
CHAPTER IV 

PARTIAL DIFFERENTIATION; EXPLICIT FUNCTIONS 

43. Functions of two or more variables. The definitions and theo
rems about functions of more than one independent variable are to a 
large extent similar to those given in Chap. II for functions of a single 
variable, and the changes and difficulties which occur are for the most 
part amply illustrated by the case of two variables. The work in the 
text ΛVÌII therefore be confined largely to this case and the generaliza
tions to functions involving more than two variables may be left as 
exercises. 

If the value of a variable z is uniquely determined when the values 
(x, y) of two variables are known, z is said to be a function z = f(x, y) 
of the two variables. The set of values \_(x, y)^] or of points P(x, y) of 
the ,τ¿/-plane for which z is defined may be any set, but usually consists 
of all the points in a certain area or region of the plane bounded by 
a curve which may or may not belong to the region, just as the end 
points of an interval may or may not belong to it. Thus the function 
1 / V l ~ xλ — Ý is defined for all points within the circle x2 + y2 = 1, 
but not for points on the perimeter of the circle. For most purposes it 
is sufficient to think of the boundary of the region of definition as a 
polygon whose sides are straight lines or such curves as the geometric 
intuition naturally suggests. 

The first way of representing the function z = f(x, y) geometrically 
is by the surface z =f(x, y), just as y =f(x) was represented by a curve. 
This method is not available for =f(x, y,z), & function of three vari
ables, or for functions of a greater number of variables ; for space has 
only three dimensions. A second method of representing the function 
z =f(x, y) is by its contour lines in the #¾/-plane, that is, the curves 
f(x, ij) = const, are plotted and to each curve is attached the value of 
the constant. This is the method employed on maps in marking heights 
above sea level or depths of the ocean below sea level. I t is evident that 
these contour lines are nothing but the projections on the ¿c?/-plane 
of the curves in which the surface z =f(x, ý) is cut by the planes 
z = const. This method is applicable to functions = f(x, y, z) of 
three variables. The contour surfaces = const, which are thus obtained 
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are f r equen t ly called equipotential surfaces. I f t h e funct ion is s ingle 

va lued , t h e con tour l ines or surfaces canno t in te r sec t one another . 

T h e function z = ƒ(./•, ÿ) is continuous for (V/, />) when e i ther of t he 

fol lowing equ iva l en t condi t ions is satisfied : 

1°. l im/ (c r , y) =f(a, h) or l im ƒ (a-, y) =f(limx, l im / /) , 

no matter how the variable point P(x, y) approaches (a, li). 

2°. If for any assigned e, a number δ may be found so that 

I ƒ ( , ) - f (a, b)\<e when \ x - a \ < δ, ļ - b ļ < δ. 
Geomet r i ca l ly th i s m e a n s t h a t if a square w i t h (a, l¡) as center a n d 

f(a,W+e 

õl 2δ x 

w i t h s ides of l e n g t h 2 δ para l le l to t h e axes be d r a w n , 
t h e p o r t i o n of t h e surface z =f(x, y) above the 
squa re wil l lie be tween the t w o p lanes z=f(a, b)-ļ-e. 
Or if con tour l ines a re used, no l ine ƒ(.*•, y) = const , 
w h e r e t h e cons t an t differs f rom ƒ (α, b) by so m u c h 
as wil l cu t in to t h e square . I t is clear t h a t in place 
of a squa re s u r r o u n d i n g (a, b) a circle of r ad ius δ or a n y o ther figure 
w h i c h l ay w i t h i n t h e squa re m i g h t be used. 

44 . Continuity examined. From the definition of continuity just given and 
from the corresponding definition in § 24, it follows that if ƒ(x, y) is a continuous 
function of x and for (α, ò), then ƒ(x, b) is a continuous function of x for x = a 
and ƒ (α, y) is a continuous function of for = b. That is, if ƒ is continuous in 
x and jointly, it is continuous in x and severally. I t might be thought that 
conversely if ƒ (x, b) is continuous for x = a and ƒ (α, y) for — h. ƒ (x, y) would 
be continuous in (x, y) for (α, b). That is, if ƒ is continuous in x and y severally, 

- 1 ļ \ -2 + ∞ 

V 1^4 *x ( J 

it would be continuous in x and y 
jointly. A simple example will show 
that this is not necessarily true. Con
sider the case 

•='fc*> = ¾ ? 
/ ( 0 , 0) = 0 

and examine z for continuity at 
(0, 0). The functions / (x , 0) = x, 
and / ( 0 , y) —y are surely continuous 
in their respective variables. But the surface z =f(x, y) is a conical surface (except 
for the points of the z-axis other than the origin) and it is clear that P (x, y) may 
approach the origin in such a manner that z shall approach any desired value. 
Moreover, a glance at the contour lines shows that they all enter any circle or 
square, no matter how small, concentric with the origin. If P approaches the origin 
along one of these lines, z remains constant and its limiting value is that constant. 
In fact by approaching the origin along a set of points which jump from one con
tour line to another, a method of approach may be found such that z approaches 
no limit whatsoever but oscillates between wide limits or becomes infinite. Clearly 
the conditions of continuity are not at all fulfilled by z at (0, 0). 
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Double limits. There often arise for consideration expressions like 

lim lim f(x, y)Ί, lim lim f(x, y)Ί, (1) 
= ò Lx = a J ,i'¿« L,v = ò J 

where the limits exist whether x first approaches its limit, and then its limit, or 
vice versa, and where the question arises as to whether the two limits thus obtained 
are equal, that is, whether the order of taking the limits in the double limit may 
be interchanged. I t is clear that if the function ƒ (x, y) is continuous at (a, b), the 
limits approached by the two expressions will be equal ; for the limit of f(x, y) is 
f (a, b) no matter how (x, y) approaches (a, b). If ƒ is discontinuous at (r¿, b)ħ it 
may still happen that the order of the limits in the double limit may be inter
changed, as was true in the case above where the value in either order was zero ; 
but this cannot be affirmed in general, and special considerations must be applied 
to each case when ƒ is discontinuous. 

Varieties of regions.* For both pure mathematics and physics the classification 
of regions according to their connectivity is important. Consider a finite region R 
bounded by a curve which nowhere cuts itself. (For the present 
purposes it is not necessary to enter upon the subtleties of the 
meaning of r r curve" (see §§ 127-128); ordinary intuition will 
suffice.) I t is clear that if any closed curve drawn in this region 
had an unlimited tendency to contract, it could draw together 
to a point and disappear. On the other hand, if R' be a region 
like R except that a portion has been removed so that R/ is 
bounded by two curves one within the other, it is clear that 
some closed curves, namely those which did not encircle the 
portion removed, could shrink away to a point, whereas other 
closed curves, namely those which encircled that portion, could 
at most shrink down into coincidence with the boundary of that 
portion. Again, if two portions are removed so as to give rise 
to the region R", there are circuits around each of the portions 
which at most can only shrink down to the boundaries of those 
portions and circuits around both portions which can shrink down to the bounda
ries and a line joining them. A region like R, where any closed curve or circuit 
may be shrunk away to nothing is called a simply connected region ; whereas regions 
in which there are circuits which cannot be shrunk away to nothing are called 
multiply connected regions. 

A multiply connected region may be made simply connected by a simple device 
and convention. For suppose that in R' a line were drawn connecting the two 
bounding curves and it were agreed that no curve or circuit drawn within R' should 
cross this line. Then the entire region would be surrounded by a 
single boundary, part of which would be counted twice. The figure 
indicates the situation. In like manner if two lines were drawn in 
ß " connecting both interior boundaries to the exterior or connecting 
the two interior boundaries together and either of them to the outer 
boundary, the region would be rendered simply connected. The entire region 
would have a single boundary of which parts would be counted twice, and any 
circuit which did not cross the lines could be shrunk away to nothing. The lines 

* The discussion from this point to the end of § 45 may be connected with that of 
§§ 123-12Ö. 
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thus drawn in the region to make it simply connected are called cuts. There is no 
need that the region be finite ; it might extend off indefinitely in some directions 
like the region between two parallel lines or between the sides of an angle, or like 
the entire half of the x?/-plane for which y is positive. In such cases the cuts may 
be drawn either to the boundary or off indefinitely in such a way as not to meet 
the boundary. 

4 5 . Multiple valued functions. If more than one value of z corresponds to the 
pair of values (x, 2/), the function z is multiple valued, and there are some note
worthy differences between multiple valued functions of one variable and of several 

r | I I Fi i , 
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variables. I t was stated (§ 23) that multiple 
valued functions were divided into branches 
each of which was single valued. There are 
two cases to consider when there is one vari
able, and they are illustrated in the figure. 
Either there is no value of x in the interval 
for which the different values of the function 
are equal and there is consequently a number 
Ώ which gives the least value of the difference 
between any two branches, or there is a value of x for which different branches 
have the same value. Now in the first case, if x changes its value continuously and 
if ƒ (x) be constrained also to change continuously, there is no possibility of passing 
from one branch of the function to another ; but in the second case such change is 
possible for, when x passes through the value for which the branches have the same 
value, the function while constrained to change its value continuously may turn off 
onto the other branch, although it need not do so. 

In the case of a function z — / (x , y) of two variables, it is not true that if the 
values of the function nowhere become equal in or on the boundary of the region 
over which the function is defined, then it is impossible to pass continuously from 

J—1-Wθ,27Γ 

one branch to another, and if P(x, y) describes any 
continuous closed curve or circuit in the region, the 
value of ƒ (x, y) changing continuously must return to 
its original value when P has completed the descrip
tion of the circuit. For suppose the function z be a 
hélicoïdal surface z = α tan- 1 (? / /x) , or rather the por
tion of that surface between two cylindrical surfaces 
concentric with the axis of the helicoid, as is the case 
of the surface of the screw of a jack, and the circuit 
be taken around the inner cylinder. The multiple num
bering of the contour lines indicates the fact that the 
function is multiple valued. Clearly, each time that 
the circuit is described, the value of z is increased by the amount between the suc
cessive branches or leaves of the surface (or decreased by that amount if the circuit 
is described in the opposite direction). The region here dealt with is not simply 
connected and the circuit cannot be shrunk to nothing — which is the key to the 
situation. 

THEOREM. If the difference between the different values of a continuous mul
tiple valued function is never less than a finite number O for any set (x, y) of 
values of the variables whether in or upon the boundary of the region of defini
tion, then the value ƒ(x, y) of the function, constrained to change continuously, 
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will return to its initial value when the point P(x , y), describing a closed curve 
which can be shrunk to nothing, completes the circuit and returns to its starting 
point. 

