CHAPTER XVII
SPECIAL INFINITE DEVELOPMENTS

171. The trigonometric functions. If m is an odd integer, say
m = 2n+1, De Moivre’s Theorem (§ 72) gives '

(m—1)(m —2)
3!

sin m ¢

- = cos?" ¢ —
m Sin ¢ ¢

cos?~2p sin¢p 4 -+, (1)

where by virtue of the relation cos*¢ =1 — sin® ¢ the right-hand mem-
ber is a polynomial of degree = in sin®>¢. From the left-hand side it is
seen that the value of the polynomial is 1 when sin ¢ = 0 and that the
n roots of the polynomials are

sin?r /m, sin*2 o /m, e sin® nar /m.

Hence the polynomial may be factored in the form

3 in2 N2 o 2
sm.mqb —(1— 031211 3 1— szm P (1= = szln ¢ L@
m sin ¢ sin® /m sin?2 7 /m sin® nr /m
If the substitutions ¢ = x/m and ¢ = ux/m be made,

sinz <1_ sian/m> <1 _ sin*zx/m > <1__ M), (3)

m sin a/m sin?r/m sin*2/m sin®nr /m

. - N C e
sinh x _<1+s1nh x/m) <1+ sinh 1/m> <1+ sinh a-/m>'<3,)

m sinhx/m sin® 7 /m sin*2 7 /m sin®nr /m

Now if m be allowed to become infinite, passing through successive
odd integers, these equations remain true and it would appear that the
limiting relations would hold :

sin x x? 22 © 2 ’
2= (- gm) =T (1) @
sinh x ( x? 22 B » 2 '
. = 1+77.2)<1+—2—2—7?2>..._]:|'<1+k27r2>7 (4"
27 x_12 :
in i St mo lim < 6 m® + > B 22
e '"=1°1° Qb — <k'ﬂ' 1 <k71'>3 >2 2
sin® — —={— )+
m  6\m
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In this way the expansions into infinite products

. = a? . x a?
sina = T;I' (1 — Z"‘?’)’ sinha =a TIT <1 + F;;) (5)

would be found. As the theorem that the limit of a product is the prod-
uct of the limits holds in general only for finite products, the process
here followed must be justified in detail.

For the justification the consideration of sinhz, which involves only positive
quantities, is simpler. Take the logarithm and split the sum into two parts

. T
i » smh2 sinh2 =
sinh x m m

log — 2 log 14 + E ]()0 14+ - .
) Lk T
m sinh — 1 qmz »i1 sin? =
m m m

As log (1 + @) < a, the second sum may be further transformed to

. X .
n sinh2 — n Sl nhzZ 1
m m T
u’_—_z og |1+ <2 —9111]12 z_
. ok . m km
p+l sinz2 — P+1 gin? 2% rt1ginz
m m m

Now as n < } m, the angle kwr/m is less than } 7, and sin¢ > 2¢/7 for £ < 1w, by
Ex. 28, p. 11. Hence

T < m2 m? a1 m z redk
R < sinh?2 = E — = — sinh2 = 2—<—sinh2—f —.
mp+14k2 4 . mMﬂk2 4 mdp k2

inh P sinh? = .
sin m m2 . T
Hence log S 2 1+ < —- sinh2 —
R/ . kw 4
m sinh — 1 sinz —
m m

Now let m become infinite. As the sum on the left is a finite, the limit is simply

sinh z 2 sinhe  ~
log —2 ( k27rl> ip’ and log—"= Z ( kzwz)

then follows easily by letting p become infinite. Hence the justification of (4).

By the differentiation of the series of logarithms of (5),

sm r < a2 sinha & x?
=2l ( [ ) log = — =2 log <1+ﬁ772>’ ®)
1

1

the expressions of cot a and coth x in series of fractions
@

1 2x -
eotx:;—zzg;.z—_—xy (‘thT—* +2}’.7‘TT+ 2 )




SPECIAL INFINITE DEVELOPMENTS 455

are found. And the differentiation is legitimate if these series converge
uniformly. For the hyperbolic function the uniformity of the conver-
gence follows from the M-test

1 1 1
e < Jan?’ and 2]?2;2 converges.

The accuracy of the series for cot # may then be inferred by the substi-
tution of <x for x instead of by direct examination. As
—2x 1 1 {1

+x+k7r’ cotx = P — )

2wt —a? x — kw

In this expansion, however, it is necessary still to associate the terms
for k =+ n and k& = — n; for each of the series for £ > 0 and for
k < 0 diverges.

172. In the series for cothx replace # by } . Then, by (22), p. 447,

e 2 < x?" .
_COth2—1+2m 1+ZBin2n!. (9)

If the first series can be arranged according to powers of x, an expres-
sion for B,, will be found. Consider the identity

T D et el Ioe

which is derived by division and in which 6 is a proper fraction if ¢ is
positive. Substitute ¢ = x*/4 k*r?; then

o123 (G52
3| & ]l S
Let ?/e’ +ﬁ+3z,.+‘”=szp' .

€ oth & — xA\"
g oothy — =“22 2,,< > 2“2"(472)'

* The @ is still a proper fraction since each @ is. The interchange of the order of
summation is legitimate because the series would still converge if all signs were positive,
since Tk~ 22 is convergent.
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As S,, approaches 1 when n becomes infinite, the last term approavheq
0 if x < 2, and the identical expansions are

» ,’,2,) i ".'2 » a T
zl: Sy, (— 1)r-t G = 21: Bavy 1= 5 coth 3 — 1. (10)
L 2@2pt
Hence BQp = (- 1)] ! (2 77.)21, ‘5'21' (11)
1‘2”
and —coth —1-{—2321,2 + 6 B Qnﬁ 12

The desired expression for B,, is thus found, and it is further seen
that the expansion for L« coth } « can be broken off at any term with
an error less than the first term omitted. This did not appear from the
formal work of §170. Further it may be noted that for large values of
n the numbers B,, are very large.

It was seen in treating the I'-function that (Ex. 17, p. 385)

log T'(n) = (n — })log n — n + log V27 + w(n),

0 (x x dx
where w(n) =\[_V°c> <§ coth T 1>e =
0 ® !
As f x?Perrdx = [ x?Pe=mrdy = I‘(ii: Do 71,221]’0*‘1 )
the substitution of (12), and the integration gives the result
B4n By, _,n%t3 0B, n"*
o(m) = 3.4 T T ep—8@r—2 T@p—Dz,

For large values of n this development starts to converge very rapidly,
and by taking a few terms a very good value of w(n) can be obtained ;
but too many terms must not be taken. Compare §§ 151, 154.

