CONTENTS

AR'T. PAGE
INTRODUCTION 1
I. THE RESULTANT
2. Resultant of two homogeneous polynomials 4
6. Resultant of n homogeneous polynomials 7
8. Resultant isobaric and of weight L 11
8. Coefficient of $a_{r}{ }^{L_{r}} \ldots a_{n}{ }^{L_{n}}$ in R is $R_{r}{ }_{r}{ }_{r} l_{r+1} \ldots l_{n}$ 11
8. The extraneous factor A involves the coefficients of ($F_{1}, F_{2}, \ldots, F_{n-1}$). $x_{n}=0$ only 11
9. Resultant is irreducible and invariant 12
10. The vanishing of the resultant is the necessary and sufficient condition that $F_{1}=\ldots=F_{n}=0$ should have a proper solution 13
11. The product theorem for the resultant 15
11. If (F_{1}, \ldots, F_{n}) contains ($F_{1}^{\prime}, \ldots, F_{n}{ }^{\prime}$), R is divisible by R^{\prime} 15
12. Solution of equations by means of the resultant 15
12. The u-resultant resolves into linear homogeneous factors in $x, u_{1}, u_{2}, \ldots, u_{r}$ 16
II. THE RESOLVENT
15. Complete resolvent is a member of the module 20
15. Complete resolvent is 1 if there is no finite solution 21
17. Examples on the resolvent 21
18. The complete u-resolvent F_{u}. 24
18. $\left(F_{u}\right)_{x=u_{1} x_{1}+\ldots+u_{n} x_{n}=0 \bmod \left(F_{1}, F_{2}, \ldots, F_{k}\right), ~\left(F_{1}\right)}$ 24
19. All the solutions of $F_{1}=F_{2}=\ldots=F_{k}=0$ are obtainable from true linear factors of F_{u} 25
20. Any irreducible factor of F_{u} having a true linear factor is a homogeneous whole function of x, u_{1}, \ldots, u_{n} 26
21. Irreducible spreads of a module 27
22. Geometrical property of an irreducible spread 28

