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Demonstration.—First multiplying by x both members of
the given equality [which is the first member of the entire
secondary equality], we have

x=ax,
which, as we know, is equivalent to the inclusion
x< a.
Now multiplying both members by «', we have-
o =1bx,
which, as we know, is equivalent to the inclusion
<x.
Summing up, we have
xx=ax+bx) < (b<ax<a).
Conversely,
C<x<<a)<(x=ax+bx).
For
(@< a)— (x— aw),
6<<x)=(bx=o0).

Adding these two equalities member to member [the second
members of the two larger equalities],

(x=ax) (0 = bx) < (x = ax + bx).
Therefore
C<x<a)(r=oax+bx),

and thus the equivalence is proved.

30. Schridder’s Theorem.'—The equality
ax+bx'=o
signifies that x lies between &’ and &.
Demonstration:
(@x + bx' = 0) = (ax = o) (bx' = o),
(ax = 0) = (x<]d),
(2" = 0) = (6 <x).

t SCHRODER, Operationskreis des Logikkalkuls (1877), Theorem 2o0.
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Hence
(ex+bx'=0) = (6<x<d).

Comparing this theorem with the formula of PORETSKY, we

obtain at once the equality
(ax+ bx'=0) = (x = a'x + bx'),
which may be directly proved by reducing the formula of
PoreTsky to an equality whose second member is o, thus:
(x=dadx+bx)=[x(ax+6x)+x(@x+bx)= 0]
= (ax + bx = o).
If we consider the given equality as an egwafion in which

x is the unknown quantity, PORETskY’s formula will be its
solution,

* From the double inclusion
r<la<ld
we conclude, by the principle of the syllogism, that
b<d.
This is a consequence of the given equality and is in-
dependent of the unknown quantity x. It is called the

resultant of the elimination of x in the given equation. Itis
equivalent to the equality

ab=o.
Therefore we have the implication
(ax + bx'= o) < (ab = o).
Taking this consequence into consideration, the solution
may be simplified, for
(2b=10) = (b=12a'bd).
Therefore
x=ax+bx=ax+addx
=dbx+dbx+abx=ab+alx
=b+adbx=0b+dx.
This form of the solution conforms most closely to common
sense: since x’ contains 4 and is contained in &', it is natural
that « should be equal to the sum of & and a part of &’



RESULTANT OF ELIMINATION. 41

(that is to say, the part common to &’ and x). The solution
is generally indeterminate (between the limits ¢’ and 4); it is
determinate only when the limits are equal,
a=1b,
for then
x=btadx=0b+bx=05=ad.

Then the equation assumes the form
(ax+d'x = o0) = (a' = x)
and js equivalent to the double inclusion

E<ax<ld)=(x=a).

3i. The Resultant of Elimination.—When a4 is not
zero, the equation is impossible (always false), because it has
a false consequence. It is for this reason that SCHRODER
considers the resultant of the elimination as a condition of
the equation. But we must not be misled by this equivocal
word. The resultant of the elimination of x is not a cause of
the equation, it is a comsequence of it; it is not a sufficient but
a necessary condition.

The same conclusion may be reached by observing that
ab is the inferior limit of the function @x + 42, and that
consequently the function can not vanish unless this limit is o.

(ab<ax+bx) (ax + bx’ = o) < (ab = o).

We can express the resultant of elimination in other equiv-
alent forms; for instance, if we write the equation in the form

(@+2) (0+x)=o,
we observe that the resultant
ab=o0

is obtained simply by dropping the unknown quantity (by
suppressing the terms x and x'). Again the equation may be
written:

dx+ix=1
and the resultant of elimination:

a4+ 6 =1.



