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The stability of matter and quantum

electrodynamics

Elliott H. Lieb

Abstract. Much progress has been made in the last few decades
in developing the necessary mathematics for understanding the full
implications of the quantum-mechanical many-body problem and
why the material world appears to be as stable as it is despite the
serious −1/|x| singularity of the Coulomb potential that attracts
negative electrons to positive atomic nuclei. Many problems re-
main, however, especially the understanding of the interaction of
matter and the quantized radiation field discovered by Planck in
1900. A short review of some of the main topics, recent progress,
and open problems will be given.

1. Introduction

This paper [1] is a brief survey of the quantum-mechanical many-
body problem, especially the question of the interaction of matter with
radiation. The quantum-mechanical revolution of the 1920’s brought
with it many successes, but also a few problems that have yet to be re-
solved. The realization that there were a few problems with the simple
textbook theory surfaced three or four decades ago. Since then some
of the mathematical questions have been answered, but some big ones
remain. This brief overview might, it is hoped, encourage some mathe-
maticians to look into this fascinating topic.

We begin with a sketch of the topics that will concern us here.

1.1. Triumph of Quantum Mechanics. One of the basic prob-
lems of classical physics (after the discovery of the point electron by
Thomson and of the (essentially) point nucleus by Rutherford) was the
stability of atoms. Why do the electrons in an atom not fall into the
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nucleus? Quantum mechanics explained this fact. It starts with the clas-
sical Hamiltonian of the system (nonrelativistic kinetic energy for the
electrons plus Coulomb’s law of electrostatic energy among the charged
particles). By virtue of the non-commutativity of the kinetic and po-
tential energies in quantum mechanics the stability of an atom – in the
sense of a finite lower bound to the energy – was a consequence of the
fact that any attempt to make the electrostatic energy very negative
would require the localization of an electron close to the nucleus and
this, in turn, would result in an even greater, positive, kinetic energy.

Thus, the basic stability problem for an atom was solved by an
inequality that says that 〈1/|x|〉, the expected value of 1/|x|, can be
made large only at the expense of making the kinetic energy, which is
proportional to 〈p2〉, even larger. A fundamental hypothesis of quantum
mechanics is that p is represented by the differential operator −i~∇ with
~ = h/2π and h =Planck’s constant.

In elementary presentations of the subject it is often said that the
mathematical inequality that ensures this fact is the famous uncertainty
principle of Heisenberg (proved by Weyl), which states that 〈p2〉〈x2〉 ≥
(9/8)~2. While this principle is mathematically rigorous it is actually
insufficient for the purpose, as explained, e.g., in [21, 23], and thus
gives only a heuristic explanation of the power of quantum mechanics
to prevent collapse. A more powerful inequality, such as Sobolev’s in-
equality (9), is needed (see, e.g., [24]). The utility of the latter is made
possible by Schrödinger’s representation of quantum mechanics (which
earlier was a somewhat abstract theory of operators on a Hilbert space)
as a theory of differential operators on the space of square integrable
functions on R

3. The importance of Schrödinger’s representation is
sometimes underestimated by formalists, but it is of crucial importance
because it permits the use of functional analytic methods, especially in-
equalities such as Sobolev’s, which are not easily visible on the Hilbert
space level. These methods are essential for the developments reported
here.

To summarize, the understanding of the stability of atoms and or-
dinary matter requires a formulation of quantum mechanics with two
ingredients:

• A Hamiltonian formulation in order to have a clear notion of
a lowest possible (ground state) energy. Lagrangian formula-
tions, while popular, do not always lend themselves to the iden-
tification of that quintessential quantum mechanical notion of
a ground state energy. In quantum mechanics a Hamiltonian
is not a function on phase space but rather a (pseudo-) differ-
ential operator.
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• A formulation in terms of concrete function spaces instead of
abstract Hilbert spaces so that the power of mathematical anal-
ysis can be fully exploited.