III. GENERAL PROPERTIES OF MODULES

ART.23. $M / M^{\prime}=M /\left(M, M^{\prime}\right)$. 3030
23. If $M^{\prime} M^{\prime \prime}$ contains M, M^{\prime} contains $M / M^{\prime \prime}$ 31
24. Associative, commutative, and distributive laws 31
25. (M, M^{\prime}) $\left[M, M^{\prime}\right]$ contains $M M^{\prime}$ 32
26. M / M^{\prime} and $M /\left(M / M^{\prime}\right)$ mutually residual with respect to M 32
28. $M /\left(M_{1}, M_{2}, \ldots, M_{k}\right)=\left[M / M_{1}, M / M_{2}, \ldots, M / M_{k}\right]$ 33
28. $\left[M_{1}, M_{2}, \ldots, M_{k}\right] / M=\left[M_{1} / M, M_{2} / M, \ldots, M_{k} / M\right]$ 33
30. Spread of prime or primary module is irreducible 34
31. Prime module is determined by its spread 34
32. If M is primary some finite power of the corresponding prime module contains M 35
33. A simple module is primary 36
34. There is no higher limit to the number of members that may be required for the basis of a prime module 36
34. Space cubic curve has a basis consisting of two members 37
35. The L.c.m. of primary modules with the same spread is a primary module with the same spread 37
36. If M is primary M / M^{\prime} is primary 37
37. Hilbert's theorem 38
38. Relations between a module and its equivalent H-module 39
38, 42. Condition that an H-module M may be equivalent to $M_{x_{n}=1}$. 39
38. Properties of an H-basis 40
39. Lasker's theorem 40
40. Method of resolving a module 42
41, 44. Conditions that a module may be unmixed 43
42. Deductions from Lasker's theorem 44
42. When M / M^{\prime} is M and when not 44
42. No module has a relevant spread at infinity 44
43. Properties of the modules $M^{(r)}, M^{(s)}$ 45
44. Section of prime module by a plane may be mixed 47
46. The Hilbert-Netto theorem 48
UnMIXED MODULES 49
48. Module of the principal class is unmixed 49
49. Conditions that $\left(F_{1}, F_{2}, \ldots, F_{r}\right)$ may be an H-basis 50
50. Any power of module of principal class is unmixed 51
51, 52. Module with γ-point at every point of M 52
ART. page
52. When a power of a prime module is unmixed 53
53. Module whose basis is a principal matrix is unmixed 54
Solution of homogeneous linear equations 58
Noether's theorem 60
56. The Lasker-Noether theorem 61
IV. THE INVERSE SYSTEM
58. Number of modular equations of an H-module of the principal class 65
59. Any inverse function for degree t can be continued 67
59. Diagram of dialytic and inverse arrays 67
59. The modular equation $1=0$ 69
60, 82. The inverse system has a finite basis 69
61. The system inverse to $\left(F_{1}, F_{2}, \ldots, F_{k}\right)$ is that whose $F_{i^{-}}$ derivates vanish identically 70
62. Modular equations of a residual module 70
63. Conditions that a system of negative power series may be the inverse system of a module 71
64. Corresponding transformations of module and inverse system 71
65. Noetherian equations of a module 73
65. Every Noetherian equation has the derivate $1=0$. 73
65. The Noetherian array 75
66. Modular equations of simple modules 75
Properties of simple modules 77
67. A theorem concerning multiplicity 77
69. Unique form of a Noetherian equation 79
71. A simple module of the principal Noetherian class is a principal system 80
72. A module of the principal class of rank n is a principal system 81
73. $\mu=\mu^{\prime}+\mu^{\prime \prime}$ 82
74. $\mu^{\prime} l^{\prime}+\mu^{\prime \prime} l^{\prime \prime}=\mu_{l^{\prime}}=\mu_{l^{\prime}}$, where $l^{\prime}+l^{\prime \prime}=\gamma-1$ 83
75. $H_{m}=1+\mu_{1}+\mu_{2}+\ldots+\mu_{m}$ 83
76. $H_{l^{\prime}}^{\prime}-H^{\prime \prime}{ }_{l^{\prime \prime}}=H^{\prime}{ }_{l^{\prime}+l^{\prime \prime}}-H_{l^{\prime \prime}}=H_{l^{\prime}}-H^{\prime \prime}{ }_{l^{\prime}+l^{\prime \prime}}$, where $l^{\prime}+l^{\prime \prime}=\gamma-2$. 84
Modular equations of unmined modules 85
77. Dialytic array of $M^{(r)}$ 86
78. Solution of the dialytic equations of $M^{(r)}$ 88
art. PAGE
79. Unique system of r-dimensional modular equations of M 89
79. The n-dimensional equations 89
80. Equations of the simple H-module determined by the highest terms of the members of an H-basis of $M^{(r)}$ 89
81. If $R=1$ and M is unmixed, M is perfect 90
82. If $M^{(r)}$ is a principal system so is M 90
82. A module of the principal class is a principal system 90
83. $M^{(r)}$ and M are principal systems if the module determined by the terms of highest degree in the members of an H-basis of $M^{(r)}$ is a principal system ; not conversely 91
84. Modular equations of an H-module of the principal class 92
85. Whole basis of system inverse to $M^{(r)}$ 93
86. Modules mutually residual with respect to an H-module of the principal class 94
87. The theorem of residuation 96
88. Any module of rank n is perfect 98
88. An unmixed H-module of rank $n-1$ is perfect 98
88. An H-module of the principal class is perfect 98
88. A module of the principal class which is not an H-module is not necessarily perfect 98
88. A prime module is not necessarily perfect 98
89. An H-module M of rank r is perfect if the module $M_{x_{r+2}=\ldots=x_{n}=0}$ is unmixed 99
90. A perfect module is unmixed. 99
90. The L.c.m. of a perfect module of rank r and any module in $\mathscr{x}_{r+1}, \ldots, x_{n}$ only is the same as their product 99
91. Value of H_{l} for a perfect module 99
92. If M, M^{\prime} are perfect H-modules of rank r, and if M contains M^{\prime}, and $M_{x_{r+1}=\ldots=x_{n}=0}$ is a principal system, M / M^{\prime} is perfect 100
Note on the theory of ideals 101

