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Survey on the Fundamental Lemma

Ngô Bao Châu

This is a survey on the recent proof of the fundamental lemma. The
fundamental lemma and the related transfer conjecture were formulated by
R. Langlands in the context of endoscopy theory for automorphic representa-
tions in [26]. Important arithmetic applications follow from the endoscopy
theory, including the transfer of automorphic representations from classi-
cal groups to linear groups and the construction of Galois representations
attached to automorphic forms via Shimura varieties. Independent of appli-
cations, endoscopy theory is instrumental in building a stable trace formula
that seems necessary to any decisive progress toward Langlands’ conjecture
on functoriality of automorphic representations.

There are already several expository texts on endoscopy theory and in
particular on the fundamental lemma. The original text [26] and articles
of Kottwitz [19], [20] are always the best places to learn the theory. The
two introductory articles to endoscopy, one by Labesse [24], the other [14]
written by Harris for the Book project are highly recommended. So are the
reports on the proof of the fundamental lemma in the unitary case written
by Dat for Bourbaki [7] and in general written by Dat and Ngo Dac for
the Book project [8]. I have also written three expository notes on Hitchin
fibration and the fundamental lemma : [34] reports on endoscopic structure
of the cohomology of the Hitchin fibration, [36] is a more gentle introduction
to the fundamental lemma, and [37] reports on the support theorem, a key
point in the proof of the fundamental lemma written for the Book project.
The survey follows the same plan as [36] but more details have been added.

This report is written when its author enjoyed the hospitality of the
Institute for Advanced Study in Princeton. He acknowledges the support of
the Simonyi foundation and the Monell Foundation during his stay in the
Institute.

1. Orbital integrals over non-archimedean local fields

1.1. First example. Let V be a n-dimensional vector space over a non-
archimedean local field F , for instant the field of p-adic numbers. Let γ :
V → V be a linear endomorphism with distinct eigenvalues in an algebraic
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closure of F . The centralizer Iγ of γ is of the form

Iγ = E×
1 × · · · × E×

r

where E1, . . . , Er are finite separable extensions of F . This is a commutative
locally compact topological group.

Let OF denote the ring of integers in F . We consider the set of lattices
of V that are sub-OF -modules V ⊂ V of finite type with maximal rank. We
are interested in the subset Mγ of lattices V of V such that γ(V) ⊂ V. The
group Iγ acts the set Mγ . This set is infinite in general but the set of orbits
under the action of Iγ is finite. We fix a Haar measure dt on the locally
compact group Iγ . We consider a set of representatives of orbits of Iγ on
Mγ and for each x in this set, let denote Iγ,x the compact open subgroup
of Iγ of elements stabilizing x. The finite sum

(1)
∑

x∈Mγ/Iγ

1
vol(Iγ,x, dt)

is a typical example of orbital integrals.

1.2. Another example. A basic problem in arithmetic geometry is the
determination of the number of abelian varieties equipped with a principal
polarization defined over a finite field Fq. The set of isogeny classes of abelian
varieties over finite fields is described by Honda and Tate. As usual, we first
describe the set the principally polarized abelian varieties that are equipped
with an isogeny to a fixed one in requiring that the isogeny be compatible
with the polarization. We will be concerned only with �-polarization for
some fixed prime number � which is different from the characteristic of Fq.

Let A be a n-dimensional abelian variety over a finite field Fp equipped
with a principal polarization. The Q�-Tate module of A

TQ�
(A) = H1(A ⊗ F̄p, Q�)

is a 2n-dimensional Q�-vector space equipped with
• a non-degenerate alternating form that is induced by the polariza-

tion,
• a Frobenius operator σp induced from the Fp-structure of A,
• a self-dual lattice TZ�

(A) = H1(A⊗ F̄p, Z�) which is stable under σp.
Let A′ be a principally polarized abelian variety equipped with a �-

isogeny to A compatible with polarizations and defined over k. This isogeny
induces an isomorphism between Q�-vector spaces TQ�

(A) and TQ�
(A′) that

is compatible with symplectic forms and Frobenius operators. Defining
this �-isogeny is thus equivalent to defining a self-dual lattice H1(A′, Z�)
of H1(A, Q�) stable under σp. Orbital integral for symplectic group enters in
this way in the solution of the problem of counting the number of principally
polarized abelian varieties over finite field within a fixed isogeny class.

The description of the set of p-isogenies where p is the characteristic of
Fq is more complicated. The solution is based on the crystalline cohomology
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of the abelian variety instead of etale �-adic cohomology, and can be trans-
lated into semi-linear algebra instead of linear algebra. Instead of orbital
integral, the answer is expressed naturally in terms of twisted orbital inte-
grals. Moreover, the test function is no longer the unit of the Hecke algebra
but the characteristic function of the double class indexed a the minuscule
coweight of the group of symplectic similitudes.

As isogeny is required to be compatible with polarization, the classifica-
tion of principally polarized abelian varieties can’t be immediately reduced
to the classification of Honda and Tate. There is indeed a subtle difference
between requiring A and A′ to be isogenous or A and A′ equipped with po-
larization to be isogenous. In [23], Kottwitz observed that this difficulty is of
endoscopic nature. He expressed the number of points with values in a finite
field on Siegel’s moduli space of polarized abelian varieties in terms of orbital
integral and twisted orbital integrals in taking into account the endoscopic
phenomenon. He proved in fact the same result for a larger class of Shimura
varieties classifying abelian varieties with polarization, endomorphisms and
level structures.

1.3. General orbital integrals. Let G be a reductive group over F ,
g its Lie algebra. Let γ be an element of G(F ) or g(F ) which is strongly
regular semisimple in the sense that its centralizer Iγ if a F -torus. Choose
a Haar measure dg on G(F ) and a Haar measure dt on Iγ(F ).

For γ ∈ G(F ) and for any compactly supported and locally constant
function f ∈ C∞

c (G(F )), we set

Oγ(f, dg/dt) =
∫

Iγ(F )\G(F )
f(g−1γg)

dg

dt
.

We have the same formula for an element of the Lie algebra γ ∈ g(F ) and
for f ∈ C∞

c (g(F )). By definition, the orbital integral Oγ does not depend
on γ but only on its conjugacy class. It also depends on the choice of Haar
measures dg and dt.