EXERCISES
1. Prove cosz = sm'Qz = 'F]' ( - L)
2sinz o 2k + 1)272

2. On the assumption that the product for sinhz may be multiplied out and
collected according to powers of x, show that

8
8

-1 = 1
« - — =", wherek #1,
( )kz ) WE = 1gp Wherek =

b

1
—= —, if k may equal L
PR 36 ay equ
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3. By aid of Ex. 21 (9), p. 452, show : (a) 1+ + + -+ "'
)
1 1 1 w2 11 1 w2
T — b b=, 1 o — — — =2,
Bltmtetat PR T 12
1100:5 w2 1logx w2
4. Prove: (« 2 dr = — —, 27 dp = — —
@ —z 6 @ f 1 12’
lo ST w2 o
dr = — —, ) fl .
() — g’ (8 ] log =7
+ @

5. From tmm:—-coc(,-—lr):_-z_—l—
2 r—(k+ 37w

—®

L= 1 R (=1k2e

show cscx = 1 (cotE + tan Jf) = .
2 2 2/ &~Sr—kw =z x? — k*ar?

n—1

L e

1gpa—1 —_
h d.l‘:
SOW‘/O‘1+.E ?a%—k

7. If a isa proper fraction so that 1 — a is a proper fraction, show
Lyg—ady o (— 1) ® ga—1 re—1 T
= = da) .
(@) 0o 14 Za—k fl 14+ ? (ﬁ)f 1+x " sinaw

— /n\2
8. When n is large By, = (— 1)»~14V7n (ﬁ> napproximately (Ex. 13).
e,

6. From

—2 (= )t + (= 1y 62

, and compute for a = i by Ex. 21, p. 452.

9. Expand the terms of = coth — =14 2 W by division when ¢ < 2 7

‘and rearrange according to powers of z. Is it easy to justify this derivation of (11)?

10. Find w’(n) by differentiating under the sign and substituting. Hence get

r/(n)zloo'n__l__&,_i ..... ng._z — 0B2p.
T (n) °7 2n 202 4nt 2p—2)n2r-2 2pn2p
11— qn—1
11. From —~ I(n) +7 1—an™ da of §149 show that, if n is integral
f=] el
T (n) o l—a )
I(n) 11 1 ra)
i+, and y=—W _ 5772156649 .
R R L T

by taking n =10 and using the necessary number of terms of Ex. 10.
12. Prove log T (n + }) = n(logn — 1) + log V27 + w, (n), where

z
2

wm = [ <1 . 1)6”‘,';”7 (1) = w (1) — 0 (2m),

—o \ €

B,n-! 1 Bn-3 1 B,n—5 1
= 1—2 4 1—— 6 1— =)+
w () 1.2< 2)+ 3-4( 28)+ 5~6< 25)+
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0 - 1 [}
 \n P S —are
13. Show n! = V2mn @) e®" or Vor (n-—e %) Ze #n+1Z Notethat the
€

results of § 149 are now obtained rigorously.

-1 n—-1

— na p— (n—1)x

14. From - = 2 e—hr ¢ = 2 e—kr 4 @ “ , and the formulas
1—e = o 1—e v £

of § 149, prove the expansions

®

az S 1 d 1 1
——log T (n) = Sy — logT = —_— ’
(@) gyt o0 =3 map O g leeTmty 2, (1 Yk n+ k)

0 0

- [ n+k 1 ) n "i
(v) logT(n 4+ 1)+ yn = <~.——10g >, (8) _=GY"'|T(1+->e .
Z k k n+1) 1 k

173. Trigonometric or Fourier series. If the series

f@)=4%a, +2(ak cos kx + b, sin kz)
1

=-.}ao-f-uleosm+a200s2x+a80033x+--- as

+bsinx 4+ b,sin2x + b, sin3x 4 -

converges over an interval of length 27 in », say 0 =z < 27 or
— 7 < » = , the series will converge for all values of  and will de-
fine a periodic function f(x + 27) = f(x) of period 2. As

2m 2m
f cos kx sin ledr = 0 and f CoSkz.COSLE y 0 orm  (15)
o o Sin kxsin lx

according as k # I or k = [, the coefficients in (14) may be determined
formally by multiplying f(x) and the series by

1=cosOu, cos x, sin z, cos 2, sin2z,---

successively and integrating from O to 2. By virtue of (15) each of
the integrals vanishes except one, and from that one

1 2 . 1 2m
= f f(x) cos kxde, b, = - f f () sin kxdx. (16)
0 0

Conversely if f(z) be a function which is defined in an interval of
length 2 7r, and which is continuous except at a finite number of points
in the interval, the numbers @, and &, may be computed according to
(16) and the series (14) may then be constructed. If this series con-
verges to the value of f(x), there has been found an expansion of f(x)
over the interval from 0 to 2 in a #rigonometric or Fourier series.*
The question of whether the series thus found does really converge to

* By special devices some Fourier expansions were found in Ex. 10, p. 439.
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the value of the function, and whether that series can be integrated or
differentiated term by term to find the integral or derivative of the
function will be left for special investigation. At present it will be
assumed that the function may be represented by the series, that the
series may be integrated, and that it may be differentiated if the differ-
entiated series converges.

For example let e be developed in the interval from 0 to 2. Here

v 2wk
2w emk ¥ k si vOS
a=1 ezcoskmzif o cos ydy = e_(w
wJo kw Jo T k241 o
or a0=1321r_l, akzleZW_l___l 1 ,
T T T K+1 7wk241
. .
and bk—_—lf "eIsinka:dxz—le“ k +l k .
xJo T K+1 wk24+1
e 1 1 1 1
Hence == 0 082 208 3
v —1 2+12+1csz+22+1c z+32+100s T+
! sinx — sin2x — __sin8z +
1241 22 41 3241 )

This expansion is valid only in the interval from 0 to 2 = ; outside that interval the
series automatically repeats that portion of the function which lies in the interval.
It may be remarked that the expansion does not hold for 0 or 2= but gives the
point midway in the break. Note further that if the series were differentiated the
coefficient of the cosine terms would be 1 + 1/k% and would not approach 0 when
k became infinite, so that the series would apparently oscillate. Integration from
0 to z would give
we—1) 1 1 1 sin2z 1 sin3zx

=-x sinz
e2m — 1 2 +12-!,-1 +22-{-1 2 24+1 3

1 1 1
2 R 3
+12+1cos:c+22+1cos :c+32+1c0s T4,

and the term } z may be replaced by its Fourier series if desired.

