96, 97	Theorem of coresidual sets; algebraic basis of the theorem	136
98	A rational function of order less than $p+1$ is expressible by ϕ -	
	polynomials	137
99, 100	Criticism of the theory; Cayley's theorem	138 - 141
101—104	Rational transformation by means of ϕ -polynomials	142 - 146
105-108	Application of special sets	147
109	The hyperelliptic surface; transformation to canonical form .	152
110114	Whole rational theory can be represented by means of the invari-	
	ant ratios of ϕ -polynomials; number of relations connecting	
	these	153 - 159
115119	Elementary considerations in regard to curves in space	160 - 167

CHAPTER VII.

COORDINATION OF SIMPLE ELEMENTS. TRANSCENDENTAL UNIFORM FUNCTIONS.

120	Scope of the chapter	168
121	Notation for integrals of the first kind	169
122, 123	The function $\psi(x, a; z, c_1,, c_p)$ expressed by Riemann integrals	170, 171
124	Derivation of a certain prime function	172
125	Applications of this function to rational functions and integrals	173

xi

. .

§§		PAGES
126-128	The function $\psi(x, a; z, c)$; its utility for the expression of	
	rational functions	174 - 176
129	The derived prime function $E(x, z)$; used to express rational	
	functions	177
130, 131	Algebraic expression of the functions $\psi(x, a; z, c_1,, c_p)$,	
	$\psi(x, a; z, c)$	177, 178
132	Examples of these functions; they determine algebraic expres-	
	sions for the elementary integrals	179 - 182
133, 134	0	
	interchange of argument and parameter holds; its algebraic	
	expression; its relation with Riemann's elementary normal	100 105
	integral	182-185
135	Algebraic theorem equivalent to interchange of argument and	105
100	parameter	185
136	Elementary canonical integral of the second kind	186, 187
137	Applications. Canonical integral of the third kind deduced from	
	the function $\psi(x, a; z, c_1,, c_p)$. Modification for the func-	100 100
100	$\operatorname{tion} \boldsymbol{\psi}(x, a; z, c) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	188—192
138	Associated integrals of first and second kind. Further canonical	
	integrals. The algebraic theory of the hyperelliptic integrals	100 104
100 140	in one formula.	193, 194
139, 140	1	105 105
141	of integrals of the first and second kind	195—197 198
$141 \\ 142$	Either form is equivalent to the other	
142 143	Alternative proofs of Weierstrass's and Riemann's period relations	199, 200
140	Expression of uniform transcendental function by the function	201
144 145	$\psi(x, a; z, c)$	201 202-204
144, 145 146	Expression of uniform transcendental function in prime factors	202—204 205
140	General form of interchange of argument and parameter, after	200
141	Abel.	206
		200

CHAPTER VIII.

ABEL'S THEOREM. ABEL'S DIFFERENTIAL EQUATIONS.

148 - 150	Approximative description of Abel's theorem	207-210
151	Enunciation of the theorem	210
152	The general theorem reduced to two simpler theorems	211, 212
153, 154	Proof and analytical statement of the theorem	212—21 4
155	Remark; statement in terms of polynomials	215
156	The disappearance of the logarithm on the right side of the	
	equation	216
157	Applications of the theorem. Abel's own proof	217 - 222
158, 159	The number of algebraically independent equations given by the	
	theorem. Inverse of Abel's theorem	222 - 224
160, 161	Integration of Abel's differential equations	225-231
162	Abel's theorem proved quite similarly for curves in space.	231—234

xii

.

CHAPTER IX.

JACOBI'S INVERSION PROBLEM.

şş		PAGES
163	Statement of the problem	235
164	Uniqueness of any solution	236
165	The necessity of using congruences and not equations	237
166, 167	Avoidance of functions with infinitesimal periods	238, 239
168, 169	Proof of the existence of a solution	239 - 241
170172	Formation of functions with which to express the solution;	
	connection with theta functions	242—245

CHAPTER X.

RIEMANN'S THETA FUNCTIONS. GENERAL THEORY.