1.2. Some Basic Definitions. As usual, we shall denote the low-
est energy (eigenvalue of a Hamiltonian operator) of a quantum me-
chanical system by E0. (More generally, E0 denotes the infimum of the
spectrum of the Hamiltonian H in case this infimum is not an eigenvalue
of H or is −∞.) Our intention is to investigate arbitrarily large sys-
tems, not just atoms. In general we suppose that the system of interest
is composed of N electrons and K nuclei of various kinds. Of course
we could include other kinds of particles but N and K will suffice here.
N = 1 for a hydrogen atom and N = 1023 for a mole of hydrogen. We
shall use the following terminology for two notions of stability:

E0 > −∞ Stability of the first kind,(1)

E0 > C(N +K) Stability of the second kind(2)

for some constant C ≤ 0 that is independent ofN andK, but which may
depend on the physical parameters of the system (such as the electron
charge and mass). Usually, C < 0, which means that there is a positive
binding energy per particle.

Stability of the second kind is absolutely essential if quantum me-
chanics is going to reproduce some of the basic features of the ordinary
material world: The energy of ordinary matter is extensive (i.e., it is
proportional to the number of particles), the thermodynamic limit exists
(i.e., theN → ∞ limit exists, see Sect. 8) and the laws of thermodynam-
ics hold. Bringing two stones together might produce a spark, but not
an explosion with a release of energy comparable to the energy in each
stone. Stability of the second kind does not guarantee the existence
of the thermodynamic limit for the free energy, but it is an essential
ingredient [19, 20], [21, Sect. V].

It turns out that stability of the second kind cannot be taken for
granted, as Dyson discovered [9]. If Coulomb forces are involved, then
the Pauli exclusion principle is essential. (This means that the L2 func-
tions ofN variables, Ψ(x1, x2, . . . ,xN ), xi ∈ R

3, is antisymmetric under
all transpositions xi ↔ xj . Particles, like electrons, whose functions Ψ
obey this principle are called fermions. Particles whose Ψ functions are
symmetric under permutations are called bosons.)

Charged bosons are not stable because for them E0 ∼ −N7/5 (non-
relativistically) and E0 = −∞ for large, but finite N (relativistically, see
Sect. 3.2). While positively charged bosons exist in the form of atomic
nuclei, negatively charged, long-lived bosons do not exist in nature. This
is a good thing in view of the instability just mentioned.
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1.3. The Electromagnetic Field. A second big problem handed
down from classical physics was the ‘electromagnetic mass’ of the elec-
tron. This poor creature has to drag around an infinite amount of
electromagnetic energy that Maxwell burdened it with. Moreover, the
electromagnetic field itself is quantized – indeed, that fact alone started
the whole revolution [36].

While quantum mechanics accounted for stability with Coulomb
forces and Schrödinger led us to think seriously about the ‘wave function
of the universe’, physicists shied away from talking about the wave
function of the particles in the universe and the electromagnetic field in
the universe. It is noteworthy that physicists are happy to discuss the
quantum mechanical many-body problem with external electromagnetic
fields non-perturbatively, but this is rarely done with the quantized
field. The quantized field cannot be avoided because it is needed for
a correct description of atomic radiation, the laser, etc. However, the
interaction of matter with the quantized field is almost always treated
perturbatively or else in the context of highly simplified models (e.g.,
with two-level atoms for lasers).

The quantized electromagnetic field greatly complicates the stability
of matter question. It requires, ultimately, mass and charge renormal-
izations. At present such a complete theory does not exist, but a theory
must exist because matter exists and because we have strong experi-
mental evidence about the manner in which the electromagnetic field
interacts with matter, i.e., we know the essential features of a Hamil-
tonian that adequately accounts for the low energy processes that exist
in every day life. In short, nature tells us that it must be possible
to formulate a self-consistent quantum electrodynamics (QED) non-

perturbatively, (perhaps with an ultraviolet, or high frequency, cutoff of
the field at a few MeV). It should not be necessary to have recourse to
quantum chromodynamics (QCD) or some other high energy theory to
explain ordinary matter.