As the relations (15) hold not only when the integration is from 0
to 2 7 but also when it is over any interval of 27 from a to e + 27,
the function may be expanded into series in the interval from « to
@ + 2 by using these values instead of 0 and 27 as limits in the
formulas (16) for the coefficients. It may be shown that a function
may be expanded in only one way into a trigonomietric series (14) valid
for an interval of length 2 7r; but the proof is somewhat intricate and
will not be given here. If, however, the expansion of the function is
desired for an interval ¢ < z < B less than 2, there are an infinite
number of developments (14) which will answer; for if ¢ (x) be a
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function which coincides with f(x) during the interval ¢ < ax < B,
over which the expansion of f(x) is desired, and which has any value
whatsoever over the remainder of the interval B < & < a4 2, the
expansion of ¢ (z) from @ to a 4 2 7 will converge to f(x) over the
interval @ <z < B.

In practice it is frequently desirable to restrict the interval over
which f(x) is expanded to a length 7, say from 0 to 7, and to seek an
expansion in terms of sines or cosines alone. Thus suppose that in the
interval 0 < x < 7 the function ¢ () be identical with f'(x), and that
in the interval — 7 < 2 < 0 it be equal to f(— ) ; that is, the func-
tion ¢ (x) is an even function, ¢ (x) = ¢ (— =), which is equal to f(x)
in the interval from 0 to 7. Then

+

¢ () cos kxde = 2 f ¢ (x) cos kxdxr = 2 f J (x) cos kadz,
0 0

-

+m m ™
¢ (x) sin kxdzx =f ¢ () sin kxdx —f ¢ () sin kxdx = 0.
™ 0 0

Hence for the expansion of ¢ (x) from — 7 to + 7 the coefficients ¥, all
vanish and the expansion is in terms of cosines alone. As f(x) coin-
cides with ¢ (x) from 0 to 7, the expansion

@ 2 m
J(x)=)> a,cos kx a=— f f(x) cos kxdx ar
2 aeoshe, = | f@ )
of f(x) in terms of cosines alone, and valid over the interval from 0 to
7, has been found. In like manner the expansion

J(x) =$ b, sin kx, b, = 7—2!. lnf(m) sin kxdx (18)

in term of sines alone may be found by taking ¢ (x) equal to f(x) from
0 to 7 and equal to — f(— «) from 0 to — 7.

Let }x be developed into a series of sines and into a series of cosines valid over
the interval from 0 to w. For the series of sines

2 pm1 . (—1)* T~ sinkz
b~=—f —xsinkxde = —~—", — =
= e 5 Zi

k k
or iz =sinz—}sin2z + {sin3z — }sindzx 4 ... (A)
(0, k even
2 p7l 2 ’
Also aoz—f Cede =T, ak:ff l;CCOS]C.Ed.l::< 2
TJo 2 2 TJo 2 | ——> kodd.
L 7k
1 T 2 cos3x cosbr cosTx
Hence -z =-———|cosx EER I B
2 4 ‘n'[ + 32 + 52 + 72 + ] (B)
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Although the two expansions define the same function } z over the interval 0 to =,
they will define different functions in the interval 0 to — ar, as in the figure.
The development for } 22 may be had by integrating either series (A) or (B).

}a2=1—cosx —}(1—cos2x)+ }(1— cos3x) — ¢ (1 —cos4x) + ---

T 2
=—x——|sinx +
4 T

sin3x cosbx
+ +. ] .

33 53
These are not yet Fourier series because of the terms } 7w and the various 1’s. For

} 7z its sine series may be substituted and the terms 1 — } 4+ } — --- may be col-
lected by Ex. 3, p. 457. Hence

Y
Y
(—m,m)
] ]
1 |
1 \C (r,-}:w) ¢
| /7 o7
B > | B L
i | |
i o C | 5
| A | A
2
ix“’:%—cosz+%cos2x—%cos3z+1—16cos4a:—--- (A)

2 2 2 2
or 1112:E[<WZ—1>sinz——%sin2a:+<"1L2—312>sin3:v——‘%sinfizt+ ] (B%)

The differentiation of the series (A) of sines will give a series in which the individual
terms do not approach 0 ; the differentiation of the series (B) of cosines gives

jm=sinz + }sin3z + {sindx + isinTx 4 .-

and that this is the series for /4 may be verified by direct calculation. The differ-
ence of the two series (A) and (B) is a Fourier series

f@)y=-— —2—[ws.1;+ c0S39&+ -~-]—[sinx— 8”122I+ .. ] ©)

32
which defines a function that vanishes when 0 < x < 7 but is equal to — z when
0>z>—m.

174. For discussing the convergence of the trigonometric series as formally
caledlated, the sum of the first 2n + 1 terms may be written as

S, = 1 j;?n[§+ cos(t —x)+cos2(t —a)+ .- + cosn(t—x)]f(t)dt

t—u

sin(2n+1) —- L

L sin (z'n +1)u du
sinu

LT
rod== 7 e+ 20

2

|-

0 N
2 sin
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where the first step was to combine az cos kx and bz sin kx after replacing  in the
definite integrals (16) by ¢ to avoid confusion, then summing by the formula of
Ex. 9, p.30, and finally changing the variable to u = 1(¢! —z). The sum 8, is
therefore represented as a definite integral whose limit must be evaluated as n
becomes infinite.

Let the restriction be imposed upon f(x) that it shall be of limited variation in
the interval 0 <z < 2. As the function f(x) is of limited variation, it may be
regarded as the difference P(x) — N(z) of two positive limited functions which
are constantly increasing and which will be continuous wherever f(x) is continu-
ous (§ 127). If f(z) is discontinuous at = = x,, it is still true that f(z) approaches
a limit, which will be denoted by f(z, — 0) when z approaches x, from below ; for
each of the functions P(zr) and N(z) is increasing and limited and hence each
must approach a limit, and f(x) will therefore approach the difference of the limits.
In like manner f(x) will approach a limit f(z, 4+ 0) as x approaches x, from above.
Furthermore as f(z) is of limited variation the integrals required for S,, ax, bz will
all exist and there will be no difficulty from that source. It will now be shown that

sin(2.n+ l)ud

1
i uzé[f(xo+0)—f(.to-—0)].