Now owing to the continuity of ƒ throughout the region, it is possible to find a 
number δ so that ļ ƒ (x,y) — ƒ(x', y')\<e when |x — x'\<δ and | y — y'\<δ no matter 
what points of the region (x, y) and (x', y') may be. Hence the values of ƒ at any 
two points of a small region which lies within any circle of radius I δ cannot differ 
by so much as the amount D. If, then, the circuit is so small 
that it may be inclosed within such a circle, there is no possi
bility of passing from one value of ƒ to another when the circuit 
is described and ƒ must return to its initial value. Next let 
there be given any circuit such that the value of ƒ starting from 
a g;/ven value ƒ (x, y) returns to that value when the circuit has 
been completely described. Suppose that a modification were 
introduced in the circuit by enlarging or diminishing the inclosed area by a small 
area lying wholly within a circle of radius \ δ. Consider the circuit DE and 
the modified circuit ABC'BE A, As these circuits coincide except for the arcs I) 
and BCD, it is only necessary to show that ƒ takes on the same value at D whether 
D is reached from by the way of or by the way of C". But this is necessarily 
so for the reason that both arcs are within a circle of radius \ δ. 
Then the value of ƒ must still return to its initial value ƒ (x, y) 
when the modified circuit is described. Now to complete the 
proof of the theorem, it suffices to note that any circuit which 
can be shrunk to nothing can be made up by piecing together a 
number of small circuits as shown in the figure. Then as the 
change in ƒ around any one of the small circuits is zero,- the change must be zero 
around 2, 3, 4, • • • adjacent circuits, and thus finally around the complete large 
circuit. 

Reducibilίty of circuits. If a circuit can be shrunk away to nothing, it is said to 
be reducible ; if it cannot, it is said to be irreducible. In a simply connected region 
all circuits are reducible ; in a multiply connected region there are an infinity of 
irreducible circuits. Two circuits are said to be equivalent or reducible to each 
other when either can be expanded or shrunk into the other. The change in the 

A 

~"̂  

value of ƒ on passing around two equivalent circuits from A to A 
is the same, provided the circuits are described in the same direc
tion. For consider the figure and the equivalent circuits  
and AC'A described as indicated by the large arrows. I t is clear 
that either may be modified little by little, as indicated in the 
proof above, until it has been changed into the other. Hence the 
change in the value of ƒ around the two circuits is the same. Or, as another proof, 
it may be observed that the combined circuit AC AC'A, where the second is 
described as indicated by the small arrows, may be regarded as a reducible circuit 
which touches itself at A. Then the change of ƒ around the circuit is zero and ƒ 
must lose as much on passing from A to A by as it gains in passing from A to 
A by C. Hence on passing from A to A by in the direction of the large arrows 
the gain in ƒ must be the same as on passing by  

I t is now possible to see that any circuit ABC may be reduced to circuits around 
the portions cut out of the region combined with lines going to and from A and the 
boundaries. The figure shows this ; for the circuit ABC'BADC“DA is clearly 
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reducible to the circuit . I t must not be forgotten that although the lines AB 
and A coincide, the values of the function are not necessarily the same on  

( f¡¡Γ ) 

as on A but differ by the amount of change introduced in 
ƒ on passing around the irreducible circuit BC'B. One of the 
cases which arises most frequently in practice is that in 
which the successive branches of ƒ ( , y) differ by a constant 
amount as in the case z = t a n - Ύ {y/x) where 2 7r is the differ
ence between successive values of z for the same values of the 
variables. If now a circuit such as ' A be considered, where it is imagined 
that the origin lies within BC'B, it is clear that the values of z along AB and 

A 

f×2¡¡j\  

along BA differ by 2 π, and whatever z gains on passing from A to  
will be lost on passing from to , although the values through 

which z changes will be different in the two cases by the amount 
2τr. Hence the circuit ' A gives the same changes for z as 
the simpler circuit BC'B. In other words the result is obtained 
that if the different values of a multiple valued function for the same 
values of the variables differ by a constant independent of the values of 
the variables, any circuit may be reduced to circuits about the bound
aries of the portions removed ; in this case the lines going from the point A to the 
boundaries, and back may be discarded. 

EXERCISES 

1. Draw the contour lines and sketch the surfaces corresponding to 

( « ) * = : ¦ ¾ > *(O»O) = O. ^ x = F+ļ' *(O,O) = O. 

Note that here and in the text only one of the contour lines passes through the 
origin although an infinite number have it as a frontier point between two parts 
of the same contour line. Discuss the double limits lim lim z, lim lim z. 

x = 0 y = 0 = 0 ÍC = O 

2. Draw the contour lines and sketch the surfaces corresponding to 

V ' 2y V ' x V ' 2x2 + ? / 2 - l 
Examine particularly the behavior of the function in the neighborhood of the 
apparent points of intersection of different contour lines. Why apparent ? 

3 . State and prove for functions of two independent variables the generaliza
tions of Theorems 6-11 of Chap. I I . Note that the theorem on uniformity is proved 
for two variables by the application of Ex. 9, p. 40, in almost the identical manner 
as for the case of one variable. 

4. Outline definitions and theorems for functions of three variables. In partic
ular indicate the contour surfaces of the functions 

(a)u = X + V + 2 z , \ß)u = χ2 + ĩ/2 + Z\ (y)u = ≡, v ' x — y — z yr' x + + z w / z 
and discuss the triple limits as x, y, z in different orders approach the origin. 

5. Let z = P(x, y)/Q(x, y), where P and Q are polynomials, be a rational func
tion of x and y. Show that if the curves P = 0 and Q — 0 intersect in any points, 
all the contour lines of z will converge toward these points ; and conversely show 
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that if two different contour lines of z apparently cut in some point, all the contour 
lines will converge toward that point, P and Q will there vanish, and z will be 
undefined. 

6. If D is the minimum difference between different values of a multiple valued 
function, as in the text, and if the function returns to its initial value plus ly≥ī) 
when P describes a circuit, show that it will return to its initial value plus D ' ≥ D 
when P describes the new circuit formed by piecing on to the given circuit a small 
region which lies within a circle of radius ļ δ. 

7. Study the function z = t a n - 1 ( / ), noting especially the relation between 
contour lines and the surface. To eliminate the origin at which the function is not 
defined draw a small circle about the point (0, 0) and observe that the region of 
the whole xy-plane outside this circle is not simply connected but may be made so 
by drawing a cut from the circumference off to an infinite distance. Study the 
variation of the function as P describes various circuits. 

8. Study the contour lines and the surfaces due to the functions 
1 - 2 

(a) z = t a n - l xy, (ß) z — t an - , (7) z — sin- x (x — y). 
l-ÿ2 

Cut out the points where the functions are not defined and follow the changes in 
the functions about such circuits as indicated in the figures of the text. How may 
the region of definition be made simply connected ? 

9. Consider the function z = t an - 1 ( P / Q ) where P and Q are polynomials and 
where the curves P = 0 and Q = 0 intersect in n points (av ¾ , ( α 2 , ò 2 ) , " - , (αn, bn) 
but are not tangent (the polynomials have common solutions which are not mul
tiple roots). Show that the value of the function will change by 2kπ if ( , ) 
describes a circuit which includes of the points. Illustrate by taking for P/Q 
the fractions in Ex. 2. 

10. Consider regions or volumes in space. Show that there are regions in which 
some circuits cannot be shrunk away to nothing ; also regions in which all circuits 
may be shrunk away but not all closed surfaces. 

46. First partial derivatives. Let z=f(x,y) be a single valued 
function, or one branch of a multiple valued function, defined for (α, b) 
and for all points in the neighborhood. If be given the value b, 
then z becomes a function ƒ (x, b) of x alone, and if that function has a 
derivative for x = a, that derivative is called the partial derivative of 
z =f(x, y) with respect to x at (a, b). Similarly, if x is held fast and 
equal to a and if f (a, y) has a derivative when = b, that derivative is 
called the partial derivative of z with respect to at (a, b). To obtain 
these derivatives formally in the case of a given function f(x, y) it is 
merely necessary to differentiate the function by the ordinary rules, 
treating as a constant when finding the derivative with respect to x 
and x as a constant for the derivative with respect to //. Notations are 

f z ¡dz\ 



94 DIFFERENTIAL CALCULUS 

for the -derivative with similar ones for the ^/-derivative. The partial 
derivatives are the limits of the quotients 

^f(a + h,b)-f(a,b)^ l i m / ( f f , f t + ŵ ) - / K - ¾ ) / ( 2 ) 

provided those limits exist. The application of the Theorem of the 
Mean to the functions f(x, b) and ƒ (a, y) gives 

f (a + h, b) - f (a, b) = hf'x (a + ΘJi, b), 0 < θ1 < 1, 
f (a, b + k)- f (a, b) = kfi (a, b + 9J¿), 0 < θ2 < 1, W 

under the proper but evident restrictions (see § 26). 
Two comments may be made. First, some writers denote the partial derivatives 

by the same symbols dz/dx and dz/dy as if z were a function of only one variable 
and were differentiated with respect to that variable ; and if they desire especially 
to call attention to the other variables which are held constant, they affix them as 
subscripts as shown in the last symbol given (p. 93). This notation is particularly 
prevalent in thermodynamics. As a matter of fact, it would probably be impos
sible to devise a simple notation for partial derivatives which should be satisfac
tory for all purposes. The only safe rule to adopt is to use a notation which is 
sufficiently explicit for the purposes in hand, and at all times to pay careful atten
tion to what the derivative actually means in each case. Second, it should be noted 
that for points on the boundary of the region of definition of ƒ (x, y) there may be 
merely right-hand or left-hand partial derivatives or perhaps none at all. For it 
is necessary that the lines = b and x = a cut into the region on one side or the 
other in the neighborhood of (α, b) if there is to be a derivative even one-sided ; 
and at a corner of the boundary it may happen that neither of these lines cuts 
into the region. 