173	Sketch of the history of the introduction of theta functions .	246
174	Convergence. Notation. Introduction of matrices	247, 248
175, 176	Periodicity of the theta functions. Odd and even functions .	249 - 251
177	Number of zeros is p	252
178	Position of the zeros in the simple case	253, 254
179	The places $m_1,, m_p$	255
180	Position of the zeros in general	256, 257
181	Identical vanishing of the theta functions	258, 259
182, 18 3	Fundamental properties. Geometrical interpretation of the places	
	m_1, \ldots, m_p	259 - 267
184—186	Geometrical developments; special inversion problem; contact	
	curves	268 - 273
187	Solution of Jacobi's inversion problem by quotients of theta	
	functions	274, 275
188	Theory of the identical vanishing of the theta function. Ex-	,
	pression of ϕ -polynomials by theta functions	276 - 282
189—191	General form of theta function. Fundamental formulae. Periodicity	283-286
192	Introduction of the & functions. Generalisation of an elliptic formula	287
193	Difference of two ζ functions expressed by algebraic integrals and	
•	rational functions	288
194—196	Development. Expression of single ζ function by algebraic integrals	289-292
197, 198	Introduction of the φ functions. Expression by rational functions	292-295
,	g 1 <i>j</i>	

CHAPTER XI.

THE HYPERELLIPTIC CASE OF RIEMANN'S THETA FUNCTIONS.

199	Hyperelliptic case illustrates the general theory		296
200	The places m_1, \ldots, m_p . The rule for half periods		297, 298
201, 202	Fundamental set of characteristics defined by branch places	•	299—3 01

§§		PAGES
203	Notation. General theorems to be illustrated	302
204, 205	Tables in illustration of the general theory	303-309
206 - 213	Algebraic expression of quotients of hyperelliptic theta functions.	
	Solution of hyperelliptic inversion problem	309-317
214, 215	Single ζ function expressed by algebraical integrals and rational	
	functions	318-323
216	Rational expression of p function. Relation to quotients of theta	
	functions. Solution of inversion problem by p function .	323—327
217	Rational expression of φ function	327330
218-220	Algebraic deduction of addition equation for theta functions	
	when $p=2$; generalisation of the equation $\sigma(u+v)\sigma(u-v)$	
	$=\sigma^2 u \cdot \sigma^2 v \cdot (\varphi v - \varphi u) \qquad \cdot \qquad $	330-337
221	Examples for the case $p=2$. Göpel's biquadratic relation	337342

CHAPTER XII.

A PARTICULAR FORM OF FUNDAMENTAL SURFACE.

222	Chapter introduced as a change of independent variable, and as	
	introducing a particular prime function	343
223 - 225	Definition of a group of substitutions; fundamental properties.	343—34 8
226, 227	Convergence of a series; functions associated with the group .	349352
228 - 232	The fundamental functions. Comparison with foregoing theory	
	of this volume	353359
233 - 235	Definition and periodicity of the Schottky prime function	35 9—36 4
236, 237	Its connection with the theta functions	364
238	A further function connected therewith	367372
239	The hyperelliptic case	372, 373

CHAPTER XIII.

RADICAL FUNCTIONS.

240	Introductory	374
241, 242	Expression of any radical function by Riemann's integrals, and	
	by theta functions	375, 376
243	Radical functions are a generalisation of rational functions .	377
244, 245	Characteristics of radical functions	37838 1
246 - 249	Bitangents of a plane quartic curve	381
250, 251	Solution of the inversion problem by radical functions	390—392

CHAPTER XIV.

FACTORIAL FUNCTIONS.

252	Statement of results obtained. Notations	393, 394
253	Necessary dissection of the Riemann surface	395
254	Definition of a factorial function (including radical function).	
	Primary and associated systems of factorial functions .	396, 397