We are mostly interested in the unramified case. We assume that G
has a reductive model over OF i.e. there exists a reductive group scheme
over OF whose generic fiber is G. This is the case for instant for Chevalley
groups. We use a slight abuse of notation in assigning also the letter G to the
reductive group scheme over OF . The group K = G(OF ) of integral points
is a maximal compact subgroup of G(F ). We choose the Haar measure dg
such that K has volume one. Consider the set

(2) Mγ = {x ∈ G(F )/K | gx = x},
equipped with an action of Iγ(F ). The orbital integral of the characteristic
function 1K of K admits a concrete description

(3) Oγ(1K , dg/dt) =
∑

x∈Iγ(F )\Mγ

1
vol(Iγ(F )x, dt)
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where x runs over a set of representatives of orbits of Iγ(F ) in Mγ and
Iγ(F )x is the compact open subgroup of Iγ(F ) stabilizer of x. The function
1K also called the unit of the Hecke algebra plays a very special role in the
global setting.

If G = GL(n), the space of cosets G(F )/K can be identified with the set
of lattices in Fn so that we recover the lattice counting problem in the first
example. For classical groups, orbital integrals for the unit function can also
be expressed as the number of selfdual lattices fixed by an automorphism.

1.4. The Arthur-Selberg trace formula. We consider now a semi-
simple group G defined over a global field F that can be either a number
field or the field of rational functions on a curve defined over a finite field.
It is of interest to understand the trace of Hecke operator on automorphic
representations of G. The Arthur-Selberg trace formula is a powerful tool
for this quest. It has the following form

(4)
∑

γ∈G(F )/∼
Oγ(f) + · · · =

∑
π

trπ(f) + · · ·

where γ runs over the set of anisotropic conjugacy classes of G(F ) and π over
the set of discrete automorphic representations. The trace formula contains
also more complicated terms related to hyperbolic conjugacy classes on one
side and the continuous spectrum on the other side.

The test functions f are of the form f = ⊗fv with fv being the unit
function in Hecke algebra of G(Fv) for almost all finite places v of F . The
global orbital integral

Oγ(f) =
∫

Iγ(F )\G(A)
f(g−1γg)dg

is convergent for isotropic conjugacy classes γ ∈ G(F )/∼. After choosing a
Haar measure dt =

⊗
dtv on Iγ(A), we can express the above global integral

as follows

Oγ(f) = vol(Iγ(F )\Iγ(A), dt)
∏
v

Oγ(fv, dgv/dtv).

Local orbital integral of semisimple elements are convergent for every v and
are equal to one for almost all v if the measure dt is chosen so that Iγ(Ov)
has volume one for almost all v. The torus Iγ has an integral form that is
well defined up to finitely many places. The volume term is finite when the
global class γ is anisotropic.

Arthur introduced truncation operator to deal with the continuous spec-
trum and with non isotropic conjugacy classes. In his geometric expansion,
Arthur has more complicated local integral that he calls weighted orbital
integrals, see [1].
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1.5. Shimura varieties. Similar strategy has been used for the calcu-
lation of the Hasse-Weil zeta function attached to Shimura varieties. In the
special case of Shimura varieties classifying polarized abelian varieties with
endomorphisms and level structure, Kottwitz established a formula for the
number of points with values in a finite field Fq. The formula he obtained
is closed to the orbital side of (4) for the reductive group G entering in the
definition of S. Again, certain local identities of orbital integrals are needed
to establish the equality of number �S(Fq) with a combination the orbital
sides of (4) for G and a collection of smaller groups called endoscopic groups
of G. Eventually, this strategy allows one to attach Galois representation to
auto-dual automorphic representations of GL(n). For the most recent and
complete results, see [31] and [38].

2. Stable trace formula

2.1. Stable conjugacy. In studying orbital integrals for other groups
for GL(n), we encounter with an a priori annoying problem. For GL(n),
two regular semisimple elements in GL(n, F ) are conjugate if and only if
they are conjugate in the larger group GL(n, F̄ ) where F̄ is an algebraic
closure of F and this latter condition is tantamount to request that γ and
γ′ have the same characteristic polynomial. For a general reductive group
G, we have a characteristic polynomial map χ : G → T/W where T is a
maximal torus and W is its Weyl group. An element is said strongly regular
semisimple if its centralizer is a torus. Strongly regular semisimple elements
γ, γ′ ∈ G(F̄ ) have the same characteristic polynomial if and only if they are
G(F̄ )-conjugate. However, there are possibly more than one G(F )-conjugacy
classes within the set of strongly regular semisimple elements having the
same characteristic polynomial in G(F ). These conjugacy classes are said
stably conjugate.

For a fixed γ ∈ G(F ), assumed strongly regular semisimple, the set of
G(F )-conjugacy classes in the stable conjugacy of γ can be identified with
the subset of elements H1(F, Iγ) whose image in H1(F, G) is trivial. For local
fields, the group H1(F, Iγ) is finite but for global field, it can be infinite.

2.2. Stable orbital integral and its κ-sisters. For a local non-
archimedean field F , Aγ is a subgroup of the finite abelian group H1(F, Iγ).
One can form linear combinations of orbital integrals within a stable conju-
gacy class using characters of Aγ . In particular, the stable orbital integral

SOγ(f) =
∑
γ′

Oγ′(f)

is the sum over a set of representatives γ′ of conjugacy classes within the
stable conjugacy class of γ. One needs to choose in a consistent way Haar
measures on different centralizers Iγ′(F ). For strongly regular semisimple γ,
the tori Iγ′ for γ′ in the stable conjugacy class of γ, are in fact canonically
isomorphic so that we can transfer a Haar measure from Iγ(F ) to Iγ′(F ).
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Obviously, the stable orbital integral SOγ depends only on the characteristic
polynomial of γ. If a is the characteristic polynomial of a strongly regular
semisimple element γ, we set SOa = SOγ . A stable distribution is an
element in the closure of the vector space generated by the distributions of
the form SOa with respect to the weak topology.