THEOREM. If ƒ (x, ÿ) a,nd its derivatives f'x and fý are continuous func
tions of (x, y) in the neighborhood of (a, b), the increment Δ / may be 
written in any of the three forms 

bf = f(?> + h,b + k)-f(a,h) 
= hfx(a + ΘJi, b) + hf (a + Ķ b + ΘJc) 
= 4χ(tl + M, b + θk) + hf'y(a + θh, b 4- θk) ^ } 

= hfx(a, b) + kfy(α, b) + ζji + ζ¿c, 

where the 0's are proper fractions, the ζJs infinitesimals. 
To prove the first form, add and subtract ƒ (a + , b) ; then 

Δ / = [ ƒ (a + Ķ b) - f (a, 6)] + [ ƒ (a + h, b + k) - f (a + Ķ b)] 
= ¾£ (a + ΘXĶ b) + kfý (a + Ķ -b + ΘJc) 

by the application of the Theorem of the Mean for functions of a single variable 
(§§ 7, 26). The application may be made because the function is continuous and 
the indicated derivatives exist. Now if the derivatives are also continuous, they 
may be expressed as 

Λ > + ΘXĶ b) =/ ; (α, b) + ¾, / ; (α + Ä, b + ΘJc) =f¿{µ, b) + £, 
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where Çv ζ2 may be made as small as desired by taking h and sufficiently small. 
Hence the third form follows from the first. The second form, which is symmetric 
in the increments h, k, may be obtained by writing x = a + th and = b + tk. 
T h e n / ( , ) = Φ(t). As ƒ is continuous in (x, y), the function Φ is continuous in t 
and its increment is 

ΔΦ = f(a + t + Ath, b + t + Atk)-f(a + th, b + tk). 
This may be regarded as the increment of ƒ taken from the point (x, y) with At • h 
and At • as increments in x and y. Hence ΔΦ may be written as 

ΔΦ = At • hf'x (a + th,b + tk) + At • kf¦¡(a + th, b + tk) + ζxAt • h + ¾Δ¿ • k. 

Now if ΔΦ be divided by At and At be allowed to approach zero, it is seen that 
ΔΦ , dΦ 

l i m — = hf¿(a + th,b + tk) + kfý(a + th, b+tk) = ~ . 

The Theorem of the Mean may now be applied to Φ to give Φ(l) — Φ (0) = 1 • Φ'(0), 
and hence 

Φ(l) - Φ(O) = f(a + h,b + k) -f(a, b) 
= Af= hf¿(a + θh, b + θk) + kfý(a + θh, b + θk). 

4 7 . The ĵ)artíaI differentials of ƒ m a y be defined as 

7 -f 7) P 
dxf = fχ x, so that dx = Ax, -y— = ÷- ? 

ax ox /i*>\ 
,1 f 8f <5> 

dυf= f'Ay, s o that diļ = At/, -v¦— = ~y yJ Jy J, J 'n dij  

where the indices x and y introduced in dxf and dyf indicate that x and 
y respectively are alone allowed to vary in forming the corresponding 
partial differentials. The total differential 

df=dχf+dyf=τrdx + j-dy, (6) , 
CX CIJ 

which is the sum of the partial differentials, may be defined as that 
sum ; but it is better defined as that part of the increment 

Δ / = £ Ax + g Δ¿/ + ζ^x + ζ2Af/ (7) 

which is* obtained by neglecting the terms ζ x + ζ2 y, which are of 
higher order than Ax and Ay. The total differential may therefore be 
computed by finding the partial derivatives, multiplying them respec
tively by dx and dy, and adding. 

The total differential of z = f(x, y) may be formed for (xQ, y0) as 

-*HΈ) * •>+(f¾ŵ-i“>' (8) 

where the values x — x0 and — y0 are given to the independent differ
entials dx and dy, and df = dz is written as z — z . This, however, is 
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the equation of a plane since x and y are independent. The difference 
Δ /— df which measures the distance from the plane to the surface 
along a parallel to the r¿¯axis is of higher order than V ¿c2 -f Δ//2 ; for 

\_µ=v_\ \ζ^ + ζAy\ 
I V ¿r •+- Δτ/~ J ļ V ¿r -ļ- Δ¿/- J 

Hence the plane (8) will be defined as the tangent plane at (,τ0, //0, ,?0) 
to the surface £ = f(x, y). The normal to the plane is 

Z ^ = ÌLzJb = * - ^ , (9) 

(¾ (¾ 
which will be defined as the normal to the surface at (,τ0, //0, 0). The 
tangent plane will cut the ļ)lanes = y0 and x = x0 in lines of which 
the slope is f'Xϋ and f¦Jo. The surface will cut these planes in curves 
which are tangent to the lines. 

In the figure, PQSR is a portion of the 
surface z =f(x, y) and PT'TT" is a cor
responding portion of its tangent plane 
at P(x0, y0, 0). Now the various values 
may be read off. 

PP' = .τ, P'Q = Axf 
P<T'/PP'=f¿, P'T' = dj) 

PP" = Ay, P“R = \ f 
P»T»/PP"=f„ P“T“ = dJ, 

P'T' + P “ Γ " = iV'Γ, Λτ'5 = Δ/, 
N'T=df=dxf+dyf. 

s 
Z\ SS/^YAΨ" 

/ΓT/f 
of——¦ — Y 

/M ¦¯/ 

x/ N 

48. If the variables a* and ¿/ are expressed as x = φ(t) and = \¡/(t) 
so that f(x, y) becomes a function of t, the derivative of ƒ with respect 
to t is found from the expression for the increment of/. 

Δ / ^ fAx f_Ay_ + / — 4 -¿ ^ 
Δ¿ ‰ Δ¿ / Δ¿ 4 l Δ¿ 4¿! Δ¿ 

.. Δ/ ' df f dx , ø/*dv/ / / or Inn -^- = - f = ^ - — + ^ - - j ^ . (10) 
Λ< = O í r/¿ ‰ ¿/¿ ¿¾/ cř¿ v 7 

The conclusion requires that x and ?/ should have finite derivatives with 
respect to t. The differential of ƒ as a function of t is 

df -, f dx , ćfe/// , £ƒ , c†' /MM. 
¿/¿ ¿fø r/¿ ¿v/ dt ex ćy 7 

and hence it appears that the differential has the same fonti as the total 
differential. This result will be generalized later. 
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As a particular case of (10) suppose that x and y are so related that 
the point (x, ÿ) moves along a line inclined at an angle τ to the cc-axis. 
If s denote distance along the line, then 

x = χo -f- s cos τ, y = y0 -f- s sin τ, dx = cos τds, dy = sin τds (12) 
df fdx , ø/rfy ., v . 

and ώ = ‰S + ¿ ώ = Λ c 0 B T + * sιn τ- <13> 
The derivative (13) is called the directional derivative of ƒ in the direc
tion of the line. The partial derivatives fĻ f'y are the particular direc
tional derivatives along the directions of the a*-axis and v/-axis. The 
directional derivative of ƒ in any direction is the rate of increase of 
ƒ along that direction ; if z = f(x, y) be inter
preted as a surface, the directional derivative is 
the slope of the curve in which a plane through 
the line (12) and perpendicular to the xy-nl&ne 
cuts the surface. If ƒ (x, y) be represented by 
its contour lines, the derivative at a point 
(x, y) in any direction is the limit of the ratio 

ri 

\ \ C + ΔC 
I & 

OÌ X 

f/ s = Δ C/Δs of the increase of ƒ, from one contour line to a neigh
boring one, to the distance between the lines in that direction. I t is 
therefore evident that the derivative along any contour line is zero and 
that the derivative along the normal to the contour line is greater than 
in any other direction because the element dn of the normal is less than 
ds in any other direction. In fact, apart from infinitesimals of higher 

n f Δ† df df 
—• = cos φ. -^― = —— cos φ, -f- = - ¦ - cos φ. (14) s T s . n τ ds dn v J 

Hence it is seen that the derivative along any direction may be found 
by multiplying the derivative along the normal by the cosine of the angle 
between that direction and the normal. The derivative along the normal 
to a contour line is called the normal derivative of ƒ and is, of course, 
a function of (x, y). 

49. Next suppose that = ƒ ( , y,z,-- •) is a function of any number 
of variables. The reasoning of the foregoing paragraphs may be 
repeated without change except for the additional number of variables. 
The increment of ƒ will take any of the forms 

Δ / = / ( « + Ä, h + Ķ + ¿, - - •) -f(a, b, c, .. •) 

= /'ƒ*•("• + * Λ ¾ ",•••) + ¾/£(α + h + je, , . •.) 
+ ĩf"g(a + 7ι,b + k,e + ΘJ,...) + ••• 

— \_“í†x Γ̄̂  / ~ ',fz ""Γ" ' * 'Ja + θh,b + θk, c + θl, ••• 

= *ƒ,' + kf¡ + //: + ••• + i,A + ζ,k + Ų- + ---, 
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and the total differential will naturally be defined as 

and finally if x, y, z, • • • be functions of f, it follows that 

d£ = £dx bj_dy_ , f<te n 

dt x dt y dt z dt ^  

and the differential of ƒ as a function of t is still (16). 
If the variables x, y, z, • • • were expressed in terms of several new 

variables r, s, • • •, the function ƒ would become a function of those vari
ables. To find the partial derivative of ƒ with respect to one of those 
variables, say r, the remaining ones, s, • • •, would be held constant ano> 
ƒ would for the moment become a function of r alone, and so would x, 
y,z,--. Hence (17) may be applied to obtain the partial derivatives 

f = f x f y f z _ _ _ 
r x cr r z dr ' 
f f x f y f z . . ( 8 ) 

and - - = τ-— + — ΊΓ + — ir + “ Ί et(>-
ċs ex cs cs cz es 

These are the formulas for change of variable analogous to (4) of § 2. 
If these equations be multiplied by Ar, As, • • • and added, 

f f f/ x x \ f/ y \ 
or cs cx\cr cs ļ cy\Cr J 

„ f Ί Λf f 
or d† = τr- äx -f — da -f -r- dz + • • • ; 

CX ćìļ J z 
for when r, s, • • • are the independent variables, the parentheses above 
are dx, dy, dz, • • • and the expression on the left is df 

THEOREM. The expression of the total differential of a function of 
x, y, z, • • • as df = f'xdx -f f¦,dy -\- f'zdz -f- • • • is the same whether x, y, 
z, • • • are the independent variables or functions of other independent 
variables r, s, • • • ; it being assumed that all the derivatives which occur, 
whether of ƒ by x, y, z, • • • or of x, y, z, • • • by r, s, • •, are continuous 
functions. 