1 pr-F
lim S, (zg) = lim _f,,o f(@y+ 2u)
n=ow n=w M J— 2
This will show that the series converges to the function wherever the function is con-

tinuous and to the mid-point of the break wherever the function is discontinuous.

sm(2.n+1)u = e+ 2u)
sinu u

u sin@2n+1)u sin ku

Let f(z,+ 2u) F(u)T,

then Sn(%)=lf”- 2F( )gmku du = f Fu )smkudu,—'rr<a<0<b<7r.
aJ-20
2

As f(x) is of limited variation provided — 7 < a =u = b <, so must f(x, + 2 u)
be of limited variation and also F(u) = uf/sinu. Then F(u) may be regarded as
the difference of two constantly increasing positive functions, or, if preferable, of
two constantly decreasing positive functions ; and it will be sufficient to investigate
the integral of F(u)u—1sinku under the hypothesis that F(u) is constantly de-
creasing. Let n be the number of times 2 w/k is contained in b.

4m 2nmw

2w
b sin ku * T % b smku
fOF(u)Tdu=fo’°+ ar T F [ na F() du
* %

2nm

27r 471 2nm b
‘f g F(k)smud N Flu )ilnku du

2nmw
2(n—1)mw
2w (n ) -

As F(u) is a decreasing function, so is u=1F(u/k), and hence each of the integrals
which extends over a complete period 27 will be positive because the negative ele-
ments are smaller than the corresponding positive elements. The integral from
2nw/k to b approaches zero as k becomes infinite. Hence for large values of k,

2
f Flu )Sm"“ u<f WF(;-:>§Edu p fixed and less than n.
0 u
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b i w w ™
Again, f; F(u)snitkudu =j; +f: +j:

@Ern—Dm__/y\ sinu b smku
+... F(_>—-du F(u
+‘/(j2n—3)1r k u +f(2"k Dm ( )

Here all the terms except the first and last are negative because the negative ele-
ments of the integrals are larger than the positive elements. Hence for k large,

b i @p—1)
f F (u) sin ku du > f v ”F<l—‘>wdu, p fixed and less than n.
0 u 0 k] u

In the inequalities thus established let & become infinite. Then u/k =0 from
above and F(u/k) = F(+ 0). It therefore follows that

@p—1ym 2
Y smud w < lim F( )smkud w< F(+ 0)f PTsinu

k==

du.

F(+0) [

Although p is fixed, there is no limit to the size of the number at which it is fixed.
Hence the inequality may be transformed into an equality

smku 'smu T
i F(u = u=-F .
i [P S =0 [T = TR0

0 sin ku  sinu
Likewi li F du=F(—0 =TF(-0
rrewise x:ri «L @ u " ( )fo u e 2 F=0.
) .
Hence lim f Fa S8 gy — TR+ 0) + F(— 0)]
k=o Ja u 2

sin (2.n + 1) %
sinu

or diw t [T 5+ 20) = 17+ 0) +F (2, 0)]

n=x T
Hence for every point x, in the interval 0 <z < 27 the series converges to the
function where continuous, and to the mid-point of the break where discontinuous.

As the function f(x) has the period 2, it is natural to suppose that the con-
vergence at ¢ = 0 and = = 2« will not differ materially from that at any other
value, namely, that it will be to the value { [f(+ 0) + f (27 — 0)]. This may be
shown by a transformation. If k is an odd integer, 2n + 1, ‘

sin@n4+ )u=sin@n+1)(r—u)=sin(Zn 4+ ),

. o ) ,
lim [P Cr DY i [Fw SmEr+ DU g T g = 4 0).
13 u n=w JO u 2

n=ow
™ i b T
Henee lim [ F(u)s“‘i%*'_l)_“du =tim ("4 [T=T(F(+0)+ Fx— o))

1
Now forx =0 or & = 27 the sum §, = — f f(z )sln(2n+ )u
sinu

will therefore be  [f(+ 0)+ (27 — 0)] as predicted above.
The convergence may be examined more closely. In fact

_x . b(x) ink
sn(x)z’lrf_: 2f(z+2u)$smk“du=lf F(I.u)ydu.
7

du, and the limit

u ™ Ja(x)
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Suppose 0 < @ =x = B < 27 so that the least possible upper limit b(x) is7 — {8
and the greatest possible lower limit a (z) is — } . Let n be the number of times
2 w/k is contained in = — } 8. Then for all valuesof x in a =z =8,

@p-1 i
f P ”F<w,1’:) Smudu+e<f F( , )smkudu
o

u
2pm u\ sinu
<f0‘ F(ac,’—c>—du+n, p<m,

where ¢ and »n are the integrals over partial periods neglected above and are uni-
formly small for all 2’s of @ = x = g since F(x, u) is everywhere finite. This
shows that the number p may be chosen uniformly for all «’s in the interval and
yet ultimately may be allowed to become infinite. If it be now assumed that f(x) is
continuous for @ =z = B, then F (z, u) will be continuous and hence uniformly
continuous in (z, u) for the region defined by a =z =gand —je=u=wr—}z.
Hence F(z, u/k) will converge uniformly to F (x, + 0) as k becomes infinite. Hence

sin ku sinu

du < F(z, +0)f Sty

F(a:,+0)f s‘““du+e<f "F(z, u)

where, if 8 > 0 is given, K may be taken so large that |¢'| <& and |»"| <éfork> K ;
with a similar relation for the integration from a(z) to 0. Hence in any interval
O0<a=c=p<2w over which f(x) is continuous S,(x) converges uniformly
toward its limit f(x). Over such an interval- the series may be integrated term by
term. If f(x) has a finite number of discontinuities, the series may still be inte-
grated term by term throughout the interval 0 = & = 2 7 because S,(x) remains
always finite and limited and such discontinuities may be disregarded in integration.

EXERCISES

1. Obtain the expansions over the indicated intervals. Integrate the series.
Also discuss the differentiated series. Make graphs.