§§		PAGES
255	Factorial integrals of the primary and associated systems	397, 398
256	Factorial integrals which are everywhere finite, save at the fixed	,
	infinities. Introduction of the numbers $\varpi, \sigma+1$	399
257	When $\sigma + 1 > 0$, there are $\sigma + 1$ everywhere finite factorial functions	
	of the associated system	400
258	Alternative investigation of everywhere finite factorial functions of the associated system. Theory divisible according to the	401, 402
259	values of $\sigma + 1$ and $\sigma' + 1$. Expression of these functions by everywhere finite integrals	401, 402
255	General consideration of the periods of the factorial integrals .	404
261, 262	Riemann-Roch theorem for factorial functions. When $\sigma' + 1 = 0$, least number of arbitrary poles for function of the primary	
0.00	system is $\varpi'+1$	405, 406
263	Construction of factorial function of the primary system with	40.0
004 005	$\varpi' + 1$ arbitrary poles	406, 407
264, 265	Construction of a factorial integral having only poles. Least number of such poles, for an integral of the primary system, is $\sigma+2$	407, 410
266	is $\sigma+2$	407, 410
200	elementary integral of the second kind	411
267	Expression of the factorial function with $\varpi' + 1$ poles in terms of	411
201	the factorial integral with $\sigma + 2$ poles. The factorial function	
0.00	in analogy with the function $\psi(x, a; z, c_1,, c_p)$.	411-413
268	The theory tested by examination of a very particular case .	413-419
269	The radical functions as a particular case of factorial functions	419, 420
270	Factorial functions whose factors are any constants, having no	
	essential singularities	421
271, 272	Investigation of a general formula connecting factorial functions	
070	and theta functions	422-426
273	Introduction of the Schottky-Klein prime form, in a certain shape	427—430
274	Expression of a theta function in terms of radical functions, as	400
0 7 5 0 7 0	a particular case of § 272	430
275, 276	The formula of § 272 for the case of rational functions	431—433
277	The formula of § 272 applied to define algebraically the hyper-	(00 (0)
050	elliptic theta function, and its theta characteristic	433437
278	Expression of any factorial function by simple theta functions;	105 100
070	examples	437, 438
279	Connection of theory of factorial functions with theory of auto-	400
	morphic forms	439 - 442

CHAPTER XV.

Relations connecting products of theta functions-introductory.

280	Plan of this and the two following chapters	443
281	A single-valued integral analytical function of p variables, which	
	is periodic in each variable alone, can be represented by a	
	series of exponentials	443445

. xv

xvi	CONTENTS.	
§§		PAGES
282, 283	Proof that the 2 ² theta functions with half-integer character-	446447
284, 285	istics are linearly independent	440447
286	geneous polynomial relation	447—455
	general case when $p < 4$	456 - 461
286, 288	J	
	are all of the same parity	
289	Examples. The Göpel biquadratic relation	465470

CHAPTER XVI.

A DIRECT METHOD OF OBTAINING THE EQUATIONS CONNECTING THETA PRODUCTS.

290	Contents of this chapter	471
291	An addition theorem obtained by multiplying two theta functions.	471-474
292		474-477
293	The general formula obtained by multiplying any number of	
	theta functions	477

CHAPTER XVII.

THETA RELATIONS ASSOCIATED WITH CERTAIN GROUPS OF CHARACTERISTICS.

294	Abbreviations. Definition of syzygetic and azygetic. References	
	to literature (see also p. 296)	486, 487
295	A preliminary lemma	488
296	Determination of a Göpel group of characteristics	489, 490
297	Determination of a Göpel system of characteristics	490, 491
298, 299	Determination and number of Göpel systems of the same parity	492-494
300-303	Determination of a fundamental set of Göpel systems	494-501
304, 305	Statement of results obtained, with the simpler applications .	502 - 504
306-308	Number of linearly independent theta functions of the second	
	order of a particular kind. Explicit mention of an import-	
	ant identity	505-510
309-311	The most important formulae of the chapter. A general addi-	
	tion theorem. The φ function expressed by quotients of	
	theta functions	510-516
312-317	Other applications of the principles of the chapter. The expres-	
	sion of a function $\Im(nv)$ as an integral polynomial of order	
	n^2 in 2^p functions $\vartheta(v)$	517-527

CHAPTER XVIII.

TRANSFORMATION OF PERIODS, ESPECIALLY LINEAR TRANSFORMATION.

şş		PAGES
318	Bearings of the theory of transformation	528, 529
319323	The general theory of the modification of the period loops on a	-
	Riemann surface	529 - 534
324	Analytical theory of transformation of periods and characteristic	
	of a theta function	534 - 538
325	Convergence of the transformed function	538
326	Specialisation of the formulae, for linear transformation	539, 540
327	Transformation of theta characteristics; of even characteristics;	
	of syzygetic characteristics	541, 542
328	Period characteristics and theta characteristics	543
329	Determination of a linear transformation to transform any even	
	characteristic into the zero characteristic	544, 545
330, 331	Linear transformation of two azygetic systems of theta charac-	
	teristics into one another	546 - 550
332	Composition of two transformations of different orders; supple-	
	mentary transformations	551, 552
333, 334	Formation of $p+2$ elementary linear transformations by the	
	composition of which every linear transformation can be	
	formed; determination of the constant factors for each of	
	these	553 - 557
335	The constant factor for any linear transformation	558, 559
336	Any linear transformation may be associated with a change of	
	the period loops of a Riemann surface	560, 561
337, 338	Linear transformation of the places m_1, \ldots, m_p	562
339	Linear transformation of the characteristics of a radical function	563, 564
340	Determination of the places m_1, \ldots, m_p upon a Riemann surface	
	whose mode of dissection is assigned	565 - 567
341	Linear transformation of quotients of hyperelliptic theta functions	56 8
342	A convenient form of the period loops in a special hyperelliptic	
	case. Weierstrass's number notation for half-integer charac-	
	teristics	569, 570

CHAPTER XIX.