By the same reasoning or by virtue of this theorem the rules 
dicte) = edit, d(ìi -ļ- v — w) = du -ļ- dv — dw, 

7 , ; ι(u\ vdu.— udυ (19) 
d{uυ) = udv + vdu, d\ — \= ¿ ? 

of the differential calculus will apply to calculate the total differential 
of combinations or functions of several variables. If by this means, or 
any other, there is obtained an expression 
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df=R(r, .4, t, • • -)dr + S(r,#, t, • • -)ds + Γ(r, 5, ¿, • • -)<ft H (20) 

for the total differential in which r, s, t, • • • are independent variables, 
the coefficients R, S, T, • • • are the derivatives 

f f f 
Ä = a ' S = ΊΓ> Γ = - 4 , . . . . (21) 

r s Ct ĸ ; 

For in the equation df= Rdr+$ds+Tdt-\ = f¦dr+f¡ds + f¡dt -\ , 
the variables r, s, t, • • -, being independent, may be assigned increments' 
absolutely at pleasure and if the particular choice dr =l,ds = dt=- = 0, 
be made, it follows that R =fr\ and so on. The single equation (20) is 
thus equivalent to the equations (21) in number equal to the number of 
the independent variables. 

As an example, consider the case of the function tan-λ (y/x). By the rules (19), 

d tan-x - = d(y/χì — dy/x ¯̄  ydx/χ<i _ xdV ~ yfo 
x ¯¯ 1 + (y/x)2 1 + (y/x)2 ¯¯ x2 + y2 

Then — tan-*y- = V-—, — tan-i V- = — - — , by (2O)-(2l). 
x x x2 + y2 y x x2 + 2 

If y and x were expressed as y = sinh rst and x — cosh rst, then 
_ l _ χdy — ydx _ [stdr -f rtds ̄ ļ̄  rsdt] [cosh2rs¿ — sinh2rs¿] 

& t a n — — — • 

x x2 + y2 cosh2rs¿ -f sinh2rs£ 
and f = St f = H f = rS 

r cosh2rs¿ s cosh 2 rst t cosh2rs¿ 

EXERCISES 

1. Find the partial derivatives f'x, ƒ ' or f¿, fĻ f'z of these functions : 
(a) log ( 2 + y2), (ß) e* cosy sin z, (y) x2 + 3xy + , 
(δ) JW—, (e) ~ ? ^ _ , (f) log (sin x + sin¾ + sin3z), 

( , ) 8 i n - i ? , ( 0 ) * ¿ , ( . ) t a n h - ^ ( ^ + y« + »y. 
w ; w x w \x24-ž/2 + z2/ 

2. Apply the definition (2) directly to the following to find the partial deriva
tives at the indicated points : 

(a) -~- at (1, 1), (ß) x2 + 3xy + if at (0, 0), and (7) at (1, 1), 
X ~τ  

(δ) —r^- at (0, 0); also try differentiating and substituting (0, 0). 
X -ļ- 

3. Find the partial derivatives and hence the total differential of : 
pXy . 

T 7 l ' )̂ x l o g y z ' (Ύ) V α 2 ~~ χ2 “ y2 ' 
(δ) e-*sin?/, (e) e22sinhíC2/, logtaníx + ?-y), 
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4. Find the general equations of the tangent plane and normal line to these 
surfaces and íìnd the equations of the plane and line for the indicated (x0, y0) : 

(a) the helicoid z = -1( / ) , (1, 0), (1, - 1), (0, 1), 
(ß) the paraboloid ½pz — (x2 + ž/2), (0, p), (2p, 0), (p, — p)% 

(y) the hemisphere z = Va2 — x2 — y2, (0, — ļa), (ļ t¿, J α), (J V3 α, 0), 
(δ) the cubic xž/2 = 1, (1, 1, 1), (– J, - ļ , 4), (4, J, ļ ) . 

5. Find the derivative with respect to t in these cases by (10) : 

(α) ƒ = x2 + ?/2, x = a cos t, y = b sin ¿, (/3) t a n - x -¾ ƒ-, = cosh ¿, x = sinh ¿, 

(7) sin~x (x — ?/), x = 3¿, = at3, (δ) cos2x?/, x = tan~ 1t = cot~ ¿. 

6. Find the directional derivative in the direction indicated and obtain its 
numerical value at the points indicated : , 

(a) z*y, τ = 45°, (1, 2), (ß) sin2xy, τ = 60°, (VŜ, - 2). 

7. (a) Determine the maximum'value of df/ds from (13) by regarding τ as 
variable and applying the ordinary rules. Show that the direction that gives the 
maximum is , , 

= tan-i½, a n d the ιΓ
 dl = + (°1X\ 

/ ; dn \ \ xj \ y) 
(ß) Show that the sum of the squares of the derivatives along any two perpen

dicular directions is the same and is the square of the normal derivative. 

8. Show that ( / ' + y'f¦¡)/y/\ + y'2 and (f¿ÿ _ / y ' ) / V l + y'2 are the deriva
tives of ƒ along the curve = φ(x) and normal to the curve. 

9. If df/dn is defined by the work of Ex. 7 (a), prove (14) as a consequence. 

10. Apply the formulas for the change of variable to the following cases : 

(a) r = V x M ^ Ā Φ = tan-1y- . Find *L,‰ Ä ( *. 
V } J 'Ψ x ex y \ \ xj \ y/ 
(ß) x = rcosø, = r s i n ø . Find ^ , ^ , 3 + I / ¾ 3 . 
W Ψ' Ψ or φ \ r/ ^ r2\ φj 
(7) x = 2 r — 3 s + 7, 2/ = — r + 8 ,s — 9. Find — = 4 x + 2 / if = x2 — y2. 

r 
U = x>cosa-y>sina, ^ /¾Λ* ,¾Λ* = ¾/ tf  
^ÿ = x smřr + ž /cosα. \čx/ \čy/ W 7 W / 

(e) Prove 1 = 0 if f(u, v) =f(x — , — x). 
y 

(ζ) Let x = ax' + to/ + ', = α Y + ¿>V + c'z', z = a“x' + b“y' -f c“z', where 
α, ¾, c, ĆÍ', 6', c', α", 6", c" are the direction cosines of new rectangular axes with 
respect to the old. This transformation is called an orthogonal transformation. Show 

©MINING *+( )" 
11. Define directional derivative in space ; also normal derivative and estab

lish (14) for this case. Find the normal derivative of ƒ = xyz at (1, 2, 3). 
12. Find the total differential and hence the partial derivatives in Exs. 1, 3, and 
(a) log(x'- + ? / + z2), (ß) ?//x, (7) xhje*y\ (δ) xyz\ogxyz, 
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(e) = x2 — /2, — rcoss¿, = skinrt. Find du/dr, du/ds, dn/di. 

(ζ) u — ΆΊ x — f cos ø.sin #, = r sin φ sin θ. Find «r', ří/, říβ'. 
(77) — eχy, x = log Vi'2 -f *2, = tan~1 (s/r). Find ιιt', uζ. 

1 Q τ f ¢f ĉg df eg df 1 g , 1 df g .„ 
l o . If — = - - and — = , show —• = — - and = if r, φ are polar 

x dy dy ex dr r φ r cφ dr 
coordinates and ƒ, g are any two functions. 

14. If p (x, ?/, z, t) is the pressure in a fluid, or p (x, ?/, z, t) is the density, depend
ing on the position in the fluid and on the time, and if Ü, W are the velocities of 
the particles of the fluid along the axes, 

dp dp dp , dp , dp dp dp t dp dp dp 
dt dx dy dz dt dt dx cy dz dt 

Explain the meaning of each derivative-and prove the formula. 

15. If z = xy, interpret z as the area of a rectangle and mark dxz, Ayz, Az on the 
figure. Consider likewise = xyz as the volume of a rectangular parallelepiped. 

16. Small errors. If ƒ (x, y) be a quantity determined by measurements on x 
and y, the error in ƒ due to small errors dx, dy in x and may be estimated as 
df = f'xdx + ĵydy and the relative error may be taken as df ÷f= d log/. λ\τhy 
is this ? 

(a) Suppose S = ļ αò sin be the area of a triangle with α = 10, 6 = 20, = 30°. 
Find the error and the relative error if a is subject to an error of 0.1. Ans. 0.5,1%. 

(ß) In (α) suppose were liable to an error of 10' 'of arc. Ans. 0.27, ļ%. 
(7) If α, ò, (7 are liable to errors of. 1%, the combined error in S be 3.1%. 
(δ) The radius r of a capillary tube is determined from 13.67rr2¿ = w by find

ing the weight of a column of mercury of length I. If w 1 gram with an error 
of I O - 3 gr. and I = 10 cm. with an error of 0.2 cm., determine the possible error 
and relative error in r. Ans. 1.2%, 6 × 10~4, mostly due to error in I. 

( e ) The formula c2 = a2 + 2 — 2 ab cos is used to determine where α = 20, 
b = 20, = 60° with possible errors of 0.1 in α and ò and 30' in C'. Find the possible 
absolute and relative errors in c. Ans. ļ , l ļ%. 

(f) The possible percentage error of a product is the sum of the percentage 
errors of the factors. 

(η) The constant g of gravity is determined from g = 2 st~2 by observing a body 
fall. If s is set at 4 ft. and t determined at about J sec , show that the error in g 
is almost wholly due to the error in ¿, that is, that s can be set very much more 
accurately than t can be determined. For example, find the error in t which would 
make the same error in g as an error of ļ inch in s. 

(θ) The constant g is determined by gt2 = π2l with a pendulum of length I and 
period t. Suppose t is determined by taking the time 100 sec. of 100 beats of the 
pendulum with a stop watch that measures to \ sec. and that I may be measured 
as 100 cm. accurate to ļ millimeter. Discuss the errors in g. 

17. Let the coordinate x of a particle be χ/=f(qv ř/.,) and depend on two inde
pendent variables qv q2. Show that the velocity and kinetic energy are 

υ = ĵq'lu + /</2'at ' τ=imv*= an<ì*+ 2 " 1 2 ^ 2 + a-^ 



1 0 2 D I F F E E E N T I A L C A L C U L U S 

where dots denote differentiation by £, and aιv α12, α22 are functions of (qλ, q2). 

Show — = — , = 1, 2, and similarly for any number of variables q. 
bqi qi 

18. The helix x = a cos¿, = αsin¿, z = ttan α cuts the sphere x2 + ?/2 + z2 = 
α2 sec2ß at sin- (sin a sin 0). 

19. Apply the Theorem of the Mean to prove that / (x , /, z) is a constant if 
/ ^ = /^ = /2 ' = 0 is true for all values of x, ?/, z. Compare Theorem 16 (§ 27) and 
make the statement accurate. 

20. Transform ½Ĺ = -J(—V+ ( ^ Y + (―)2 to (α) cylindrical and (ß) polar 

coordinates (§ 40). 

2 1 . Find the angle of intersection of the helix x = 2cos¿, y = .2sin¿, z = t and 
the surface xyz = 1 at their first intersection, that is, with 0 < t < ļ π. 