1 1 1 1 1
(a) 1re~‘” =_-—-cosr + -cos2x — —cos3x + —cosdx — ...
2sinh7w 2 2 5 10 17
—mwto 4+ m,
3}-1sinm 2sin2a;+§-sin3:c—isin4m+
2 5 10 17 ’
(B) %, as sine series, 0 to m, (y) %, as cosine series, 0 to ,

1 cos2x cos4x cos6x

(9) sina::i[—— — — —---], 0 to =,
7|2 1.3 3.5 5.7

(¢) cosz, as sine series, 0 to , ($) e, as cosine series, 0 to m,
(n) xsinzg, —  to , (#) zcosx, —mtom, () T+, —mtom,
(k) sinfx, — 7 to =, 6 fractional, (\) cosfx, — m to w, 4 fractional,

fiw, O<z<m,

(;r O<e<}m,
10 Tx<2m,

as a sine series, 0 to r,
—imir<e<mw

(w) f(@) = @) flx) =

(o) — log <2sin 2)_ cosT + }-LOSZL + gcos3a: + —cos4:c +---,0tom,
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() z, —imtoim, (p) sintz, —1lwtodm, (0) cosiw, —$mtolm,

(1) from (o) find expansions for log cos { x, log vers x, log tan 1 x. Note that in
these cases, as in (o), the function does not remain finite, but its integral does.

2. What peculiarities occur in the trigonometric development from — o to =
for an odd function for which f(z) = f(w — x)? for an even function for which

fay=f(m—2)?

©
c
3. Show that f(z) = z bk sinka with by :% f f(x) sin k—ﬂgdz is the trigo-
¢ 0 ¢
1

nometric sine series for f(x) over the interval 0 <z <c¢ and that the function thus
defined is odd and of period 2c¢. Write the corresponding results for the cosine
series and for the general Fourier series.

4. Obtain Nos. 808-812 of Peirce’s Tables. Graph the sum of Nos. 809 and 810.
5. Lete(@) =f(x) — Lag—a, cosT — .- —azcosnx — b, sinx — - - . — b, sin nx
be the error made by taking for f(z) the first 2n + 1 terms of a trigonometric series.
+m
The mean value of the square of e(x) is él— f [e(z)]2dx and is a function
wJ—7

F(ay, @y, -+, @, by, -+, by) of the coefficients. Show that if this mean square
error is to be as small as possible, the constants a,, a,, - - -, @, by, - -+, b, must be
precisely those given by (16); that is, show that (16) is equivalent to

oF _oF _ _oF _e¢F __ _@F

by e o

6. By using the variable \ in place of « in (16) deduce the equations

2m 1 > 2w
f(z)=2_1;f0 f(x)coso(x—z)dx+;zl:fo F\) cos k(A — x)dn

1 <~ pom . 1 < 2 .
— =k (A—x)7, —_ Rai + kat, .
_2_;&‘[; f(\)e d)\_2 _Zwe* f; J(x) ex kridy ;

. . 1 pom .
and hence infer  f(z) =2 aes ki, X =g jc: S (x) e=kridg,

7. Without attempting rigorous analysis show formally that

f°°¢(a)da= lim [ + ¢(— n-Ad)Aa + ¢(— n+1-A@)Aa + - - - + ¢(— 1. Ad)Acx
—® Aa=0
+¢(0-Ac)Aa + ¢(1- Aa)Aa + --- + ¢(n- Aa)Aa + - - -]

= i k- Aa)Aa = li k—>—.

Jim 3 otk dysa = lim 3o (i7) 2

Sh f(x)—lifcf(x)e*k%“")idx—li fcf(x)e*’%“"’“_’dx
ow _2(}_00 —c ‘ _277-»7. —c c

is the expansion of f(x) by Fourier series from — ¢ to c. Hence infer that

Ii’-r()\—z)i m

1 * * 3 . 1 & < S
7) — = a(A— )i = — N\ ¢ dX\ -
ro =g [T [ royeseo-mianta = tin 272_02 S rove ;

c=x
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is an expression for f(z) as a double integral, which may be expected to hold for
all values of . Reduce this to the form of a Fourier Integral (Ex. 15, p.377)

f(z):}rfowj: F(\)cosa(n — ) dnda.

8. Assume the possibility of expanding f(r) between — 1 and + 1 as a series of
Legendre polynomials (Exs. 13-20, p. 252, Ex. 16, p.440) in the form

F(@) = 4Py (x) + @, P, (&) + a,Py (@) + - - + anPr(@) + - - -

2k+1 p1
- [ @ Pu@)dz.
For this expansion, form e(x) as in Ex.5 and show that the determination of the

coefficients @; so as to give a least mean square error agrees with the determi-
nation here found.

By the aid of Ex. 19, p. 253, determine the coefficients as ax =

9. Note that the expansion of Ex.8 represents a function f(x) between the
limits + 1 as a polynomial of the nth degree in z, plus a remainder. It may be
shown that precisely this polynomial of degree n gives a smaller mean square error
over the interval than any other polynomial of degree n. For suppose

(@) =cCo+c@+ -+ cu@m =by+ b, P+ -+ + 0P,
be any polynomial of degree n and its equivalent expansion in terms of Legendre
polynomials. Now if the ¢’s are so determined that the mean value of [ f(x) — ga()]2
is a minimum, so are the b’s, which are linear homogeneous functions of the ¢’s.
Hence the b’s must be identical with the a’s above. Note that whereas the Maclaurin
expansion replaces f(r) by a polynomial in x which is a very good approximation

near xr = 0, the Legendre expansion replaces f(x) by a polynomial which is the
best expansion when the whole interval from — 1 to + 1 is considered.

10. Compute (cf. Ex. 17, p. 252) the polynomials P, =z, P, = — } + § a2,

P,=—3ja+ a8, P, =3 — 15224 3pat, P, =150 — 3503 4 8375,
1 2 6 2 .
Compute risinmedr =0, —(1— —),0, —,0whent¢ =4, 3, 2, 1,0. Hence show
-1 T 2 T ’ ’

that the polynomial of the fourth degree which best represents sin wr from —1
to + 1 reduces to degree three, and is
. 3 7 (15 5 £
sinme = —x — — (— = l) (3.’1:3 — 395) = 2.69z — 2.8928.
L4  \m? 2 2
Show that the mean square error is 0.004 and compare with that due to Maclaurin’s
expansion if the term in x# is retained or if the term in «3 is retained.
1 2
11. Expand sin- 7z = 1—Pl _ 168 (E - 1) P, =1.553x — 0.5623.
2 w2 w2 \m?

12. Expand from — 1 to 4 1, as far as indicated, these functions :

(a) cosmx to P,, B) e to Py, (v) log(1+x) toP,,

(8) Vi—a? to P, (¢) cos~lx  to P,, (¢) tan—1r to Py,
1 1 1

(n) , to Py, () —— to Py, () ——  to P,.