For each character κ : Aγ → C×, the κ-orbital integral is the linear
combination

Oκ
γ(f) =

∑
γ′

κ(cl(γ′))Oγ′(f)

over a set of representatives γ′ of conjugacy classes within the stable conju-
gacy class of γ, cl(γ′) being the class of γ′ in Aγ . For any γ′ in the stable
conjugacy class of γ, Aγ and Aγ′ are canonical isomorphic so that the char-
acter κ on Aγ defines a character of A′

γ . Now, Oκ
γ and Oκ

γ′ are not equal
but differ by the scalar κ(cl(γ′)) where cl(γ′) is the class of γ′ in Aγ . Even
though this transformation rule is simple enough, we can’t a priori define
κ-orbital Oκ

a for a characteristic polynomial a as in the case of stable orbital
integral. This is a source of an important technical difficulty in the theory
of endoscopy that is known as the transfer factor.

At least in the case of Lie algebra, there exists a section ι : t/W → g
due to Kostant of the characteristic polynomial map χ : g → t/W and we
set

Oκ
a = Oκ

ι(a).

Thanks to Kottwitz’ calculation of transfer factor, we know that this naively
looking definition turns out to be correct. This simplifies significantly the
statement of the fundamental lemma and the transfer conjecture for Lie
algebra [22].

If G is semisimple and simply connected, Steinberg constructed a section
ι : T/W → G of the characteristic polynomial map χ : G → T/W . It is
tempting to define Oκ

a by Steinberg’s section but we don’t know whether
this is the right definition as in the case of Lie algebra.

2.3. Stabilization. Let F be a global field and A denote its ring of
adeles. Test functions for the trace formula are finite combination of func-
tions f on G(A) of the form f =

⊗
v∈|F | fv where for all v, fv is a smooth

function with compact support on G(Fv) and for almost all finite place v,
fv is the characteristic function of G(Ov) with respect to an integral form
of G which is well defined almost everywhere.

The trace formula defines a linear form in f . For each v, it induces an
invariant linear form in fv. There exists a Galois theoretical cohomological
obstruction that prevents this linear form from being stably invariant. Let
γ ∈ G(F ) be a strongly regular semisimple element. Let (γ′

v) ∈ G(A) be
an adelic element with γ′

v stably conjugate to γ for all v and conjugate for
almost all v. There exists a cohomological obstruction that prevents the
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adelic conjugacy class (γ′
v) from being rational. In fact the map

H1(F, Iγ) →
⊕

v

H1(Fv, Iγ)

is not surjective in general. Let denote Îγ the dual complex torus of Iγ

equipped with a finite action of the Galois group Γ = Gal(F̄ /F ). For each
place v, the Galois group Γv = Gal(F̄v/Fv) of the local field also acts on Îγ .
By local Tate-Nakayama duality as reformulated by Kottwitz, H1(Fv, Iγ)
can be identified with the group of characters of π0(ÎΓv

γ ). By global Tate-
Nakayama duality, an adelic class in

⊕
v H1(Fv, Iγ) comes from a rational

class in H1(F, Iγ) if and only if the corresponding characters on π0(ÎΓv
γ )

restricted to π0(ÎΓ
γ ), sum up to the trivial character. The original problem

with conjugacy classes within a stable conjugacy class, complicated by the
presence of the strict subset Aγ of H1(F, Iγ), was solved in Langlands [26]
and in a more general setting by Kottwitz [20].

In [26], Langlands outlined a program to derive from the usual trace
formula a stable trace formula. He proposed to remove first the above Galois
cohomological obstruction so that the formula becomes a stable distribution
and to introduce the correction terms appearing after a Fourier transform on
the obstruction group that similar to the component group π0(ÎΓ

γ ). Those
correction terms turn out to be κ-orbital integrals. Langlands conjectured
that these κ-orbital integrals can also expressed in terms of stable orbital
integrals of endoscopic groups. We shall formulate his conjecture with more
details later.

Admitting these conjecture on local orbital integrals, Langlands and
Kottwitz succeeded to stabilize the elliptic part of the trace formula. In
particular, they showed how the different κ-terms for different γ fit in the
stable trace formula for endoscopic groups. One of the difficulty is to keep
track of the variation of the component group π0(ÎΓ

γ ) with γ. The whole
trace formula was eventually stabilized by Arthur under the assumption of
the weighted fundamental lemma.

In the course of the construction of the stable trace formula, special cases
of the functoriality principle between a reductive groups and its endoscopic
groups are also established.

2.4. Endoscopic groups. Assume for simplicity that G is a quasi-split
group over F that splits over a finite Galois extension K/F . The finite group
Gal(K/F ) acts on the root datum of G. Let Ĝ denote the connected complex
reductive group whose root system is related to the root system of G by
exchanging roots and coroots. Following [26], we set LG = Ĝ � Gal(K/F )
where the action of Gal(K/F ) on Ĝ derives from its action on the root
datum. For instant, G = Sp(2n) and Ĝ = SO(2n + 1) are dual groups and
SO(2n) is selfdual.
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By the Tate-Nakayama duality, a character κ of H1(F, Iγ) corresponds to
a semisimple element Ĝ well defined up to conjugacy. Let Ĥ be the neutral
component of the centralizer of κ in LG. For a given torus Iγ , we can define
an action of the Galois group of F on Ĥ through the component group of
the centralizer of κ in LG. By duality, we obtain a quasi-split reductive
group over F .

More agreeable is the case where the group G is split and has connected
centre. In this case, the derived group of Ĝ is simply connected. This
implies that the centralizer Ĝκ of the semisimple element κ is connected
and therefore the endoscopic group H is split.

2.5. Transfer of stable conjugacy classes. The endoscopic group
H is not a subgroup of G in general. Nevertheless, it is possible to transfer
stable conjugacy classes from H to G. If G is split and has connected
centre, in the dual side Ĥ = Ĝκ ⊂ Ĝ induces an inclusion of Weyl groups
WH ⊂ W . It follows that there exists a canonical map T/WH → T/W that
realizes the transfer of stable conjugacy classes from H to G. If γH ∈ H(F )
has characteristic polynomial aH mapping to the characteristic polynomial a
of γ ∈ G(F ), we will loosely say that γ and γH have the same characteristic
polynomial.

