whence we derive this practical rule: To obtain the resultant of the elimination of x in this case, it is sufficient to equate to zero the product of the coefficients of x and x^{\prime}, and add to them the term independent of x.
32. The Case of Indetermination.-Just as the resultant

$$
a b=\circ
$$

corresponds to the case when the equation is possible, so the equality

$$
a+b=0
$$

corresponds to the case of absolute indetermination. For in this case the equation both of whose coefficients are zero $(a=0),(b=0)$, is reduced to an identity $(0=0)$, and therefore is "identically" verified, whatever the value of x may be; it does not determine the value of x at all, since the double inclusion

$$
b<x<a^{\prime}
$$

then becomes

$$
0<x<\mathrm{I}
$$

which does not limit in any way the variability of x. In this case we say that the equation is indeterminate.

We shall reach the same conclusion if we observe that $(a+b)$ is the superior limit of the function $a x+b x^{\prime}$ and that, if this limit is 0 , the function is necessarily zero for all values of x,

$$
\left(a x+b x^{\prime}<a+b\right)(a+b=0)<\left(a x+b x^{\prime}=0\right)
$$

Special Case.-When the equation contains a term independent of x,

$$
a x+b x^{\prime}+c=0,
$$

the condition of absolute indetermination takes the form

$$
a+b+c=0 .
$$

For

$$
\begin{aligned}
a x+b x^{\prime}+c & =(a+c) x+(b+c) x^{\prime}, \\
(a+c)+(b+c) & =a+b+c=0 .
\end{aligned}
$$