22. L e t / , £7, h be three functions of (x, /, ). In cylindrical coordinates (§ 40) 
form the combinations F = ƒ cos ¢> + # sin ø, G = — / s i n φ + g cos φ, H = h. Trans-
f0Γm

 ( α ) ^ + ¾ + ^ , røÊ*_¾, ( 7 ) ¾ _ ^ 
x ?/ ĉz ž/ z x č?/ 

to cylindrical coordinates and express in terms of F, G, H in simplest form. 

23 . Given the functions yx and (z&)x and z^xλ Find the total differentials and 
hence obtain the derivatives of xx and (xx)x and xO*). 

50. D e r i v a t i v e s of h igher order. I f t h e first de r iva t ives be aga in 
different ia ted, t he r e ar ise four de r iva t ives f^, fxĻ fÿx, fÿy of t h e second 

order , w h e r e t h e first subsc r ip t denotes t h e first different iat ion. These 

m a y also be w r i t t e n 

f∞-fa¿' ^¯¯ y x' 'fyx~Mĥ/ f™~Ę/2' 

where t he de r iva t ive of f/ y w i t h respec t to x is w r i t t e n <řf/ xcy 
w i t h t h e var iables in t h e same order as r equ i r ed in DxDtļf a n d opposi te 
to t h e o rder of t h e subscr ip t s in f'ýx. T h i s m a t t e r of order is usua l ly of 

no impor tance owing to t he t heo rem : If the derivatives fx, fý ha re 

derivatives fx n f¦JX which, are continuous in (x, y) in the neighborhood 

of any point (,r0, y), the derivatives fxy and fÿx are equal, t h a t is, 

fw(*ϋ> I/o) =fy'Á*tí> ' 

The theorem may be proved by repeated application of the Theorem of the 
Mean. For 

[f(xo + h, Vo + k)-f(xo, Ž/o + fc)]~[/(½ + ^ Vo)-f(xo, )] = [ ( + ) ~ ( )1 
= lf(xo + » + k)~f(xo + , ) ] - [ ( ½ Vo + k)~f(xoι Vo)¯l = l>(xo + h)-ψ(xo)ì 
where φ{y) stands for f(x0 + ħ, y)-f(x0, y) and ψ(x) for / (x , y0 + k) - / ( x , y0). 
Now 

' Φ(Vo + k) - Φ ( ) = '( + 0k) = k[/; (x0 + Ķ 0 + θk) - fý (x0, y0 + θk)], 
Ψ(xo + ħ)-ψ (xo) = W(xo + = 4f*(*o + 0% + k) -f*(xo + #% y0)] 
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by applying the Theorem of the Mean to φ(y) and ψ(x) regarded as functions of a 
single variable and then substituting. The results obtained are necessarily equal 
to each other ; but each of these is in form for another application of the theorem. 

kífy(xo + Λ* Vo + θk) -fy(xõ, Vo + θk)ì = khfýχ(xo + Ŵ Vo + θk), 
Kf'x(4 + θ% Vo + k) -fx(4 + β‰ Vo)ì = ¾ ( x 0 + θ% y0 + η'k). 

Hence fýx(x0 + ηΛ, /0 + Øfc) = fx (x0 + 0'Λ, y0 + η'k). 
As the derivatives f'y'x, fxy are supposed to exist and be continuous in the variables 
( , y) at and in the neighborhood of (x0, y0), the limit of each side of the equation 
exists as h = 0, == 0 and the equation is true in the limit. Hence 

Jyx (X0' ) — Jxy (X0' ) • 

The differentiation of the three derivatives ý‰ fXļl = fyx, fy?/ will give 
six derivatives of the third order. Consider fxxy and fxyx. These may 
be written as (fx)¿¦¡, and (fχ)ýx and are equal by the theorem just proved 
(provided the restrictions as to continuity and existence are satisfied). 
A similar conclusion holds for fyxy and fÿ¦ļX ; the number of distinct 
derivatives of the third order reduces from six to four, just as the 
number of the second order reduces from four to three. In like manner 
for derivatives of any order, the value of the derivative depends not on 
the order in which the individual differentiations with respect to x and 

are performed, but only on the total number of differentiations with 
respect to each, and the result may be written with the differentiations 
collectedas 

£>™D“f= T—¿-=f2 *\ etc. (22) 
rm a11 χmvn ' × ' 

Analogous results hold for functions of any number of variables. If 
several derivatives are to be found and added together, a symbolic 
form of writing is frequently advantageous. For example, 

Ų)ļl)/)¡ + l> )f = „ J „ , + ^½ 
4 “ z "'•' OX*CIJC'? ϋlf 

or {Dx + D,)*f = Ų>* + 2 DxDy + D*)f = f¿ + 2f¿ + . 

51. I t is sometimes necessary to change the variable in higher deriv
atives, particularly in those of the second order. This is done by a 
repeated application of (18). Thus f'r'r would be found by differentiat
ing the first equation with respect to r, and f¦s by differentiating the. 
first by s or the second by r, and so on. Compare p. 12. The exercise 
below illustrates the method. I t may be remarked that the use of higher 
differentials is often of advantage, although these differentials, like the 
higher differentials of functions of a single variable (Exs. 10, 16-19, 
p. 67), have the disadvantage that their form depends on what the 
independent variables are. This is also illustrated below. I t should be 
particularly borne in mind that the great value of the first differential 



10-4 DIFFERENTIAL CALCULUS 

lies in the facts that it may be treated like a finite quantity and that 
its form is independent of the variables. 

To change the variable in v^x -f υý' to polar coordinates and show 
2v 2v _ 2v 1 v 1 c2v (x — rcosø , y = rsmφ, 
x2 y2 ~ r2 r r r2 ψ2 ' L r — ~^x'2 + 21 Φ = t a n - 1( / ). 

_, v V r v φ v v r v φ 
Then — = 1 - , — = 1 -

x r x φ x y r y φ y 

by applying (18) directly with x, taking the place of r, .s, • • • and r, φ the place 
of æ, ?/, z, • • • • These expressions may be reduced so that 

v _ v x v — _ v x v —  

x r VÍC*2 + y2 φ x2 + y2 r r φ r2 

2v v v r v φ 
Next —- = = 1 • 

x2 x x r x x φ x x 

[ 2V X V X 2V — V — y~¦ X 

r2 r r r r r φ r2 φ r r2 J r 

[ 2V X V X 2V — V — y~λ —  

φ r r r φr φ2 r2 φ φ r2 ] r2 

The differentiations of x/r and — y/r2 may be performed as indicated with respect to 
r, ø, remembering that, as r, φ are independent, the derivative of r by φ is 0. Then 

2v _ x2 2v y2 v xy 2v xy v y2 2v 
x2 r2 r2 r3 r r3 r φ r4 φ r4 φ2 

In like manner 2v/ y2 may be found, and the sum of the two derivatives reduces 
to the desired expression. This method is long and tedious though straightforward. 

I t is considerably shorter to start with the expression in polar coordinates and 
transform by the same method to the one in rectangular coordinates. Thus 

v v x v y v v . 1 ¡ v v \ 
— = — 1 — = — cosφ -\ s m ø = - ( — x - ?/), 
r x r y r x y r \ x y I 

I v\ í 2v , 2v . \ , 4 2v . \ v v . 
— [r — ) = ( —7cosø -\ sinώ z + cosø H smø ) y -\ cosø + —smø, 
¿>r\ r) \ x2 Ψ y x 7 \ x y Ψ y2 ΨΓ x Ψ y Ψì 

v v x v y v . v v v 
— = 1 = r sm ø H r cos φ — y -\ æ, 
φ X φ y φ X y X y 

1 2v / 2v . 2v \ I 2v . 2v \ 
- = ( — sm ø cos ø ) y + ( sm ø -\ cos ø ) x 
r φ2 \ x2 y x J \ x y y2 ) 

v v . 
cos ø sm ø. 

x y 
I v\ 1 2v ¡ 2v 2v\ 

Then — [r~)-\ = ( 1 )r 
r\ r/ r φ2 \ x2 y2/ 

2v 2v \ I v\ 1 2v 2v 1 v 1 2v 
QY _ļ — ļ γ ļ I —— I I /OQ\ 

x2 y2 r r\ r/ r2 φ2 r2 r r r2 φ2' ' 
The definitions d%f = f^dx2, d¿dyf = f¿ýdxdy, dļf-ĵÿydy2 would naturally be 

given for partial differentials of the second order, each of which would vanish if ƒ 
reduced to either of the independent variables , or to any linear function of 
them. Thus the second differentials of the independent variables are zero. The 
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second total differential would be obtained by differentiating the first total differ
ential. 

d?f = ddf =z ã(cf~dx + — dy) = dcý dz + d f-dy+C-fd?x+cSd2y ; 
\ĉx ey J ĉx ĉy ex y 

but d — — — dx -{ dy, d — = —— dx -ļ dy, 
ĉx ĉx1. ĉyĉx cy x y ĉy2 

and d2f = ^Ĺ dx2 + 2 -^Ĺ dxdy + ^Ĺ dy* + b-Ĺ d2x + bJ- d2y. (24) 
ax2 x y y2 x y 

The last two terms vanish and the total differential reduces to the first three terms 
if x and are the independent variables ; and in this case the second derivatives, 
ĵ‰ fńy, fyy, are the coefficients of dx2, 2 dxdy, dy2, which enables those derivatives 
to be found by an extension of the method of finding the first derivatives (§ 49). 
The method is particularly useful when all the second derivatives are needed. 

The problem of the change of variable may now be treated. Let 

d2v = — dx2 + 2 — dxdy -\ dy2 

x2 x2 y2 

2v Ί ft
 2v , _ 2v _ _ ĉv ΊO Ό _-

= — dr2 + 2 cžrđø + — dφ2 + —d2r+ — d2φ, 
f2 r φ ĉφ2 ĉr ĉφ 

where x, are the independent variables and r, φ other variables dependent on 
them — in this case, defined by the relations for polar coordinates. Then 

dx = cos φdr — r sin φdφ, dy = sin φdr + r cos φdφ 
or dr = cos φdx + sin øc¾/, rdφ = — sin øcfa + cos φdy. (25) 
Then d2r = (― sin ø¢fø + cos φdy) dφ = rdφdφ = rdφ2, 

drdφ + rd2φ = — (cos φdx + sin φdy) dφ = — drdφ, 

where the differentials of dr and rdφ have been found subject to d2x = d2y — 0. 
Hence d2r = r<lø2 and rď2ø = — 2 đπZø. These may be substituted in đ2υ which 
becomes 

ar2 \67-Γø r aø/ \ φ2 r/ 
Next the values of dr2, drdφ, dφ2 may be substituted from (25) and 

Vĉ4 9 2 / a 2 υ 1 ĉυ\ . / 2v au\ sin2ø¯K 
d2v = — cos2ø ( ) cos φ sm φ + ( h r — ) dx2 

1er2 r\ r φ r φì \ φ2 r) r2 J 
n V 2v . 2v 1 v\ cos2ø — sin2ø 2v cos φ sin øΊ • _ 

+ 2 — cos ø sm ø + ( ļ ^–—- dxdy 
ter'2 \ r φ r φ) r φ2 r2 J \^ 4 . 0 2/a2¾ l v\ . /a2υ aυ\cos2øļ _ 9 + —-sm2ø + - ( ) c o s ø s m ø + (―- + r ——¯^¯ d?/2. I_ar2 r Waø r aø/ \aø2 ar/ r2 J 

Thus finally the derivatives vxx, x>xy, vyy are the three brackets which are the 
coefficients of dx2, 2 dxdy, dy2. The value of vxx + výý is as found before. 