Similar construction exists for Lie algebras as well. One can transfer
stable conjugacy classes in the Lie algebra of H to the Lie algebra of Lie.
Moreover, transfer of stable conjugacy classes is not limited to endoscopic
relationship. For instant, one can transfer stable conjugacy classes in Lie
algebras of groups with isogenous root systems. In particular, this transfer
is possible between the Lie algebras of Sp(2n) and SO(2n + 1).

2.6. Applications of the endoscopy theory. Many known cases of
functoriality principle fit in the endoscopic framework. In particular, the
transfer known as general Jacquet-Langlands from a group to its quasi-split
inner form. The transfer from classical group to GL(n) expected to follow
from Arthur’s work on stable trace formula is a particular case of theory of
twisted endoscopy.

Endoscopy is however far from exhausting the functoriality principle. It
is concerned mainly with “small” homomorphism of L-groups. However,
the stable trace formula seems to be an indispensable tool to any serious
progress toward understanding functoriality.

Endoscopy is also instrumental in the study of Shimura varieties and the
proof of many cases of the global Langlands correspondence [31], [38].

3. Conjectures on orbital integrals

3.1. Transfer conjecture. The first conjecture is concerned with the
possibility of transfer of smooth functions :
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Conjecture 1. For every f ∈ C∞
c (G(F )) there exists fH ∈ C∞

c (H(F ))
such that

(5) SOγH (fH) = Δ(γH , γ)Oκ
γ(f)

for all strongly regular semisimple elements γH and γ having the same char-
acteristic polynomial, Δ(γH , γ) being a factor which is independent of f .

Under the assumption γH and γ strongly regular semisimple with the
same characteristic polynomial, their centralizers in H and G respectively
are canonically isomorphic. We can therefore transfer Haar measures be-
tween those locally compact groups.

The “transfer” factor Δ(γH , γ), defined by Langlands and Shelstad in
[27], is a power of the cardinal of the residue field and a root unity which is a
sign in most cases. This sign takes into account the fact that Oκ

γ depends on
the choice of γ in its stable conjugacy class. In the case of Lie algebra, if we
pick γ = ι(a) where ι is the Kostant section to the characteristic polynomial
map, this sign equals one, according to Kottwitz in [22]. According to
Kottwitz again, if the derived group of G is simply connected, Steinberg’s
section would play the same role for Lie group as Kostant’s section for Lie
algebra.

3.2. Fundamental lemma. Assume that we are in unramified situa-
tion i.e. both G and H have reductive models over OF . Let 1G(OF ) be the
characteristic function of G(OF ) and 1H(OF ) the characteristic function of
H(OF ).

Conjecture 2. The equality (5) holds for f =1G(OF ) and fH = 1H(OF ).

There is a more general version of the fundamental lemma. Let HG be
the algebra of G(OF )-biinvariant functions with compact support of G(F )
and HH the similar algebra for G. Using Satake isomorphism we have a
canonical homomorphism b : HG → HH . Here is the more general version
of the fundamental lemma.

Conjecture 3. The equality (5) holds for any f ∈ HG and for fH =
b(f).

3.3. Lie algebras. There are similar conjectures for Lie algebras. The
transfer conjecture can be stated in the same way with f ∈ C∞

c (g(F )) and
fH ∈ C∞

c (h(F )). Idem for the fundamental lemma with f = 1g(OF ) and
fH = 1h(OF ).

Waldspurger stated a conjecture called the non standard fundamental
lemma. Let G1 and G2 be two semisimple groups with isogenous root sys-
tems i.e. there exists an isogeny between their maximal tori which maps a
root of G1 on a scalar multiple of a root of G2 and conversely. In this case,
there is an isomorphism t1/W1 � t2/W2. We can therefore transfer regular
semisimple stable conjugacy classes from g1(F ) to g2(F ) and back.
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Conjecture 4. Let γ1 ∈ g1(F ) and γ2 ∈ g2(F ) be regular semisimple
elements having the same characteristic polynomial. Then we have

(6) SOγ1(1g1(OF )) = SOγ2(1g2(OF )).

The absence of transfer conjecture makes this conjecture particularly
agreeable.

3.4. History of the proof. All the above conjectures are now theo-
rems. Let me sketch the contribution of different peoples coming into its
proof.

The theory of endoscopy for real groups is almost entirely due to Shelstad.
First case of twisted fundamental lemma was proved by Saito, Shintani

and Langlands in the case of base change for GL(2). Kottwitz had a general
proof for the fundamental lemma for unit element in the case of base change.

Particular cases of the fundamental lemma were proved by different peo-
ples : Labesse-Langlands for SL(2) [25], Kottwitz for SL(3) [18], Kazhdan
and Waldspurger for SL(n) [16], [39], Rogawski for U(3) [4], Laumon-Ngô
for U(n) [30], Hales, Schroder and Weissauer for Sp(4). Whitehouse also
proved the weighted fundamental lemma for Sp(4).

In a landmark paper, Waldspurger proved that the fundamental lemma
implies the transfer conjectures. Due to his and Hales’ works, the case of Lie
group follows from the case of Lie algera. Waldspurger also proved that the
twisted fundamental lemma follows from the combination of the fundamental
lemma with his non standard variant [42]. In [13], Hales proved that if we
know the fundamental lemma for the unit for almost all places, we know
it for the entire Hecke algebra for all places. In particular, if we know the
fundamental lemma for the unit element at all but finitely many places, we
also know it at the remaining places.

Following Waldspurger and independently Cluckers, Hales and Loeser, it
is enough to prove the fundamental lemma for a local field in characteristic
p, see [41] and [6].

For local fields of Laurent series, the approach using algebraic geom-
etry was eventually successful. The local method was first introduced by
Goresky, Kottwitz and MacPherson [11] based on the affine Springer fibers
constructed by Kazhdan and Lusztig [17]. The Hitchin fibration was in-
troduced in this context in [33]. Laumon and I used this approach, com-
bined with previous work of Laumon [29] in order to prove the fundamental
lemma for unitary group in [30]. The general case was proved in [35] with
essentially the same strategy as in [30] with one major exception. The equi-
variant cohomology is no longer used the determination of the support of
simple perverse sheaves occurring in the cohomology of Hitchin fibration.