Physics and other natural sciences are successful because physical
phenomena associated with each range of energy and other parameters
are explainable to a good, if not perfect, accuracy by an appropriate self-
consistent theory. This is true whether it be hydrodynamics, celestial
dynamics, statistical mechanics, etc. If low energy physics (atomic and
condensed matter physics) is not explainable by a self-consistent, non-
perturbative theory on its own level one can speak of an epistemological
crisis.

Some readers might say that QED is in good shape. After all, it ac-
curately predicts the outcome of some very high precision experiments
(Lamb shift, g-factor of the electron). But the theory does not really
work well when faced with the problem, which is explored here, of un-
derstanding the many-body (N ≈ 1023) problem and the stable low
energy world in which we spend our everyday lives.



THE STABILITY OF MATTER AND QUANTUM ELECTRODYNAMICS 93

1.4. Relativistic Mechanics. When the classical kinetic energy

of a particle, p2/2m, is replaced by its relativistic version
√

p2c2 +m2c4

the stability question becomes much more complicated, as will be seen
later. It turns out that even stability of the first kind is not easy to
obtain and it depends on the values of the physical constants, notably
the fine structure constant

(3) α = e2/~c = 1/137.04 ,

where −e is the electric charge of the electron.
For ordinary matter relativistic effects are not dominant but they are

noticeable. In large atoms these effects severely change the innermost
electrons and this has a noticeable effect on the overall electron den-
sity profile. Therefore, some version of relativistic mechanics is needed,
which means, presumably, that we must know how to replace p2/2m by
the Dirac operator (see (18)).

The combination of relativistic mechanics plus the electromagnetic
field (in addition to the Coulomb interaction) makes the stability prob-
lem difficult and uncertain. Major aspects of this problem have been
worked out in the last few years (about 35) and that is the subject of
this paper.

2. Nonrelativistic Matter without the Magnetic Field

Maxwell’s equations define the electric and magnetic fields in terms
of potentials. While the equations determine the fields, the potentials
are not determined uniquely; the choice of potentials is called the choice
of gauge. We work in the ‘Coulomb’ gauge for the electromagnetic field.
Despite the assertion that quantum mechanics and quantum field theory
are gauge invariant, it seems to be essential to use this gauge, even
though its relativistic covariance is not as transparent as that of the
Lorentz gauge. The reason is the following.

The Coulomb gauge is the gauge in which electrostatic part of the
interaction of matter with the electromagnetic field is just the conven-
tional Coulomb “action at a distance” potential Vc given by (4) below
(in energy units mc2 and length units the Compton wavelength ~/mc).
This part of the interaction depends only on the coordinates of the par-
ticles and not on their velocities. The dependence of the interaction on
velocities, or currents, comes about through the magnetic part of the
interaction. Despite appearances, this picture is fully Lorentz invariant
(even if it is not gauge invariant).

(4) Vc = −
N

∑

i=1

K
∑

k=1

Zk

|xi − Rk|
+

∑

1≤i<j≤N

1

|xi − xj |
+

∑

1≤k<l≤K

ZkZl

|Rk − Rl|
.

The first sum is the interaction of the electrons (with dynamical coor-
dinates xi) and fixed nuclei located at Rk of positive charge Zk times
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the (negative) electron charge e. The second is the electron-electron
repulsion and the third is the nucleus-nucleus repulsion. The nuclei are
fixed because they are so massive relative to the electron that their mo-
tion is irrelevant. It could be included, however, but it would change
nothing essential. Likewise, there is no nuclear structure factor because
if it were essential for stability then the size of atoms would be the size
of nuclei, about 10−13 cm, instead of about 10−8 cm, contrary to what
is observed.

Although the nuclei are fixed points the constant C in the stability
of matter (2) is required to be independent of the Rk’s. Likewise (1)
requires that E0 have a finite lower bound that is independent of the
Rk’s.