52 . T h e condi t ion f^=f^ wh ich subs is t s in accordance w i t h t h e 

f u n d a m e n t a l t h e o r e m of § 50 gives the condition that 

M(x, y)dx + N(x, y)äy = ţ^dχ + ţ- dy = df 
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•be the total differential of some function f (x, y). In f act 

f _ M _ N __ f 
y x y x ex y 

and K = JÍ or (ŰM\/dN\ 
y x 0Ĩ \dy)x \dx)y 

The second form, where the variables which are constant during the 
differentiation are explicitly indicated as subscripts, is more common in 
works on thermodynamics. I t will be proved later that conversely if 
this relation (26) holds, the expression Mdx -\- Ndy is the total differ
ential of some function, and the method of finding the function will 
also be given (§§ 92, 124). In case Mdx 4- Ndy is the differential of 
some function f(,r, //) it is usually called an exact differential. 

The application of the condition for an exact differential may be 
made ių connection with a problem in thermodynamics. Let S and U 
be the entropy and energy of a gas or vapor inclosed in a receptacle of 
volume v and subjected to the pressure p at the temperature T. The 
fundamental equation of thermodynamics, connecting the differentials 
of energy, entropy, and volume, is 

dU TdS-pdo; and ( f ) / = - ( g ļ (27) 

is the condition that dlī be a total differential. Now, any two of the 
five quantities U, S, v, Ί\ p may be taken as independent variables. In 
(27) the choice is S, v ; if the equation were solved for dS, the choice 
would be U9 v ; and U, S if solved for dv. In each case the cross differ
entiation to express the condition (26) would give rise to a relation 
between the derivatives. 

If p, T were desired as independent variables, the change of variable 

«– ($,*•(£)„"• *-©,*•(£)," 
•» "-[*α¯'(ŝ>,M'G?),-'(S)J" 
should be made. The expression of the condition is then 

\,dTl \dp/ P\dp)τj)P \dpl \dTjp *\dTļp\)T 

or ( — ) + T p = T ( — » — p , 
\đp/7- T p T p p T \dT/p p T 

where the differentiation on the left is made with p constant and that on the right 
with T constant and where the subscripts have been dropped from the second 
derivatives and the usual notation adopted. Everything cancels except two terms 
which give 
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/dS\ / đ u \ 1 /TdS\ /dv\ 

The importance of the test for an exact differential lies not only in the relations 
obtained between the derivatives as above, but also in the fact that in applied 
mathematics a great many expressions are written as differentials which are not 
the total differentials of any functions and which must be distinguished from exact 
differentials. For instance if dH denote the infinitesimal portion of heat added 
to the gas or vapor above considered, the fundamental equation is expressed as 
dH = dU + pdv. That is to say, the amount of heat added is equal to the increase 
in the energy plus the work done by the gas in expanding. Now dH is not the dif
ferential of any function H(U, v) ; it is dS = dH/T which is the differential, and 
this is one reason for introducing the entropy S. Again if the forces X, Y act on a 
particle, the work done during the displacement through the arc ds = Vdx2 + dy2 

is written dW = Xdx + Ydy. I t may happen that this is the total differential of 
some function ; indeed, if 

dW=-dV(x,y), Xđx+Ydy = -dV, X=-—, Γ = - — , 
x y 

where the negative sign is introduced in accordance with custom, the function V is 
called the potential energy of the particle. In general, however, there is no poten
tial energy function V, and d W is not an exact differential ; this is always true 
when part of the work is due to forces of friction. A notation which should dis
tinguish between exact differentials and those which are not exact is much more 
needed than a notation to distinguish between partial and ordinary derivatives ; 
but there appears to be none. 
. Many of the physical magnitudes of thermodynamics are expressed as deriva

tives and such relations as (26) establish relations between the magnitudes. Some 
definitions : 

specific heat at constant volume is Cv = ( — ) = T ί — ) , P \dTJv \dTjv 
.* , • „ ίdH\ rn/dS\ 

specific heat at constant pressure is Cp = ( J = 1 I —— ļ , 
\dT/p \dT/p 
(dH\ rr,/dS\ latent heat of expansion is Lv = ( — ļ = 1 I — ļ , 
\dv ļτ \dv/τ 

coefficient of cubic expansion is ap = - I — ) , 
v \dT/p 

modulus of elasticity (isothermal) is Eτ= — vl — ļ , 
\dv/τ 

modulus of elasticity (adiabatic) is Es = — v I — ) • 
\dv/s 

5 3 . A po lynomia l is said to be homogeneous w h e n each of i t s t e r m s 
is of t h e same order w h e n al l t h e var iables a re cons idered . A defini
t ion of homogene i ty w h i c h inc ludes th i s case a n d is appl icab le to more 
genera l cases is : A function ƒ \ x , y, zy • • •) of any number of variables is 
called homogeneous if the function is multiplied by some power of λ when 
all the variables are multiplied by λ ; a n d t h e power of λ wh ich factors 
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out is called the order of homogeneity of the function. In symbols the 
condition for homogeneity of order n is 

ƒ(λff, λy, λz, - -.) = λ"/(a, y, z, - • •). (29) 

Thus • z*J + ^> ^f + t a n ¯ 1 - , , * (29') 

are homogeneous functions of order 1, 0, — 1 respectively. To test a 
function for homogeneity it is merely necessary to replace all the vari
ables by λ times the variables and see if λ factors out completely. The 

. homogeneity may usually be seen without the test. 
If the identity (29) be differentiated with respect to λ, 

xfa + yE + zd~z + '' jf(λx> λy> λ*> “ ' ) = nχn¯xf0r' v>*>" -
A second differentiation with respect to λ would give 

( æ 2 ž + æ ¾ + ¾ ¾ + - - - ) / + ( y x έ + y 2 | ? + ^ ĉ + - - - y 
+(«ά+^ā¾+*'S+---)>'+---="("-1)λ""1ŵ^β'---) 

or ^ ¿ + 2,//¿J- + /|-2 + ...)/=«(w-l)λ-Λæ,y,¾...). 
Now if λ be set equal to 1 in these equations, then 

ţļíf ţpf ¡¦j2f ĝ2f 

*ú + *^τåi+*w + *∞űï + --- = <*-w*'y>*'--ì 
In words, these equations state that the sum of the partial derivatives 
each multiplied by the variable with respect to which the differentia
tion is performed is n times the function if the function is homogeneous 
of order n ; and that the sum of the second derivatives each multiplied 
by the variables involved and by 1 or 2, according as the variable is 
repeated or not, is n (n — 1) times the function. The general formula 
obtained by differentiating any number of times with respect to λ may 
be expressed symbolically in the convenient form 

(xDx + yDy + zDz + .- .)*ƒ = n(n - 1 ) . . .( - k + 1 ) / . (31) 

This is known as Eider's Formula on homogeneous functions. 

It is worth while noting that in a certain sense every equation which represents 
a geometric or physical relation is homogeneous. For instance, in geometry the 
magnitudes that arise may be lengths, areas, volumes, or angles. These magni
tudes are expressed as a number times a unit ; thus, V2 ft., 3 sq. yd., 7r cu. ft. 
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In adding and subtracting, the terms must be like quantities ; lengths added to 
lengths, areas to areas, etc. The fundamental unit is taken as length. The units of 
area, volume, and angle are derived therefrom. Thus the area of a rectangle or 
the volume of a rectangular parallelepiped is 

A = a ft. × b ft. = ab ft.2 = ab sq ft., V = a ft. × b ft. × ft. = abc ft.3 = abc cu. ft., 

and the units sq. ft., cu. ft. are denoted as ft.2, ft.3 just as if the simple unit ft. 
had been treated as a literal quantity and included in the multiplication. An area 
or volume is therefore considered as a compound quantity consisting of a number 
which gives its magnitude and a unit which gives its quality or dimensions. If L 
denote length and \L^] denote "of the dimensions of length," and if similar nota
tions be introduced for area and volume, the equations [A^] = [L]2 and [V^] = [L^]3 

state that the dimensions of area are squares of length, and of volumes, cubes of 
lengths. If it be recalled that for purposes of analysis an angle is measured by the 
ratio of the arc subtended to the radius of the circle, the dimensions of angle are 
seen to be nil, as the definition involves the ratio of like magnitudes and must 
therefore be a pure number. 

When geometric facts are represented analytically, either of two alternatives is 
open : 1°, the equations may be regarded as existing between mere numbers ; or 
2°, as between actual magnitudes. Sometimes one method is preferable, sometimes 
the other. Thus the equation x2 + y2 = r2 of a circle may be interpreted as 1°, the 
sum of the squares of the coordinates (numbers) is constant ; or 2°, the sum of the 
squares on the legs of a right triangle is equal to the square on the hypotenuse 
(Pythagorean Theorem). The second interpretation better sets forth the true 
inwardness of the equation. Consider in like manner the parabola y2 = ½px. Gen
erally and x are regarded as mere numbers, but they may equally be looked 
upon as lengths and then the statement is that the square upon the ordinate equals 
the rectangle upon the abscissa and the constant length 4p ; this may be inter
preted into an actual construction for the parabola, because a square equivalent 
to a rectangle may be constructed. 

In the last interpretation the constant p was assigned the dimensions of length 
so as to render the equation homogeneous in dimensions, with each term of the 
dimensions of area or [L]2. I t will be recalled, however, that in the definition of 
the parabola, the quantity p actually has the dimensions of length, being half the 
distance from the fixed point to the fixed line (focus and directrix). This is merely 
another corroboration of the initial statement that the equations which actually 
arise in considering geometric problems are homogeneous in their dimensions, and 
must be so for the reason that in stating the first equation like magnitudes must 
be compared with like magnitudes. 