4. Geometric method : local picture

4.1. Affine Springer fibers. Let k = Fq be a finite field with q ele-
ments. Let G be a reductive group over k and g its Lie algebra. Let denote
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F = k((π)) and OF = k[[π]]. Let γ ∈ g(F ) be a regular semisimple element.
According to Kazhdan and Lusztig [17], there exists a k-scheme Mγ whose
set of k points is

Mγ(k) = {g ∈ G(F )/G(OF ) | ad(g)−1(γ) ∈ g(OF )}.
They proved that the affine Springer fiber Mγ is finite dimensional and
locally of finite type.

There exists a finite dimensional k-group scheme Pγ acting on Mγ .
We know that Mγ admits a dense open subset Mreg

γ which is a principal
homogenous space of Pγ . The group connected components π0(Pγ) of Pγ is
possibly infinite and Mγ not of finite type. The group Pγ is a quotient of
Iγ(F ) viewed as infinite dimensional group over k. The action of Pγ on Mγ

is induced from Iγ(F ).
Let us consider a simple but important example. Let G = SL2 and let

γ be the diagonal matrix

γ =
(

π 0
0 −π

)
.

In this case Mγ is an infinite chain of projective lines with the point ∞ in
each copy being identified with the point 0 of the next one. The group Pγ

is Gm × Z with Gm acts on each copy of P1 by rescaling and the generator
of Z acts by translation from each copy to the next one. The dense open
orbit is obtained by removing from Mγ its double points. The group Pγ

over k is closely related to the centralizer of γ is over F which is just the
multiplicative group Gm in this case. The surjective homomorphism

Iγ(F ) = F× → k× × Z = Pγ(k)

attaches to a nonzero Laurent series the first no zero coefficient and the
valuation.

In general there is no such an explicit description of the affine Springer
fiber. The group Pγ is nevertheless rather explicit. In fact, it can be quite
helpful to keep in mind that Mγ is a kind of equivariant compactification
of the group Pγ .

4.2. Counting points over finite fields. The stabilization of the
trace formula suggests that we count the number of points of the quotient
[Mγ/Pγ ] as an algebraic stack. [Mγ/Pγ ](k) is not a set but a groupoid.
The cardinal of a groupoid C is the number

�C =
∑

x

1
�Aut(x)

for x in a set of representative of its isomorphism classes and �Aut(x) being
the order of the group of automorphisms of x. In our case, it can be proved
that

(7) �[Mγ/Pγ ](k) = SOγ(1g(OF ), dg/dt)
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for an appropriate choice of Haar measure on the centralizer. Roughly
speaking, the Haar measure is related to the kernel of the homomorphism
Iγ(F ) → Pγ(k).

The group π0(Pγ) of geometric connected components of Pγ is an abelian
group of finite type equipped with an action of Frobenius σq. For every
character of finite order κ : π0(Pκ) → C× fixed by σ�, we consider the finite
sum

�[Mγ/Pγ ](k)κ =
∑

x

κ(cl(x))
�Aut(x)

where cl(x) ∈ H1(k,Pγ) is the class of the Pγ-torsor π−1(x) where π : Mγ →
[Mγ/Pγ ] is the quotient map. By a counting argument similar to the stable
case, we have

�[Mγ/Pγ ](k)κ = Oκ
γ(1g(OF ), dg/dt)

This provides a cohomological interpretation for κ-orbital integrals. Let
fix an isomorphism Q̄� � C so that κ can be seen as taking values in Q̄�.
Then we have the formula

Oκ
γ(1g(OF )) = �P0

γ (k)−1tr(σq, H∗(Mγ , Q̄�)κ).

For simplicity, assume that the component group π0(Pγ) is finite. Then
H∗(Mγ , Q̄�)κ is the biggest direct summand of H∗(Mγ , Q̄�) on which Pγ

acts through the character κ. When π0(Oγ) is infinite, the definition of
H∗(Mγ , Q̄�)κ is more complicated.

By taking κ = 1, we obtained a cohomological interpretation of the
stable orbital integral

SOγ(1g(OF )) = �P0
γ (k)−1tr(σq, H∗(Mγ , Q̄�)st)

where the index st means the direct summand where Pγ acts trivially under
the assumption π0(Pγ) be finite.

This cohomological interpretation is essentially the same as the one given
by Goresky, Kottwitz and MacPherson [11]. It allows us to shift focus from
a combinatorial problem of counting lattices to a geometric problem of com-
puting �-adic cohomology. However, the calculation of �-adic cohomology
of the affine Springer fiber is no easier than the calculation of the orbital
integrals themselves.

4.3. More about Pγ. We don’t know much about Mγ . The only
information which is available in general is that Mγ is in a loose sense an
equivariant compactification of a group Pγ that we know better.

There are two simple but useful facts about the group Pγ . A formula
for its dimension was conjectured by Kazhdan and Lusztig and proved by
Bezrukavnikov [3]. The component group π0(Pγ) can also be described
precisely. The centralizer Iγ is a torus over F . If G is split, the monodromy
of Iγ determines a subgroup ρ(Γ) of the Weyl group W well determined up
to conjugation. Assume that the center of G is connected. Then π0(Pγ)
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is the group of ρ(Γ)-coinvariants of the group of cocharacters X∗(T ) of the
maximal torus of G. In general, the formula is slightly more complicated.

Let denote a ∈ (t/W )(F ) the image of γ ∈ g(F ). If the affine Springer
fiber Mγ is non empty, then a can be extended to a O-point of t/W . By
construction, the group Pγ depends only on a ∈ (t/W )(O) and is denoted
by Pa. In general Mγ does not depend only on a. We restrict ourselves to
the Kostant section and have an affine Springer fiber Ma that depends only
on a. This choice is consistent with Kottwitz’s construction of the transfer
factor. This is also helpful for connecting with the global picture.