For simplicity of exposition we shall assume here that all the Zk are
identical, i.e., Zk = Z.

The magnetic field, which will be introduced later, is described by
a vector potential A(x) which is a dynamical variable in the Coulomb
gauge. The magnetic field is B = curlA.

There is a basic physical distinction between electric and magnetic
forces which does not seem to be well known, but which motivates this
choice of gauge. In electrostatics “like charges repel” while in magneto-
statics “like currents attract”. A consequence of these facts is that the
correct magnetostatic interaction energy can be obtained by minimizing
the energy functional 1

2

∫

B2−
∫

j ·A with respect to the vector field A,
where j is the electric current density. The positive electrostatic energy,
on the other hand, cannot be obtained by a minimization principle with
respect to the field (e.g., minimizing 1

2

∫

|∇φ|2 −
∫

φ̺ with respect to
φ).

The Coulomb gauge, which puts in the electrostatics correctly, by
hand, so to speak, and allows us to minimize the total energy with
respect to the A field, is the gauge that gives us the correct physics and
is consistent with the “quintessential quantum mechanical notion of a
ground state energy” mentioned in Sect. 1.1. In any other gauge one
would have to look for a critical point of a Hamiltonian rather than a
true global minimum.

The type of Hamiltonian that we wish to consider in this section is

(5) HN = TN + αVc .

Here, TN is the kinetic energy of the N electrons and has the form

(6) TN =
N

∑

i=1

Ti ,

where Ti acts on the coordinate of the ith electron. The nonrelativistic
choice is T = p2 with p = −i∇ and p2 = −∆ in appropriate units.
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2.1. Nonrelativistic Stability for Fermions. The problem of
stability of the second kind for nonrelativistic quantum mechanics was
recognized in the early days by a few physicists, e.g., Onsager, but not
by many. It was not solved until 1967 in one of the most beautiful
papers in mathematical physics by Dyson and Lenard [10].

They found that the Pauli principle, i.e., Fermi-Dirac statistics, is
essential. Mathematically, this means that the Hilbert space is the
subspace of antisymmetric functions, i.e., Hphys = ∧NL2(R3; C2). This
is how the Pauli principle is interpreted post-Schrödinger; Pauli invented
his principle a year earlier, however!

Their value for C in (2) was rather high, about −1015 eV (electron
volts) for Z = 1. (The ground state energy of a hydrogen atom is -13
eV.) The situation was improved later by Thirring and myself [33] to
about −20 eV for Z = 1 by introducing an inequality that holds only
for the kinetic energy of fermions (not bosons) in an arbitrary state Ψ.

(7) 〈Ψ, TNΨ〉 ≥ (const.)

∫

R3

̺Ψ(x)5/3 d3x,

where ̺Ψ is the one-body density in the (normalized) fermionic wave
function Ψ (of space and spin) given by an integration over (N − 1)
coordinates and N spins as follows.
(8)

̺Ψ(x) = N
∑

σ1,...,σN

∫

R3(N−1)

|Ψ(x, x2, . . . ,xN ;σ1, . . . σN )|2 d3x2 · · ·d3xN .

Inequality (7) allows one simply to reduce the quantum mechanical
stability problem to the stability of Thomas-Fermi theory, which was
worked out earlier by Simon and myself [32].

The older inequality of Sobolev, mentioned in Sect. 1.1,

(9) 〈Ψ, TNΨ〉 ≥ (const.)

(
∫

R3

̺Ψ(x)3 d3x

)1/3

,

is not as useful as (7) for the many-body problem because its right side

is proportional to N instead of N5/3. It is, however, strong enough
to yield the stability of a system, like an atom, that has only a few
electrons.

It is amazing that from the birth of quantum mechanics until 1967
none of the luminaries of physics had quantified the fact that electro-
statics plus the uncertainty principle do not suffice for stability of the
second kind, and thereby make thermodynamics possible (although they
do suffice for the first kind). See Sect. 2.2. It was noted, however, that
the Pauli principle was responsible for the large sizes of atoms and bulk
matter (see, e.g., [9, 10]).