Vitez ¢ V1— 22 ’ )\/1+:c2 :

What simplifications occur if f(x) is odd or if it is even ? -
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175. The Theta functions. It has been seen that a function with the
period 2 7 may be expanded into a trigonometric series; that if the
function is odd, the series contains only sines; and if, furthermore,
the function is symmetric with respect to @ = } 7, the odd multiples
of the angle will alone occur. In this case let

Sy =2[nsine —a sind3xr+ .-+ (—1)"a,sin(Zn+ )z +- -]

As 2 sinnr = — i (¢ — ¢~ ™), the series may be written

©

Jf(@ =22 (—Dra,sin(2n+1)a=—1 z (—Dra,eCrtb=g_  —=a, .
0

This exponential form is very convenient for many purposes. Let ip
be added to «. The general term of the series is then

,_e@n—D@+ ip)i a1~ @n—1)pg—2xip@n+ Dai_

Hence if the coefficients of the series satisfy a,_,e " = a,, the new
general term is identical with the succeeding term in the given series
multiplied by — e?e=2*. Hence
fx+ip)=—ere 2 f(ax) if a,_,=a,™.

The recurrent relation between the coeflicients will determine them

in terms of ;. For let ¢ = e=*. Then
@, = a”_lq2n — an_2q2nq2n—2 — ... = aoq2nq2n—2 . qz — aoqn2+n,
=0 y=a g =a gt = =a,

The new relation on the coeflicients is thus compatible with the original
relation a_, =«a,_;. If o = q%, the series thus becomes

F@=2¢tsine —2¢¥sin x4+ + (=124 Vsin@n+ a4,
fE+2m)y=Ff@), fl@+m)=—F,(=), f@+ip)=—q e " f().

The function thus defined formally has important properties.
In the first place it is important to discuss the convergence of the
series. Apply the test ratio to the exponential form.

v = 2Rp2 i _ 2up—2ai
Uy 41 /U, = "2, U_py_1fU_y = QP e 2",

For any « this ratio will approach the limit 0 if ¢ is numerically less
than 1. Hence the series converges for all values of x provided |¢| < 1.
Moreover if || < LG, the absolute value of the ratio is less than |g[*"e€,
which approaches 0 as n becomes infinite. The terms of the series
therefore ultimately become less than those of any assigned geometric
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series. This establishes the uniform convergence and consequently the
continuity of f(x) for all real or complex values of 2. As the series for
7' (x) may be treated similarly, the function has a continuous derivative
and is everywhere analytic.

By a change of variable and notation let

K’
U _TTx
H(u) = f<2 K 1= (19)
(u) = 277} sin%— 27% sin 32 — + 27 sin 5‘) U (20)

The funection H (w), called eta of «, has therefore the pr opelties

H(u+ 2K)=— H(u), Hu+2iKY=—q¢% ¥ H(’u), (21)

Hu+2mK+ 2inK') = (— 1)"”“”(]“"6—7“11('1(), m, n integers.

The quantities 2 K and 2 {K' are called the periods of the function. They
are not true periods in the sense that 2 7 is a period of f'(x); for when
2 K is added to u, the function does not return to its original value, but
is changed in sign; and when 2¢K' is added to u, the function takes
the multiplier written above.

Three new functions will be formed by adding to « the quantity K
or tK' or K + tK', that is, the Lalf periods, and making slight changes
suggested by the results. First let H, («) = H(u« 4 K). By substitution
in the series (20),

5

H(u)y=2 qTeos—+2g?(‘os?)2—+2q’f cos 97;‘,L+~-~. (22)

By using the properties of H, corresponding properties of H,

H(u+2K)=—H (), H(ut2iK)=+q"% 5'H (), (23)
are found. Second let iK' be added to v in H («). Then
o 1@n+1)? (2n+1)—(u+11\’) Pt} —7r(n+,:,)§ (2n+l):—’i,u
(1 = { [ e “
is the general term in the exponential development of H(u + ¢{K')
apart from the coefficient + i. Hence
2 n n2— —I—i- 2n"—i
H(u + iK") = iZ(— 1) lr]n %e IR, "IR

=1:q ‘e sxY 2( 1>n’/n?’2nﬁu

-0
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Let O(n)=— it/%er"'uH(u + iK' = 2 (— l)nl[ngeznr’"" :
The development of ®(«) and further properties are evidently
2 mu 4 au 6 mu
—1_9 .0Q 1 Los — 2 4% cos
®(u)=1 dq(,o&.2K+2q cos 5 - — 2y wsZK—l- , (24)

OU+2K)=0(), O@Wu+2iK)=—qg k" Ow). (25)
Finally instead of adding K + iK' to v in H (), add K in @ (u).

®l(71)=1+2qcos%+2q4cos4_7:”+2(]90036m"+‘.., (26)

2 2K
O +2K)=0,u), O+2iK)=+q¢ K O0). (27
For a tabulation of properties of the four functions see Ex.1 below.
176. As H (v) vanishes for » =0 and is reproduced except for a
finite multiplier when 2 mK + 2 niK' is added to u, the table
H(u)=0 for u=2mK+ 2niK/,
H@w)=0 for w=(2m+1)K + 2niK',
®O(u)=0 for w=2mK+ (2n+1)iK'
0,(u)=0 for u=2m+1)K+ (2n+1)iK/,
contains the known vanishing points of the four functions. Now it is
possible to form infinite products which vanish for these values. From
such products it may be seen that the functions have no other vanish-

ing points. Moreover the products themselves are useful.
It will be most convenient to use the function ®,(«). Now

e%(2mK+K+ Wik iRy @n+n)

7 —o<n<w.
i—"u 9 ——iIu
Hence eE" 4+ q=@ntD and e K" 4 ¢ @niD, n = 0,

are two expressions of which the second vanishes for all the roots of
®,() for which » = 0, and the first for all roots with » < 0. Hence

TMT=cC 'ijr(l + ’IQ"HI,'%:") (1 " ’[“)"He_i,/:—fl)

is an infinite product which vanishes for all the roots of ®,(x). The
product is readily seen to converge absolutely and uniformly. In par-
ticular it does not diverge to 0 and consequently has no other roots
than those of ® (u) above given. It remains to show that the product
is identical with @ (x) with a proper determination of C.
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i

Let ©,(u) be written in exponential form as follows, with z = eE".
1 2, 1 2 1
$(E) =0 =1+g(z+ ) +¢* (2 ta)to e (e D)+

Y@ =CTTT W) =0+ ¢2) (1 + ¢%) A + ¢%2)- - - (1 + g2*~ 1) - -

D (D)

A direct substitution will show that ¢ (¢22) = ¢~ 12~ 1¢ (2) and ¥ (¢%) = ¢~ 12— 1y (2).
In fact this substitution is equivalent to replacing u by u + 2¢K’ in 6,. Next con-
sider the first 2n terms of y (2) written above, and let this finite product be yy,(2).
Then by substitution

(@®" + ¢2)¥n (@%2) = (1 + @2+ 12) ¥ (2).