5. Geometric method : global picture

5.1. The case of SL(2). The description of the Hitchin system in the
case of G = SL(2) is simple and instructive.

Let X be a smooth projective curve over a field k. We assume that
X is geometrically connected and its genus is at least 2. A Higgs bundle
for SL(2) over X consists in a vector bundle V of rank two with trivialized
determinant

∧2 V = OX and equipped with a Higgs field φ : V → V ⊗ K
satisfying the equation tr(φ) = 0. Here K denotes the canonical bundle
and tr(φ) ∈ H0(X, K) is a 1-form. The moduli stack of Higgs bundle M
is Artin algebraic and locally of finite type. Let BunG denote the moduli
stack of principal G-bundles on X. Over the stable locus of BunG, M can
be identified with the cotangent of BunG by Serre’s duality. As a cotangent,
M is naturally equipped with a symplectic structure. Hitchin constructed
explicitly a family of d Poisson commuting algebraically independent func-
tions on M where d is half the dimension of M. In other words, M is an
algebraic completely integrable system.

In SL(2) case, we can associate with a Higgs bundle (V, φ) the quadratic
differential a = det(φ) ∈ H0(X, K⊗2). By Riemann-Roch, the dimension of
H0(X, K⊗2) is also equal to half the dimension of M. According to Hitchin,
the mapping (V, φ) 	→ det(φ) defines a family of d Poisson commuting alge-
braically independent functions on M.

Following Hitchin, the fibers of the map f : M → A = H0(X, K⊗2)
can be described by the recipe of spectral curve. A section a ∈ H0(X, K⊗2)
determines a curve Ya on the total space |K| of K by pulling back the section
−a by the ramified 2-covering |K| → |K⊗2|. For any a, pa : Ya → X is a
covering of degree 2 of X. If a 
= 0, the curve Ya is reduced. For generic
a, the curve Ya is smooth but in general, it can be singular. It can be even
reducible if a = b⊗2 for certain b ∈ H0(X, K).

By Cayley-Hamilton theorem, if a 
= 0, the fiber Ma can be identified
with the moduli space of torsion-free sheaf F on Ya such that det(pa,∗F) =
OX . If Ya is smooth, Ma is identified with a translation of a subabelian
variety Pa of the Jacobian of Ya. This subabelian variety consists in line
bundle L on Ya such that NmYa/XL = OX .
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Hitchin used similar construction of spectral curve to prove that the
generic fiber of f is an abelian variety.

5.2. Picard stack of symmetry. Let us observe that the above defi-
nition of Pa is valid for all a. For any a, the group Pa acts on Ma because
of the formula

det(pa,∗(F ⊗ L)) = det(pa,∗F) ⊗ NmYa/XL.

In [33], we construct Pa and its action on Ma for any reductive group.
Instead of the canonical bundle, K can be any line bundle of large degree.
We defined a canonical Picard stack g : P → A acting on the Hitchin
fibration f : M → A relatively to the base A. In general, Pa does not
act simply transitively on Ma. It does however on a dense open subset of
Ma. This is why we can think about the Hitchin fibration M → A as an
equivariant compactification of the Picard stack P → A.

Consider the quotient [Ma/Pa] of the Hitchin fiber Ma by its natural
group of symmetries. In [33], we observed a product formula

(8) [Ma/Pa] �
∏
v

[Mv,a/Pv,a]

where for all v ∈ X, Mv,a is the affine Springer fiber at the place v attached
to a and Pa is its symmetry group that appeared in 4.3. For all but finitely
many v, Pa,v acts simply transitively on Mv,a. The sign � means homeo-
morphism. It does not seem to be an isomorphism in general. However, for
the purpose of �-adic cohomology, it does not make any difference with an
isomorphism.

Even though the Hitchin fibers Ma are organized in a family, individu-
ally, their structure depends significantly on a. For generic a, Pa acts simply
transitively on Ma so that all quotients appearing in the product formula
are trivial. In this case, all affine Springer fibers appearing on the right
hand side are zero dimensional. For bad parameter a, affine Springer fibers
have positive dimension. The Hitchin fibration allows us to have a control
on the bad fibers from the good fibers. This is the basic idea of our global
geometric method.

5.3. Counting points with values in a finite field. Let k be a finite
field of characteristic p with q elements. In counting the numbers of points
with values in k on a Hitchin fiber, we noticed a remarkable connection with
the trace formula.

In choosing a global section of K, we identify K with the line bundle
OX(D) attached to an effective divisor D. It also follows an injective map
a 	→ aF from A(k) into (t/W )(F ). The image is a finite subset of (t/W )(F )
that can be described easily with help of the exponents of g and the divisor
D. Thus points on the Hitchin base correspond essential to rational stable
conjugacy classes, see [33] and [34].
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For simplicity, assume that the kernel ker1(F, G) of the map

H1(F, G) →
∏
v

H1(Fv, G)

is trivial. Following Weil’s adelic desription of vector bundle on a curve, we
can express the number of points on Ma = f−1(a) as a sum of global orbital
integrals

(9) �Ma(k) =
∑

γ

∫
Iγ(F )\G(AF )

1D(ad(g)−1γ)dg

where γ runs over the set of conjugacy classes of g(F ) with a as the charac-
teristic polynomial, F being the field of rational functions on X, AF the ring
of adèles of F , 1D a very simple function on g(AF ) associated with a choice
of divisor within the linear equivalence class D. In summing over a ∈ A(k),
we get an expression very similar to the geometric side of the trace formula
for Lie algebra.

Without the assumption on the triviality of ker1(F, G), we obtain a sum
of trace formula for inner form of G induced by elements of ker1(F, G). This
further complication turns out to be a simplification when we stabilize the
formula, see [34]. In particular, instead of the subgroup Aγ of H1(F, Iγ) as
in 2.1, we deal with the group H1(F, Iγ) it self.

At this point, it is a natural to seek a geometric interpretation of the
stabilization process as explained in 2.3. Fix a rational point a ∈ A(k) and
consider the quotient morphism

Ma → [Ma/Pa]

If Pa is connected then for every point x ∈ [Ma/Pa](k), there is exactly
�Pa(k) points with values in k in the fiber over x. It follows that

�Ma(k) = �Pa(k)�[Ma/Pa](k)

where �[Ma/Pa](k) can be expressed by stable orbital integrals by the prod-
uct formula 8 and by 7. In general, the component group π0(Pa) prevents
the number �Ma(k) from being expressed as stable orbital integrals.

5.4. Variation of the component groups π0(Pa). The dependence
of the component group π0(Pa) on a makes the combinatorics of the stabi-
lization of the trace formula rather intricate. Geometrically, this variation
can be packaged in a sheaf of abelian group π0(P/A) over A whose fibers
are π0(Pa).