2.2. Nonrelativistic Instability for Bosons. What goes wrong
if we have charged bosons instead of fermions? Stability of the first
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kind (1) holds in the nonrelativistic case, but (2) fails. If we assume the

nuclei are infinitely massive, as before, and N = KZ then E0 ∼ −N5/3

[10, 22]. To remedy the situation we can let the nuclei have finite mass
(e.g., the same mass as the negative particles). Then, as Dyson showed

[9], E0 ≤ −(const.)N7/5. This calculation was highly non-trivial! Dyson
had to construct a variational function with pairing of the Bogolubov
type in a rigorous fashion and this took several pages.

Thus, finite nuclear mass improves the situation, but not enough.
The question whether N7/5 is the correct power law remained open for
many years. A lower bound of this type was needed and that was finally
obtained in [6].

The results of this Section 2 can be summarized by saying that
stability of the hydrogen atom is one thing but stability of many-body
physics is something else !

3. Relativistic Kinematics (no magnetic field)

The next step is to try to get some idea of the effects of relativis-

tic kinematics, which means replacing p2 by
√

p2 + 1 in non-quantum
physics. (Recall that mc2 = 1 in our units.) The simplest way to do

this is to substitute
√

p2 + 1 for T in (6). The Dirac operator will be
discussed later on, but for now this choice of T will suffice. Actually, it
was Dirac’s choice before he discovered his operator and it works well
in some cases. For example, Chandrasekhar used it successfully, and
accurately, to calculate the collapse of white dwarfs (and later, neutron
stars).

Since we are interested only in stability, we may, and shall, sub-
stitute |p| =

√
−∆ for T . The error thus introduced is bounded by

a constant times N since |p| <
√

p2 + 1 < |p| + 1 (as an operator

inequality). Our Hamiltonian is now HN =
∑N

i=1 |pi| + αVc.

3.1. One-Electron Atom. The touchstone of quantum mechanics
is the Hamiltonian for ‘hydrogen’ which is, in our case,

(10) H = |p| − Zα/|x| =
√
−∆ − Zα/|x| .

It is well known (also to Dirac) that the analogous operator with |p|
replaced by the Dirac operator (18) ceases to make sense when Zα > 1.
Something similar happens for (10).

(11) E0 =

{

0 if Zα ≤ 2/π;

−∞ if Zα > 2/π.

The reason for this behavior is that both |p| and |x|−1 scale in the
same way. Either the first term in (10) wins or the second does.

A result similar to (11) was obtained in [11] for the free Dirac op-
erator D(0) in place of |p|, but with the wave function Ψ restricted to



THE STABILITY OF MATTER AND QUANTUM ELECTRODYNAMICS 97

lie in the positive spectral subspace of D(0). Here, the critical value is
αZ ≤ (4π)/(4 + π2) > 2/π.

The moral to be drawn from this is that relativistic kinematics plus
quantum mechanics is a ‘critical’ theory (in the mathematical sense).
This fact will plague any relativistic theory of electrons and the electro-
magnetic field – primitive or sophisticated.

3.2. Many Electrons and Nuclei. When there are many elec-
trons is it true that the condition Zα ≤ const. is the only one that has
to be considered? The answer is no! One also needs the condition that
α itself must be small, regardless of how small Z might be. This fact
can be called a ‘discovery’ but actually it is an overdue realization of
some basic physical ideas. It should have been realized shortly after
Dirac’s theory in 1927, but it does not seem to have been noted until
1983 [8].

The underlying physical heuristics is the following. With α fixed,
suppose Zα = 10−6 ≪ 1, so that an atom is stable, but suppose that we
have 2×106 such nuclei. By bringing them together at a common point
we will have a nucleus with Zα = 2 and one electron suffices to cause
collapse into it. Then (1) fails. What prevents this from happening,
presumably, is the nucleus-nucleus repulsion energy which goes to +∞
as the nuclei come together. But this repulsion energy is proportional
to (Zα)2/α and, therefore, if we regard Zα as fixed we see that 1/α
must be large enough in order to prevent collapse.