ON SYSTEMS OF PERIODS AND ON GENERAL JACOBIAN FUNCTIONS.

343	Scope of this chapter	571
344350	Columns of periods. Exclusion of infinitesimal periods. Expres-	
	sion of all period columns by a finite number of columns,	
	with integer coefficients	571579
351 - 356	Definition of general Jacobian function, and comparison with	
	theta function	579—588
357—362	Expression of Jacobian function by means of theta functions.	
	Any $p+2$ Jacobian functions of same periods and parameter	
	connected by a homogeneous polynomial relation	588598

.

CHAPTER XX.

TRANSFORMATION OF THETA FUNCTIONS.

§§		PAGES
363	Sketch of the results obtained. References to the literature .	· 599, 60 0
364, 365	Elementary theory of transformation of second order	600606
366, 367	Investigation of a general formula preliminary to transformation	
	of odd order	607—610
368, 369	The general theorem for transformation of odd order	611—616
37 0	The general treatment of transformation of the second order .	617—619
371	The two steps in the determination of the constant coefficients	619
372	The first step in the determination of the constant coefficients	619 - 622
373	Remarks and examples in regard to the second step	622 - 624
374	Transformation of periods when the coefficients are not integral	624 - 628
375	Reference to the algebraical applications of the theory	62 8

CHAPTER XXI.

COMPLEX MULTIPLICATION OF THETA FUNCTIONS. CORRESPONDENCE OF POINTS ON A RIEMANN SURFACE.

376	Scope of the chapter	629
377, 378	Necessary conditions for a complex multiplication, or special	
	transformation, of theta functions	629 - 632
379-382	Proof, in one case, that these conditions are sufficient	632 - 636
383	Example of the elliptic case	636639
3 84	Meaning of an (r, s) correspondence on a Riemann surface .	639, 6 40
3 85	Equations necessary for the existence of such a correspondence	640 - 642
386	Algebraic determination of a correspondence existing on a per-	
	fectly general Riemann surface	642 - 645
387	The coincidences. Examples of the inflections and bitangents of	
	a plane curve	645 - 648
388	Conditions for $a(1, s)$ correspondence on a special Riemann surface	648, 649
389	When $p>1$ a (1, 1) correspondence is necessarily periodic.	649, 650
390	And involves a special form of fundamental equation	651
3 91 —393	When $p>1$ there cannot be an infinite number of $(1, 1)$ corre-	
	spondences	652 - 654
394	Example of the case $p=1$	654 - 656

CHAPTER XXII.

DEGENERATE ABELIAN INTEGRALS.

395	Example of the property to be considered	657
3 96	Weierstrass's theorem. The property involves a transformation	
	leading to a theta function which breaks into factors.	657, 658

şş		PAGES
397	Weierstrass's and Picard's theorem. The property involves a	
	linear transformation leading to $\tau_{1,2}^{"}=1/r$	658, 659
398	Existence of one degenerate integral involves another $(p=2)$.	659
399, 400	Connection with theory of special transformation, when $p=2$.	660, 661
401403	Determination of necessary form of fundamental equation.	
	References	661 - 663

APPENDIX I.

ON ALGEBRAIC CURVES IN SPACE.

404	Formal proof that an algebraic cur	ve in s	space is	s an i	interpre	eta-		
	tion of the relations connecting	g three	ration	al fu	nctions	on		
	a Riemann surface (cf. § 162)	•	•	•			664,	665

APPENDIX II.

ON MATRICES.

405-410	Introductory explanations		666669
411 - 415	Decomposition of an Abelian matrix into simpler ones		669674
416	A particular result		674
417, 418	Lemmas		675
	Proof of results assumed in §§ 396, 397		

INDEX OF AUTHO	RS Q	JOTED	••		•	677, 678
TABLE OF SOME	FUNC	FIONA	L SY	MBOLS		679
SUBJECT INDEX			•			680—684

•