The question of dimensions may be carried along through such processes as 
differentiation and integration. For let have the dimensions [y] and x the dimen
sions [x]. Then Ay, the difference of two ¾/'s, must still have the dimensions [y^] 
and x the dimensions [x]. The quotient Ay/Ax then has the dimensions [ž/]/[x]. 
For example the relations for area and for volume of revolution, 

dA dV _ . [dAΊ [A] ΓdVl [V] ΓTV2 

and the dimensions of the left-hand side check with those of the right-hand side. 
As integration is the limit of a sum, the dimensions of an integral are the product 
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of the dimensions of the function to be integrated and of the differential dx. 
Thus if 

J -*x dx 1 , x 

2 , , = - tan_1 - + c  
a2 + x¿ a a 

were an integral arising in actual practice, the very fact that a2 and x2 are added 
would show that they must have the same dimensions. If the dimensions of x 
be [X], then 

•U"ŵ]=[ŵ][Λ5]=īài[L]=ī¾=M, 

and this checks with the dimensions on the right which are [X] - 1 , since angle has 
no dimensions. As a rule, the theory of dimensions is neglected in pure mathe
matics ; but it can nevertheless be made exceedingly useful and instructive. 

In mechanics the fundamental units are length, mass, and time ; and are denoted 
by [X], [3f], [ Γ ] . The following table contains some derived units : 

velocity ±-±, acceleration -±—- , force -—=*-==—=!•, 
J [T] [T]2 [ Γ ] 2 

areal velocity ί - J - , density -—- , momentum -—=LLJ-, 
[Γ ] [ γ [T] 

! 4. ! . [ ¾ ] [ 4 2 [ [ * 
angular velocity , moment -————, energy -—J L J . 

With the aid of a table like this it is easy to convert magnitudes in one set of 
units as ft., lb., sec , to another system, say cm., gm., sec. All that is necessary is 
to substitute for each individual unit its value in the new system. Thus 

g = 32J -^–, 1 ft. = 30.48 cm., g = 32J × 30.48 - 5 ĩ l = 98OA -5El . 
sec.2 sec.2 sec.2 

EXERCISES 

1. Obtain the der ivat ives/^ , f¦χĻ fýx, fýy and ver i fy/ ; ; =fÿx. 

(a) sin-i -, (ß) l o g ^ t A 2 , (7) φ(y-) + ψ(xy). 
x xy \xj 

2. Compute 2v/ y2 in polar coordinates by the straightforward method. 

3 . Show that a2 — = — if v = f(x + at) -f ψ (x — at). 

4. Show that this equation is unchanged in form by the transformation : 
^ + 2 æ ž / 2 ^ + 2 ( z / - r ) ^ + x W = 0 ; u = zy, v = l/y. 
x2 ex cy 

5. In polar coordinates z — r cos θ, x = r sin θ cos ø, y — r sin θ sin φ in space 

x2 by2 y2 r2l r\ r/ m\¿θ φ2 únθ θ\ θ)_\' 
The work of transformation may be shortened by substituting successively 

x = rx cos ø, — rx sin ø, and z = r cos ø, r = r sin φ. 

6. Let x, y, z, t be four independent variables and x = r cos¢>, — r sin φ^ z — z 
the equations for transforming , ?/, z to cylindrical coordinates. Let 
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X = - ^ L , Y=--?L, Z = ?Ĺ + ?Ĺ, F=*Ĺ, G = -*Ĺ; 
x z y z ex1 ÿ1 y t x ί 

1 v __ . 1 Q „ l Q 
show Z — - , Xcosφ+Ysmφ - , Fsmφ—Gcosφ = - , 

r r r z r t 
where r~λQ = f/ r. (Of importance for the Hertz oscillator.) 

7. Apply the test for an exact differential to each of the following, and write 
by inspection the functions corresponding to the exact differentials : 

(a) 3 xdx -f y'2dy, (ß) 3 xydx + x4y, (7) x2ydx + y2dy, 
xdx + ydy xdx - ydy ydx - xdy 

K } 2 + 2 ' [€) x2-\-y2 ' x2 + ÿ2 ' 
(η) (4x3 + 3x2y + ÿ2) dx + (xs + 2xy + 3 ?/3)đy, (0) x¾2 (da; + dy). 

8. Express the conditions that P(x, /, 2;)dx 4- Q(x, /, ) di/ + fí(x, ?/, z)đz be 
an exact differential dF(x, y, 2). Apply these conditions to the differentials : 

(a) Sx2y2zdx + 2x3yzdy + xzy2dz, (ß) (y + z)dx + (x + z)d?/ + (x 4- î/)d2;. 

9. Obtain (―^-ļ = ( ― ] and ( — ) = ( — ] from (27) with proper variables. 
\dT)v \dv)τ \dS/p \dp)s K ' 

10. If three functions (called thermodynamic potentials) be defined as 

φ = U-TS, χ = U + pv, t=U-TS + pυ, 
show dφ = - SdT - pdv, dχ = TdS + vdp, dξ= - SdT + vdp, 
and express the conditions that dφ, dχ, dξ^ be exact. Compare with Ex. 9. 

11. State in words the definitions corresponding to the defining formulas, p. 107. 

12. If the sum (Mdx 4- Ndy) + (Pdx + Qdy) of two differentials is exact and one 
of the differentials is exact, the other is. Prove this. 

13. Apply Euler's Formula (31), for the simple case = 1, to the three func
tions (29') and verify the formula. Apply it for = 2 to the first function. 

14. Verify the homogeneity of these functions and determine their order : 

(a) y2/x + x(logx - logy), 08) j * * * * , (7) ,* f \ > 
Vx“2 + y2 ax + by + cz 

(δ)xye≠ + z2, (e) V x c o t - i ^ , ( ΐ ¯ I-
z v x + Vy 

15. State the dimensions of moment of inertia and convert a unit of moment of 
inertia in ft.-lb. into its equivalent in cm.-gin. 

16. Discuss for dimensions Peirce's formulas Nos. 93, 124-125, 220, 300. 

* ^ • -,,τ - . ^ . , d ðx υ _ d T , x T 
17. Continue Ex. 1/, p. 101, to show — -— = — and = mv—- -ļ 

dt (¡i Qi dt dut qi q 

18. If pi = -— in Ex. 17, p. 101, show without analysis that 2 T — qλpχ + q2p0. 
ĉ i 

If T' denote T' = Γ, where T' is considered as a function of pv p2 while T is con
sidered as a function of q1 r/2, prove from T' = qλpλ 4- q2p2 — T that 

T' _ . T' _ _ T 
dpi *' dui qi 
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19. If (x t, y ) and (x.2, y2) are the coordinates of two moving particles and 

d2x _ d2y d2x2 ΛT d2y2 
1 đ¿2 v l dί2 v 2 dί2 2 ' 2 đ¿2 2 

are the equations of motion, and if xv yv x2, y2 are expressible as 

xι = Λtøi> ¾ Í %)» Ž/i = Øitøn ¾» ? )» x2 =f*(Qv <lv tfβ)> 2 = Ø2føi» 4v ) 

in terms of three independent variables qv q2, ç3, show that 

ð¢i e¾Ί ð¢i Ö¢I đ«a¢! ?  

where Γ = \(mxυļ + m2¾2
2) = Γ(QΊ, q2ì <Z3, ¾řχ, ¾' ¾) anc^ *s homogeneous of the 

second degree in qv q2, q3. The work may be carried on as a generalization of 
Ex. 17, p. 101, and Ex. 17 above. I t may be further extended to any number of 
particles whose positions in space depend on a number of variables q. 

20. In Ex. 19 if pi = -— 1 generalize Ex. 18 to obtain 
ĉqi 

. _ Ĉ Γ Γ_ '___ĉΓ __d.Pi. ' 
l ~ dpi ' qt ~ q¿ ' l~ dt qx ' 

dčT T _ ^ dpi . T' *• 1 +,  
The equations Q¿ = and (̂ ¿ = 1 are respectively the Lagran¯ 

dt i qi dt qi 
gian and Hamiltonian equations of motion. 

2 1 . If rr' = k2 and φ' — ø and u'(r', φ') — υ(r, ø), show 

δ V ļ δ i _ J _ o V _ r 2 / a ¾ l¿tø J_ __¾\ 
ć)r'2 r ' ĉr/ r'2 aø'2 r'2 \ĉr2 r ĉr r2 φ2/ 

22. If rr7 = k2, φ' = φ, θ' = 0, and v'(r', ø', 0') = - υ ( r , ø, 0), show that the 

expression of Ex. 5 in the primed letters is kr2/r'3 of its value for the unprimed 
letters. (Useful in § 198.) 

23 . īfz = zφ(y) + φ(y), show x 2 ~ +2xy— + y^— = 0. 
W \xļ x2 x y y2 

24. Make the indicated changes of variable : 
2V 2V 9 / 2V 2V\ . . 

(it) 1 = e~ 2 t t( 4 ļ if x = c" cos , v/ = e" sin υ, 
ax2 a?/2 \a¿¿2 aυ 2 / 

au2 au2 Vax2 a?/2 /LW/ \ay/ J 
/./ v j 1 × àf φ f φ 

x=f(u,v), y = φ(u,v), — = -Z, _ = - - T . 
au aυ aυ. u 

25 . For an orthogonal transformation (Ex. 10 (f), p. 100) 

a2y a½ a2ü â ½ a½ a2υ 
Γ-̂ Ï + —, + .-•; = .-77 + — + -.— • 
ř X - <"?/- ř Z - CX - ř I/ - (Z -

54. Taylors Formula and applications. The development of ƒ(.>•, y) 
is found, as was the Theorem of the Mean, from the relation (p. 95) 

http://__d.Pi
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Δ / = Φ (1) - Φ (0) if Φ (t) = f (a + th, b + tk). 
If Φ(¿) be expanded by Maclaurin's Formula to n terms; 

Φ(†) - Φ(O) = *Φ'(O) + γ ¦ Φ“(O) + • • • + ^ ļ Φ<—*>(O) + ¦-¦ Φ<»>(Ŵ). 

The expressions for Φ'(¿) and Φ'(O) may be found as follows by (10) : 

Φ'(O = / ; + % Φ'(O) = [ v ; + Wy‰a, 
then Φ“(O = A ( ½ + rø + * Ģif¿ + % ) 

- /<*ƒ£ + 2 /,Ä;/£ + A-% = (hDx + ¿A,)2/, 
Φ«>¢) = UbΏx + hD,yf, Φ̂ >(O) = [(Ä¾ + ¿ W ] _ . 