Whether or not the reader believes this argument, the mathematical
fact is that there is a fixed, finite number αc ≤ 2.72 ([34]) so that when
α > αc (1) fails for every positive Z and for every N ≥ 1 (with or
without the Pauli principle).

The open question was whether (2) holds for all N and K if Zα and
α are both small enough. The breakthrough was due to Conlon [5] who
proved (2), for fermions, if Z = 1 and α < 10−200. The situation was
improved by Fefferman and de la Llave [13] to Z = 1 and α < 0.16.
Finally, the expected correct condition Zα ≤ 2/π and α < 1/94 was
obtained in [34]. (This paper contains a detailed history up to 1988.)
The situation was further improved in [29]. The multi-particle version
of the use of the free Dirac operator, as in Sect. 3.1, was treated in [18].

Finally, it has to be noted that charged bosons are always unstable
of the first kind (not merely the second kind, as in the nonrelativistic
case) for every choice of Z > 0, α > 0. E.g., there is instability if

Z2/3αN1/3 > 36 ([34]).

We are indeed fortunate that there are no stable, negatively charged
bosons.



98 ELLIOTT H. LIEB

4. Interaction of Matter with Classical Magnetic Fields

The magnetic field B is defined by a vector potential A(x) and
B(x) = curlA(x). In this section we take a first step (warmup exercise)
by regarding A as classical, but indeterminate, and we introduce the
classical field energy

(12) Hf =
1

8π

∫

R3

B(x)2dx .

The Hamiltonian is now

(13) HN (A) = TN (A) + αVc +Hf ,

in which the kinetic energy operator has the form (6) but depends on
A. We now define E0 to be the infimum of 〈Ψ, HN (A)Ψ〉 both with
respect to Ψ and with respect to A.

4.1. Nonrelativistic Matter with Magnetic Field. The sim-
plest situation is merely ‘minimal coupling’ without spin, namely,

(14) T (A) = |p +
√
αA(x)|2

This choice does not change any of our previous results qualitatively.
The field energy is not needed for stability. On the one-particle level,
we have the ‘diamagnetic inequality’ 〈φ, |p + A(x)|2φ〉 ≥ 〈|φ|, p2|φ|〉.
The same holds for |p + A(x)| and |p|. More importantly, inequality
(7) for fermions continues to hold (with the same constant) with T (A)
in place of p2. (There is an inequality similar to (7) for |p|, with 5/3
replaced by 4/3, which also continues to hold with minimal substitution
[7].)

The situation gets much more interesting if spin is included. This
takes us a bit closer to the relativistic case. The kinetic energy operator
is the Pauli operator

(15) TP (A) = |p +
√
α A(x)|2 +

√
α B(x) · σ ,

where σ is the vector of 2×2 Pauli spin matrices and L2(R3) is replaced
by L2(R3; C3)

4.1.1. One-Electron Atom. The stability problem with TP (A) is
complicated, even for a one-electron atom. Without the field energy
Hf the Hamiltonian is unbounded below. (For fixed A it is bounded
but the energy tends to −∞ like −(logB)2 for a homogeneous field [2].)
The field energy saves the day, but the result is surprising [14] (recall
that we must minimize the energy with respect to Ψ and A):

(16) |p +
√
α A(x)|2 +

√
α B(x) · σ − Zα/|x| +Hf

is bounded below if and only if Zα2 ≤ C, where C is some constant that
can be bounded as 1 < C < 9π2/8.
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The proof of instability [35] is difficult and requires the construction
of a zero mode (soliton) for the Pauli operator, i.e., a finite energy
magnetic field and a square integrable ψ such that

(17) TP (A)ψ = 0 .