Now ¥, (2) is reciprocal in z in such a way that, if multiplied out,

1 1 1
‘Pn(z)’_'ao'i'a1(z+2)+a2(z2+z—2)+-‘-+an(z"+z—"), = g7,

n ) n
Then (¢2" + gz) 2 a; (g%t + q= 227 ) = (1 + 2+ 1z) 2 a; (Z + z—7),
0 : 0
and the expansion and equation of coefficients of z¢ gives the relation
i — 2k+2
QRi-1(1 — g2n—2i+2) q TT (11— g2k )

=ti-1 1_q2n+2i or 4i=dy t—1
TT (1_q20+2k+2)

nﬁ'l (1 — g2n+2k+2) q,ﬂnﬁ-’ (1— g2n+2i+2k)
From a, = ¢%, a, = kjoﬂ*—, a; = k =n1_i .
T (1 — ¢%%) T (1 —¢%%)
k=1 k=1

Now if n be allowed to become infinite, each coefficient a; approaches the limit

iz o
limqiz%, C=T(-¢n=01-g)1—a)(1-¢)
—im

Hence O, (u) = '|T(1—q2") Tl‘(1+q2"+1e )(1+q2"+1e “),

provided the limit of ¥a (2) may be found by taking the series of the limits of the
terms. The justification of this process would be similar to that of § 171.

The products for ®, H,, H may be obtained from that for ® by sub-
tracting K, iK', K + <K' from » and making the needful slight altera-
tions to conform with the definitions. The products may be converted
into trigonometric form by multiplying. Then

H(u)=C2 ¢ sin 5 1T <1 — 2¢n cos 2T + q‘") (28)
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H (1) = C2q*cos-‘27—r—%fr<1+2q2"cos22l;+q"'>, (29)
o) =C f:r (1 — 2 g*"+1 cos 22% + g‘"“’), (30)
®0,(n) = C 1jr <1 + 2¢2** cos 22—’;‘ + g*"+2>, (31)
=TA-pPy=A=AA-hA—¢) (2

HO) = 23T A+, @) =cTa—gmp

H'(0)= (24}

ST A=, 00) =TT (L+ g

The value of H'(0) is found by dividing H () by « and letting « = 0.
Then

H'(0) = 5= H,(0)®(0)®,(0) (33)

follows by direct substitution and eancellation or combination.
177. Other functions may be built from the theta functions. Let

o _H(E) _ ) e [F_e©
Vi=om ~om) V¥ =e0) \ﬁ“ﬂm’ @9

_ 1 H®w) |k H, (u) _ ®,(u
sn u ~\/—/.®("), cnu—\]k ®(u) dnu = \/_®(( )) (35)
The functions sn u, cn w, dn « are called elliptic functions* of w. As H
is the only odd theta function, sn « is odd but e¢n « and dn » are even.
All three functions have two actual periods in the same sense that sina
and cos x have the period 2 7r. Thus dn« has the periods 2 K and 4 (K’
by (25),- (27); and sn « has the periods 4 K and 2 (K' by (25), (21).
That ¢nw has 4 K and 2 K + 2 iK' as periods is also easily verified.
The values of « which make the functions vanish are known; they are
those which make the numerators vanish. In like manner the values
of « for which the three functions become infinite are the known roots
of ®(u).

If ¢ is known, tlie values of V% and Vi’ may be found from their
definitions. Conversely the expression for VZ/,

. 000) 1—2¢+2¢—2¢+--
\/]:_®1(0)—1+29+29*+2q9+--" (39)

* The study of the elliptic functions is continued in Chapter XIX.
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is readily solved for ¢ by reversion. If powers of ¢ higher than the

first are neglected, the approximate value of ¢ is found by solution, as

11-VE _ g+4 4

211 Vi 1-24+ -

11—~VE | 2 1=~k 151 Vi

Hence 5 — )t /=] +-
1+VE/) 2 \1+ Vi

Q"21+_\/]?,+25 (37
is the series for ¢. For values of %' near 1 this series converges with
great rapidity; in fact if &% = 3, &' > 0.7, V&' > 0.82, the second term
of the expansion amounts to less than 1/10° and may be disregarded
in work involving four or five figures. The first two terms here given-
are sufficient for eleven figures.

Let # denote any one of the four theta series H, H,, ®, ®,. Then

F(u) = ¢ (z) = i b,2", v= o R (38)

may be taken as the form of development of #*; this is merely the
Fourier series for a function with period 2 K. But all the theta funec-
tions take the same multiplier, except for sign, when 2 {K'is added to u;
hence the squares of the functions take the same multiplier, and in par-
ticular ¢ (¢%2) = ¢~227%¢(z). Apply this relation.

2 bt = g~ 22 2 b,2", bttt =1, _,

Tt then is seen that a recurrent relation between the coefficients is found
which will determine all the even coefficients in terms of 4 and all the
odd in terms of 6. Hence

(u) = b, (2) + 0, ¥ (2), b,y b,, constants, (38"

0 U1
is the expansion of any ¥ or of any function which may be developed
as (38) and satisfies ¢ (¢%) = ¢~ %2 2¢ (). Moreover ® and ¥ are iden-
tical for all such functions, and the only difference is in the values of
the constants b, b,.
As any three theta functions satisfy (38") with different values of the
constants, the functions ® and ¥ may be eliminated and

adf(u) + B (w) + y8f(u) =0,
where a, 3, y are constants. In words, the squares of any three theta
functions satisfy a linear homogeneous equation with constant coeffi-
cients. The constants may be determined by assigning particular values
to the argument u. For examyple, take H, H , ®. Then*

*For brevity the parenthesis about the arguments of a function will frequently be
omitted.
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aH* () + BH} (u) = y®*(v),  BHZ0 = y0%), aH’K = y@'K,
'K H*(n) | ©0 H}(u)
H*K @&(v) = H}0 @*(u)