And ƒ ( * + Ä, ¿ + *) - ƒ ( " , b) = Δ / = Φ(l) -Φ(O) = (Λ7JX. + ¾ / ( « , /,) 

+ γ (hDx + Ŵ¾)V(«, *) + ••• + ^ ļ y j (A¾ + kD,γ-*f(a, b) 

+ ^ (Λ¾ + kDy)»f(a + 0 , 6 + 0/¿). (32) 

In this expansion, the increments h and /¿ may be replaced, if de
sired, by x — a and y — b and then ƒ (,τ, //) will be expressed in terms 
of its value and the values of its derivatives at (a, ī¡) in a manner 
entirely analogous to the case of a single variable. In particular if the 
point (a, b) about which the development takes place be (0, 0) the 
development becomes Maclaurin's Formula for ƒ(x, y). 

A*, V) =ƒ(<>, 0) + (xDx + y ¾ ) / ( 0 , 0) + 1 (xDx + yD,)*f(O, 0) + • • • 

' + ( ¿ ) ! (*¾ + »*)'¯'f (°' °) + ¿ № + ? W(‰>%)• (32') 
Whether in Maclaurin's or Taylor's Formula, the successive terms are 
homogeneous polynomials of the 1st, 2d, • • -, (n — l ) s t order in x, y or 
in. — , — b. The formulas are unique as in § 32. 

Suppose Vl — x2 — y2 is to be developed about (0, 0). The successive -deriva
tives are 

f'x= . ¯ * = . f,= , ~V = . /x(O,O) = O, /,'(O,O) = O, 
VI — x2 — y2 V l — x2 — y2 

f „ = - i + y2
 f„ = xy f„ = - 1 + x2 

„, _ f (l-y2)x „, _ y3 - 2 x¿/2 - 

{l-x2-yψ ( 1 - 2-?/ 2) -i 
and V Γ - x 2 - ? / 2 = l + (Oæ + Oy) + ļ (– '2 + 0 - 2) + J (°*3 + •••) + •'•» 
o r Vi — x2 — 2/2 = 1 — \ (x2 + ¿/2) + terms of fourth order + • • •. 

In this case the expansion may be found by treating x2 -f y2 as a single term and 
expanding by the binomial theorem. The result would be 



114 D I F F E R E N T I A L CALCULUS # 

[1 - (x2 + 2) = 1 - J (x2 + 2) - i(xá + 2 + ž/4) - TV (χ2 + 2/2)3 • 
That the development thus obtained is identical with the Maclaurin development 
that might be had by the method above, follows from the uniqueness of the devel
opment. Some such short cut is usually available. 

55. The condition that a function z = f(x, y) have a minimum or 
maximum at .(a, b) is that Δ / > 0 or Δ / < 0 for all values of h = Ax 
and = Ay which are sufficiently small. From either geometrical or 
analytic considerations it is seen that if the surface z =f(x, y) has a 
minimum or maximum at (a, b), the curves in which the planes y = b 
and x = a cut the surface have minima or maxima at x = a and y = b 
respectively. Hence the partial derivatives f'x and f'y must both vanish 
at (a, b), provided, of course, that exceptions like those mentioned on 
page 7 be made. The two simultaneous equations 

œ = o, / ; = o, (33) 
corresponding to f\x) = 0 in the case of a function of a single varia
ble, may then be solved to find the positions (x, y) of the minima 
and maxima. Frequently the geometric or physical interpretation of 
z = f(x, y) or some special device will then determine whether there 
is a maximum or a minimum or neither at each of these points. 

For example let it be required to find the maximum rectangular parallelepiped 
which has three faces in the coordinate planes and one vertex in the plane 
x/a + y/b -ļ- z/c = 1. The volume is 

V = xyz = cxyll ). 
\  

— = — 2 - xy y1 + cy = 0 — = — 2 - xy x2 + ex = 0. 
ex a b cy b a 

The solution of these equations is x = ļ α, = ļ b. The corresponding z is ļ and 
the volume V is therefore abc/9 or f of the volume cut off from the first octant by 
the plane. It is evident that this solution is a maximum. There are other solutions 
of V'x = V¦j = 0 which have been discarded because they give V = 0. 

The conditions f'x = f'y 0 may be established analytically. For 

A / = (/; + Q Δ* + (/; + ¾ 7/. 

Now as ζv ζ2 are infinitesimals, the signs of the parentheses are deter
mined by the signs of f¦, f'y unless these derivatives vanish ; and hence 
unless f¦¦. = 0, the sign of Δ / for Ax sufficiently small and positive and 
At/ = 0 would be opposite to the sign of Af for Ax sufficiently small and 
negative and Ay = 0. Therefore for a minimum maximum f'x = 0; 
and in like manner fý = 0. Considerations like these will serve to 
establish a criterion for distinguishing between maxima and minima 
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analogous to the criterion furnished by f“(x) in the case of one vari
able. For i f / ; = ƒ ; = 0, then 

V = \Qb‰ + 2 hkf; + k%χ=a+θħ^b+θk, 

by Taylor's Formula to two terms. Now if the second derivatives are 
continuous functions of (x, y) in the neighborhood of (a, b), each deriv
ative at (a + θħ, b + θk) may be written as its value at (a, b) plus an 
infinitesimal. Hence 

Now the sign of Δ / for sufficiently small values of h, must be the 
same as the sign of the first parenthesis provided that parenthesis does 
not vanish. Hence if the quantity 

( " _L. 9 /,/.ƒ'' . w>\ > ° f o r e v e ι T (h> k)> a minimum 
1 / M ^1" w ' ' • ' ^1" / " ^ " > < 0 for every ( , *) , a maximum. 

As the derivatives are taken at the point (α, 6), they have certain constant 
values, say A, B, C. The question of distinguishing between minima and maxima 
therefore reduces to the discussion of the possible signs of a quadratic form 
Ah2 -ļ- 2 Bhk + Ck2 for different values of h and k. The examples 

A2 + k2, - h2 - k2, h2 - k\ ±(h- k)2 

show that a quadratic f orni may be : either 1°, positive for every ( , ) except (0, 0) ; 
or 2°, negative for every (Λ, k) except (0, 0) ; or 3°, positive for some values ( , ) 
and negative for others and zero for others ; or finally 4°, zero for values other than 
(0, 0), but either never negative or never positive. Moreover, the four possibilities 
here mentioned are the only cases conceivable except 5°, that A = = = 0 and 
the form always is 0. In the first case the form is called a definite positive form, in 
the second a definite negative f orni, in the third an indefinite form, and in the fourth 
and fifth a singular form. The first case assures a minimum, the second a maxi
mum, the third neither a minimum nor a maximum (sometimes called a minimax) ; 
but the case of a singular form leaves the question entirely undecided just as the 
condition ƒ"(x) = 0 did. 

The conditions which distinguish between the different possibilities may be ex
pressed in terms of the coefficients , , C. 

l°pos. def., B2<AC, A, C> 0 ; 3° indef., B2 > AC ; 
2° neg. def., B2 < AC, A, < 0 ; 4° sing., B2 = AC. 

The conditions for distinguishing between maxima and minima are : 

f* = °\ fn< f„ f„ Jf∞> fÿy > ° minimum ; 
fy = 0 J Jχ» <JχχJyyì \f^ fw < 0 maximum ; *' > 

« C > f ¡Ļ minimax ; f^ = f'¿J'¿ (?). 

I t may be noted that in applying these conditions to the case of a definite form it 
is sufficient to show that either f^ or fļ¦y is positive or negative because they neces
sarily have the same sign. 
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EXERCISES 

1. Write at length, without symbolic shortening, the expansion of ƒ (x, y) by 
Taylor's Formula to and including the terms of the third order in x — a, y — b. 
Write the formula also with the terms of the third order as the remainder. 

2. Write by analogy the proper form of Taylor's Formula f o r / ( , ¾/, z) and 
prove it. Indicate the result for any number of variables. 

3 . Obtain the quadratic and lower terms in the development 

(a) of xy2 + sin xy at (1, \ π) and (ß) of tan~1 (y/x) at (1, 1). 

4. A rectangular parallelepiped with one vertex at the origin and three faces 
in the coordinate planes has the opposite vertex upon the ellipsoid 

Find the maximum volume. 

5. Find the point within a triangle such that the sum of the squares of its 
distances to the vertices shall be a minimum. Note that the point is the intersec-

- tion of the medians. Is it obvious that a minimum and not a maximum is present ? 

6. A floating anchorage is to be made with a cylindrical body and equal coni
cal ends. Find the dimensions that make the surface least for a given volume. 

7. A cylindrical tent has a conical roof. Find the best dimensions. 

8. Apply the test by second derivatives to the problem in the text and to any 
of Exs. 4-7. Discuss for maxima or minima the following functions : 

(a) x2y + xy2 - x, (ß) x3 + ?/3 - x2y2 - \ (x2 + ž/2), 
(7) X2 + Ž/2 + X + , (δ) ļì/3- xy2 + Xλì/ - X, 
(e) x3 + ? / 3 - $xy + 27, (f) x4 + y4 - 2x2 + 4xy- 2y2. 

9. State the conditions on the first derivatives for a maximum or minimum of 
function of three or any number of variables. Prove in the case of three variables. 

10. A wall tent with rectangular body and gable roof is to be so constructed as 
to use the least amount of tenting for a given volume. Find the dimensions. 

11 . Given any number of masses m1? m2, • • -, mn situated at (x15 ?/ ), (x2, ?/2),. •., 
( n, )- Show that the point about which their moment of inertia is least is their 
center of gravity. If the points were (xv yv zļ)ì • • • in space, what point would 
make mr2 a minimum ? 

12. A test for maximum or minimum analogous to that of Ex. 27, p. 10, may 
be given for a function ƒ (x, y) of two variables, namely : If a function is positive 
all over a region and vanishes upon the contour of the region, it must have a max
imum within the region at the point for which f'χ — f¦ = 0. If a function is finite 
all over a region and becomes infinite over the contour of the region, it must have 
a minimum within the region at the point for which f^=fýz±: 0. These tests are 
subject to the proviso that f'χ = fy — 0 has only a single solution. Comment on the 
test and apply it to exercises above. 

13. If α, ò, c, r are the sides of a given triangle and the radius of the inscribed 
circle, the pyramid of altitude h constructed on the triangle as base will have its 
maximum surface when the surface is ļ (α + b + c) Vr2 + Λ2. 