If the center G is connected, it is not difficult to express π0(Pa) from
a in using a result of Kottwitz [21]. A point a ∈ A(k̄) defines a stable
conjugacy class aF ∈ (t/W )(F ⊗k k̄). We assume aF is regular semisimple
so that there exists g ∈ g(F ⊗k k̄) whose characteristic polynomial is a. The
centralizer Ix is a torus which does not depend on the choice of x but only
on a. Its monodromy can expressed as a homomorphism ρa : Gal(F ⊗k k̄) →
Aut(X∗) where X∗ is the group of cocharacters of a maximal torus of G.
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The component group π0(Pa) is isomorphic to the group of coinvariants of
X∗ under the action of ρa(Gal(F ⊗k k̄)).

This isomorphism can be made canonical after choosing a rigidification.
Let’s fix a point ∞ ∈ X and choose a section of the line bundle K non
vanishing on a neighborhood of ∞. Consider the covering Ã of A consisting
of a pair ã = (a, ∞̃) tale where a ∈ A regular semisimple at ∞ i.e. a(∞) ∈
(t/W )rs and ∞̃ ∈ trs mapping to a(∞). The map Ã → A is etale, more
precisely, finite etale over a Zariski open subset of A. Over Ã, there exists
a surjective homomorphism from the constant sheaf X∗ to π0(P) whose
fiber admits now a canonical description as coinvariants of X∗ under certain
subgroup of the Weyl group depending on a.

When the center of G isn’t connected, the answer is somehow subtler. In
the SL2 case, there are three possibilities. We say that a is generic, or stable
if the spectral curve Ya has at least one unibranched ramification point over
X. In particular, if Ya is smooth, all ramification points are unibranched. In
this case π0(Pa) = 0. We say that a is hyperbolic if the spectral curve Ya is
reducible. In this case on can express a = b⊗2 for some b ∈ H0(X, K). If a is
hyperbolic, we have π0(Pa) = Z. The most interesting case is the case where
a is neither stable nor hyperbolic i.e. the spectral curve Ya is irreducible but
all ramification points have two branches. In this case π0(Pa) = Z/2Z and
we say that a is endoscopic. We observe that a is endoscopic if and only
if the normalization of Ya is an unramified double covering of X. Such a
covering corresponds to a nontrivial line bundle E on X such that E⊗2 = OX .
Moreover we can express a = b⊗2 where b ∈ H0(X, K ⊗ E).

The upshot of this calculation can be summarized as follows. The free
rank of π0(Pa) jumps exactly when a is hyperbolic i.e. when a comes from
a Levi subgroup of G. The torsion group of π0(Pa) jumps exactly when
a is endoscopic i.e. when a comes from an endoscopic group of G. These
statement are in fact valid in general.

5.5. Stable part. We can construct an open subset Aani of A over
which M → A is proper and P → A is of finite type. In particular for
every a ∈ Aani(k̄), the component group π0(Pa) is a finite group. In fact
the converse assertion is also true : Aani is precisely the open subset of A
where the sheaf π0(P/A) is an finite.

By construction, P acts on direct image f∗Q� as an oject of the derived
category of �-adic sheaves on A. The homotopy lemma implies that the
induced action on the perverse sheaves of cohomology pHn(f∗Q�) factors
through the sheaf of components π0(P/A) which is finite over Aani. Over
this open subset, Deligne’s theorem assures the purity of the above perverse
sheaves. The finite action of π0(P/Aani) decomposes pHn(fani∗ Q�) into a
direct sum.

This decomposition is at least as complicated as the sheaf π0(P/A). In
fact, this reflects exactly the combinatoric complexity of the stabilization of
the trace formula as we have seen in 2.3.
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We define the stable part pHn(fani∗ Q�)st as the largest direct factor acted
on trivially by π0(P/Aani). For every a ∈ Aani(k), it can be showed by using
the argument of 5.3 that the alternating sum of the traces of the Frobenius
operator σa on pHn(f∗Q�)st,a can be expressed as stable orbital integrals.

Theorem 1. Assume k = C. For every integer n the perverse sheaf
pHi(fani∗ Q�)st is completely determined by its restriction to any non empty
open subset of A. More preceisely, it can be recovered from its restriction by
the functor of intermediate extension.

When k is a finite field, we proved a weaker variant of this theorem which
is strong enough the proof of the fundamental lemma. For simplicity, let’s
pretend here that the above theorem is also proved in positive characteristic.

Let G1 and G2 be two semisimple groups with isogenous root systems like
Sp(2n) and SO(2n + 1). The corresponding Hitchin fibration fα : Mα →
A for α ∈ {1, 2} map to the same base. For a generic a, P1,a, and P2,a

are essentially isogenous abelian varieties. It follows that pHi(f1,∗Q�)st and
pHi(f2,∗Q�)st restricted to a non empty open subset of A are isomorphic
local systems. With the intermediate extension, we obtain an isomorphism
between perverse sheaves pHi(f1,∗Q�)st and pHi(f2,∗Q�)st. We derive from
this isomorphism the Waldspurger conjecture 6.

5.6. Support. By decomposition theorem, the pure perverse sheaves
pHn(fani∗ Q�) are geometrically direct sum of simple perverse sheaves. Fol-
lowing Goresky and MacPherson, for a simple perverse sheaf K over base
S, there exists an irreducible closed subscheme i : Z ↪→ S of S, an open
subscheme j : U ↪→ Z of Z and a local system K on Z such that K =
i∗j!∗K[dim(Z)]. In particular, the support Z = supp(K) is well defined.

The theorem 1 can be reformulated as follows. Let K be a simple per-
verse sheaf geometric direct factor of pHi(fani∗ Q�)st. Then the support of K
is the whole base A.

In general, the determination of the support of constituents of a direct
image is a rather difficult problem. This problem is solved to a large extent
for Hitchin fibration and for more general abelian fibration. The complete
answer involves endoscopic parts as well as the stable part.