The usual kinetic energy |p +A(x)|2 has no such zero mode for any A,
even when 0 is the bottom of its spectrum.

The original magnetic field [35] that did the job in (17) is indepen-
dently interesting, geometrically (many others have been found since
then).

B(x) =
12

(1 + |x|2)3 [(1 − x2)w + 2(w · x)x + 2w ∧ x]

with |w| = 1. The field lines of this magnetic field form a family of
curves, which, when stereographically projected onto the 3-dimensional
unit sphere, become the great circles in what what is known as the Hopf
fibration.

Thus, we begin to see that nonrelativistic matter with magnetic
fields behaves like relativistic matter without fields – to some extent.

The moral of this story is that a magnetic field, which we might
think of as possibly self-generated, can cause an electron to fall into the
nucleus. The uncertainty principle cannot prevent this, not even for an
atom!

4.1.2. Many Electrons and Many Nuclei. In analogy with the rel-
ativistic (no magnetic field) case, we can see that stability of the first
kind fails if Zα2 or α is too large. The heuristic reasoning is the same
and the proof is similar.

We can also hope that stability of the second kind holds if both Zα2

and α are small enough. The problem is complicated by the fact that it
is the field energy Hf that will prevent collapse, but there there is only
one field energy while there are N ≫ 1 electrons.

The hope was finally realized, however. Fefferman [12] proved sta-
bility of the second kind for HN (A) with the Pauli TP (A) for Z = 1
and “α sufficiently small”. A few months later it was proved [30] for
Zα2 ≤ 0.04 and α ≤ 0.06. With α = 1/137 this amounts to Z ≤ 1050.
This very large Z region of stability is comforting because it means
that perturbation theory (in A) can be reliably used for this particular
problem.

Using the results in [30], Bugliaro, Fröhlich and Graf [3] proved sta-
bility of the same nonrelativistic Hamiltonian – but with an ultraviolet
cutoff, quantized magnetic field whose field energy is described below.
(Note: No cutoffs are needed for classical fields.)

There is also the very important work of Bach, Fröhlich, and Sigal
[4] who showed that this nonrelativistic Hamiltonian with ultraviolet
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cutoff, quantized field and with sufficiently small values of the param-
eters has other properties that one expects. E.g., the excited states of
atoms dissolve into resonances and only the ground state is stable. The
infrared singularity notwithstanding, the ground state actually exists
(the bottom of the spectrum is an eigenvalue); this was shown in [4] for
small parameters and in [15], [27] for all values of the parameters. (See
Sect. 7.)

5. Relativity Plus Magnetic Fields

As a next step in our efforts to understand QED and the many-body
problem we introduce relativity theory along with the classical magnetic
field.

5.1. Relativity Plus Classical Magnetic Fields. Originally,
Dirac and others thought of replacing TP (A) by

√

TP (A) + 1 but this
was not successful mathematically and does not seem to conform to ex-
periment. Consequently, we introduce the Dirac operator for T in (6),
(13)

(18) D(A) = α · p +
√
α α · A(x) + βm ,

where α and β denote the 4 × 4 Dirac matrices and
√
α is the electron

charge as before. (This notation of α and α is historical and is not
mine.) The Hilbert space for N electrons is now changed to

(19) H = ∧NL2(R3; C4) .

The well known problem with D(A) is that it is unbounded below,
and so we cannot hope to have stability of the first kind, even with Z =
0. Let us imitate QED (but without pair production or renormalization)
by restricting the electron wave function to lie in the positive spectral
subspace of a Dirac operator.

Which Dirac operator?
There are two natural operators in the problem. One is D(0), the

free Dirac operator. The other is D(A) that is used in the Hamiltonian.
In almost all formulations of QED the electron is defined by the positive
spectral subspace of D(0). Thus, we can define

(20) Hphys = P+ H = ΠN
i=1πi H ,

where P+ = ΠN
i=1πi, and πi is the projector of onto the positive spectral

subspace of Di(0) = α · pi + βm, the free Dirac operator for the ith

electron. We then restrict the allowed wave functions in the variational
principle to those Ψ satisfying

(21) Ψ = P+ Ψ i.e., Ψ ∈ Hphys .