By treating H, @, ® in a similar manner may be proved
EsnPu4dn?u=1 and I +Lk%=1. (40)
The function & (u)¢ (v — @), where « is a constant, satisfies the rela-
tion ¢ (¢%) = ¢~ (¢ (z) if log €' = ima /K. Reasoning like that used
for treating & then shows that between any three such expressions

there is a linear relation. Hence

aH (w)H (v — a) + BH, (W) H,(t — a) = y® (1) ® (v — a),
w=0, BH, (0) H,(¢«) = y8®(0) @ (a),
uw=K, aH, (0) H, («) = y0,(0)0, (2),

®00,00,« H (u)H(u — «) " 00 H,(v)H (v —a) _ 00 Ha
H00u®(1)® (1« —a)  HO O(u)®(u—a) HO O’

=1, or sn®u + en?u = 1. (39)

or dnasnwusn (v — a) 4 cnucen(u — «) = ena. (41)
In this relation replace ¢ by — v. Then there results
enucen(u 4+ v) +snudnwvsn (v + ) =cno,
or enven(u + v) +snvdnusn(u + v) =cnuw,

en?u — en?v = sn?v — sn?u

and sn(u + v) = ,
snvenu dnuw —snucnvdnw

(42)

by symmetry and by solution. The fraction may be reduced by multiply-
ing numerator and denominator by the denominator with the middle
sign changed, and by noting that

sn?ven?uwdn?u — sn?wen?o dn®v = (sn’v — sn?w) (1 — k*sn?usn?o).

snuenvrdny 4 sneenwdn

Then sn(u + v) = SR P p—— s (43)
and sn(u — 1 snuenedne —snvenwdnw
i U —v)=
) 1 — k*sn?usn?e ’
and sn (n + 2snvenudnu (a4)
an U V) — "° -1y =
) —sn(ue—1) 1 — k*sn?usn®e
The last result may be used to differentiate sn«. For
sn(u + Aw) —snw _snyAuw en(u + FAw)dn(v+ 4§ Aw)
Au Tl Aw 1—/Psn?)Ausn®(u+ §Auw)’
el . sSnu
Zosnw= gcnawdn g = lim — - (45)

du w=o U
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Here g is called the multiplier. By definition of sn« and by (33)

¢ = =
7= 1,0 ©0) ~ 2K
The periods 2 K, 2 iK' have been independent up to this point. It will,
however, be a convenience to have g =1 and thus simplify the formula
for differentiating sn«. Hence let
g=1, 2—7%=®1(0)=1+2q+2q“+~--. (46)
Now of the five ‘quantities A, K, /, k', ¢ only one is independent.
If 4 is known, then %' and K may be computed by (36), (46); % is de-
termined by 2% + £” =1,and K' by wK'/K = — log q of (19). If, on the
other hand, &' is given, ¢ may be computed by (37) and then the other
quantities may be determined as before. :

EXERCISES
_imy _imy
1. With the notations A = ¢~ EPREY ¢ ,uw=g le K establish:
H(—u)y=—H(u), Hu+2K)=— H(u), H(u + 2iK’) = — pH (u),
H(—wy=+H (), H(u+2K)=— H (). H,(u+ 2iK’) =+ uH,(u),
O(— u) =+ 6 (u), O+ 2K)=+ 6(u), (U + 2iK’) =— uB(u),
0, (—u)=+06,(u). O (u+2K)=+6,(u). 0, (u + 2iK’) =+ 6, (u),

H(w+ Ky=+ (). (u+ik)y=i0@). @+ K+ iK’) =+ A0, (u),
Ho(u+ Ky=— @y, @+ [K’):+)\91(u).. H, (u+ K +iK’) =— i\O (u),
O+ N)y=+06,(u). O+ ik’)=INI(u), O(u+ K + iK’) =+ \H, (u),
O, u+ K)y=4+6(@u), O (u+ih)=+rH (v), 6,(u+ K+ iK'=+ i\H (u).
2. Show that if u is real and ¢ = {, the first two trigonometric terms in the

series for H, H,, 6, 6,, give four-place accuracy. Show that with ¢ = 0.1 these

terms give about six-place accuracy.

. sin . . .

3. Use _4°M -, =gxina 4 ¢?sin2a 4+ ¢3sin3a 4 - - - to prove
1—2qgcosa+ ¢

LT 2 2TU 3 STU
) gsin —  ¢%?sin —  ¢3sin ——
d O'(u) 27 K K K
—log®u) = —— = — + + B
du o) N \1—¢2 1—¢t 1—g¢8
4. Prove the double periodicity of cnu and show that :
.. cnu 1 dnu
sn(u+ K)=-—"—, sn iK’) = , K +iK')= ,
( ) dnu (u+ B ksnu sn(u + K + 1K) kcnu
—k'snu —idnu — ik
ecn(u+ Ky= ———, cn(u + iK’) = , n K + iK) =
(w+ 5 dnu (w+ ) ksnu ¢ (1“+ + i) kenu’
dnu+ K)=—",  dn(utiky=—i2%  do@+ K+ iK) = i %
dnu snu cnu
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5. Tabulate the values of snu, cnu, dnu at 0, K, iK', K + iK".

6. Compute k" and k2 for ¢ = 1 and ¢ = 0.1. Hence show that two trigonometric
terms in the theta series give four-place accuracy if " = }.
cnucnv—snusnvdnudnv

7. Prove cn(u 4 v) = I Fofu v )

dnudnv — k2snusnvenucny

and dn(u+v) = 1— k2sn2usn2v
d d
8. Prove — cnu =—snudnu, —dnu =— k?snucnu, g=1.
du du
9. Prove sn—1lu =f“—-—dL— from (45) with g =1.
0 V(1—u?)(1— k2u?)

10. If g =1, compute k, k', K, K’, for ¢ = 0.1 and ¢ = 0.01.
11. If g =1, compute ¥, g, K, K’, for k2 =}, &, 1.

12. In Exs. 10, 11 write the trigonometric expressions which give snu, cnu, dnu
with four-place accuracy.

'13. Find sn2w, en 2u, dn2u, and hence sn } u, cn 1, dn } u, and show
sn}E=1+k)"3% en}E=VEA+k) % dn}K=Vk.
14. Prove — kfsnudn =log(dnu + kcnu); also

62(0)H (u + a)H (u — a) = 62(a) H2(u) — H2(a)O62(u),
62(0)0 (v + a)6 (v — a) = 62%(u)62(a) — H2(u) H2(a).