5.7. Endoscopic part. Consider again the SL2 case. In this case A−
{0} is the union of closed strata Ahyp and Aendo that are the hyperbolic
and endoscopic loci and the open stratum Ast. The anisotropic open subset
is Aendo ∪ Ast. Over Aani, the sheaf π0(P) is the unique quotient of the
constant sheaf Z/2Z that is trivial on the open subset Ast and non trivial
on the closed subset Aendo.

The group Z/2Z acts on pHn(fani∗ Q�) and decomposes it into a direct
sum

pHn(fani
∗ Q�) =p Hn(fani

∗ Q�)+ ⊕p Hn(fani
∗ Q�)−.
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By its very construction, the restriction of the odd part pHn(fani∗ Q�)−
to the open subset Ast is trivial.

For every simple perverse sheaf K direct factor of pHn(fani∗ Q�)−, the
support of K is contained in one of the irreducible components of the endo-
scopic locus Aendo. In reality, we prove that the support of a simple perverse
sheaf K direct factor of pHn(fani∗ Q�)− is one of the irreducible components
of the endoscopic locus.

In general case, the monodromy of π0(P/A) prevents the result from
being formulated in an agreeable way. We encounter again with the compli-
cated combinatoric in the stabilization of the trace formula. In geometry, it
is possible to avoid this unpleasant combinatoric by passing to the etale cov-
ering Ã of A defined in 5.4. Over Ã, we have a surjective homomorphism
from the constant sheaf X∗ onto the sheaf of component group π0(P/Ac)
which is finite over Aani. Over Aani, there is a decomposition in direct sum

pHn(f̃ani
∗ Q�) =

⊕
κ

pHn(f̃ani
∗ Q�)κ

where f̃ani is the base change of f to Ãani and κ are characters of finite
order X∗ → Q�

×.
For any κ as above, the set of geometric points ã ∈ Ãani such that κ

factors through π0(Pa), forms a closed subscheme Ãani
κ of Ãani. One can

check that the connected components of Ãani
κ are exactly of the form Ãani

H

for endoscopic groups H that are certain quasi-split groups with Ĥ = Ĝ0
κ.

Theorem 2. Let k = C. Let K be a simple perverse sheaf geometric
direct factor of Ãani

κ . Then the support of K is one of the ÃH as above.

Again, in characteristic p, we prove a weaker form which is strong enough
to imply the fundamental lemma. Let’s pretend here that the above theorem
is proved in positive characteristic.

The geometric version of the fundamental lemma states that the restric-
tion of pHn(f̃ani∗ Q�)κ to ÃH is isomorphic with pHn+2r(f̃ani

H,∗Q�)st(−r) for
certain shifting integer r. Here fH is the Hitchin fibration for H and f̃ani

H is
its base change to Ãani

H . The support theorems 1 and 2 allow us to reduce
the problem to an arbitrarily small open subset of Ãani

H . On a small open
subset of Ãani

H , this isomorphism can be constructed by direct calculation,
mainly based on the example of the infinite chain of projective lines as in
the case of SL(2).

We refer to [37] for an account of the proof of the support theorem.

6. Weighted fundamental lemma

In order to stabilize the whole trace formula, Arthur needs more com-
plicated local identities known as weighted fundamental lemma. These
identities, conjectured by Arthur, are now theorems due to efforts of Chau-
douard, Laumon and Waldspurger. As in the case of the fundamental
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lemma, Waldspurger proved that the weighted fundamental lemma for a
p-adic field is equivalent to the same lemma for the Laurent formal series
field Fp((π)) as long as the residual characteristic is large with respect to
the group G. Chaudouard, Laumon also used the Hitchin fibration and
a support theorem to prove the weighted fundamental lemma in positive
characteristic case.

The weighted fundamental lemma as stated by Arthur is rather intricate
a combinatorial identity. It is in fact easier to explain the weighted funda-
mental lemma from the point of view of the Hitchin fibration than from the
point of view of the trace formula.

We already observed that over the open subset Aani of A, the Hitchin fi-
bration fani : Mani → Aani is a proper map. Chaudouard and Laumon
made the important observation that an appropriate stability condition
make it possible to extend fani to a proper map fχ−st : Mχ−st → A♥
where A♥ is the open subset of A consisting in a ∈ A with regular semisim-
ple generic fiber aF ∈ (t/W )(F ⊗k k̄).

The stability condition depends on an arbitrary choice of χ ∈ X∗⊗R. For
general χ, the condition χ-stability and χ-semistability become equivalent.
For those χ, the morphism fχ−st : Mχ−st → A♥ is proper. In counting
number of points on the fibers of fχ−st, they obtained formula involving
weighted orbital integrals. Remarkably, this formula shows that the number
of points does not depends on the choice of χ. Chaudouard and Laumon
were also able to extend the support theorems 1 and 2 and from this deduce
the weighted fundamental lemma [5].

7. Perspective

The method used to prove the fundamental lemma should be useful to
local identities issued from the comparison of trace formula and relative trace
formulas. In fact the first instance of fundamental lemma proved by this
geometric method is a relative fundamental lemma conjectured by Jacquet
and Ye [32]. Recently, Z. Yun proved a fundamental lemma conjectured by
Jacquet, Rallis [43]. We can expect that other fundamental lemmas can be
proved following the same general pattern too. Technically, it can still be
challenging. In fact, the support theorem was proved by three completely
different method in each of the three cases Jacquet-Ye, Langlands-Shelstad
or Jacquet-Rallis. In the unitary case, a weak version of the support theorem
was proved by yet another method by Laumon and myself.

The general method is based so far on a geometric interpretation of the
orbital side of the trace formula. It is legitimate to ask if it is possible to
insert geometry to the spectral side as well. At least for a Riemann surface,
the answer seems to be yes. In a joint work in progress with E. Frenkel and
R. Langlands, we noticed a closed relationship between the trace formula
and Beilinson-Drinfeld’s conjecture in geometric Langlands program. We
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should mention the related work [10] of Frenkel and Witten on a manifes-
tation of endoscopy in Kapustin-Witten’s proposal for geometric Langlands
conjecture.

The endoscopy theory has been essentially completed. We have at our
disposal the stable trace formula. It seems now the great times to read
“Beyond endoscopy” written by Langlands some years ago [28]. Though the
difficulty is formidable, his proposal possibly leads us to the understanding
of the functoriality of automorphic representations.
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