Another way to say this is that we replace the Hamiltonian (13) by
P+HN P+ on H and look for the bottom of its spectrum.
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It turns out that this prescription leads to disaster! While the use of
D(0) makes sense for an atom, it fails miserably for the many-fermion
problem, as discovered in [31] and refined in [16]. The result is:

For all α > 0 in (18) (with or without the Coulomb term αVc) one

can find N large enough so that E0 = −∞.

In other words, the term
√
αα · A in the Dirac operator can cause

an instability that the field energy cannot prevent.
It turns out, however, that the situation is saved if one uses the

positive spectral subspace of the Dirac operator D(A) to define an elec-
tron. (This makes the concept of an electron A dependent, but when we
make the vector potential into a dynamical quantity in the next section,
this will be less peculiar since there will be no definite vector potential
but only a fluctuating quantity.) The definition of the physical Hilbert
space is as in (20) but with πi being the projector onto the positive
subspace of the full Dirac operator Di(A) = α ·pi +

√
α α ·A(xi)+βm.

Note that these πi projectors commute with each other and hence their
product P+ is a projector.

The result [31] for this model ((13) with the Dirac operator and the
restriction to the positive spectral subspace of D(A)) is reminiscent of
the situations we have encountered before:

If α and Z are small enough stability of the second kind holds for

this model.

Typical stability values that are rigorously established [31] are Z ≤
56 with α = 1/137 or α ≤ 1/8.2 with Z = 1.

6. Quantized Electromagnetic Fields

Let us now try to analyze some of the problems connected with the
quantization of the electromagnetic field. The great discovery of Max
Planck [36], which was the first step in the new quantum theory, was
that the energy of the electromagnetic field came in quantized units.
The energy unit of electromagnetic waves of frequency ν is hν, and in
terms of wave number k (i.e., the wave is proportional to exp(ik · x)) it
is ~c|k| since 2πν/|k| = c = speed of light.

We begin with the problem of generalizing the results in the previous
subsection to the quantized field.

6.1. Relativity Plus Quantized Magnetic Field. The obvious
next step is to try to imitate the strategy of Sect. 5.1 but with the
quantized A field. This was done in [25]. The quantized A field is
described by an operator-valued Fourier transform as

(22) A(x) =
1

2π

2
∑

λ=1

∫

|k|≤Λ

ελ(k)
√

|k|

[

aλ(k)eik·x + a∗λ(k)e−ik·x
]

d3k,
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where Λ is the ultraviolet cutoff on the wave-numbers |k|. The operators
aλ, a

∗
λ satisfy the usual canonical commutation relations

(23) [aλ(k), a∗ν(q)] = δ(k − q)δλ,ν , [aλ(k), aν(q)] = 0, etc

and the vectors ελ(k) are two orthonormal polarization vectors perpen-
dicular to k and to each other.

The field energy Hf is now given by a normal-ordered version of
(12)

(24) Hf =
∑

λ=1,2

∫

R3

|k| a∗λ(k)aλ(k)d3k.

The Dirac operator is the same as before, (18). Note that Di(A)
and Dj(A) still commute with each other (since A(x) commutes with
A(y)). This is important because it allows us to imitate Sect. 5.1.

In analogy with (19) we define

(25) H = ∧NL2(R3; C4) ⊗F ,

where F is the Fock space for the photon field. We can then define the
physical Hilbert space as before

(26) Hphys = Π H = ΠN
i=1πi H ,

where the projectors πi project onto the positive spectral subspace of
either Di(0) or Di(A).

Perhaps not surprisingly, the former case leads to catastrophe, as
before. This is so, even with the ultraviolet cutoff, which we did not
have in Sect. 5.1. Because of the cutoff the catastrophe is milder and
involves instability of the second kind instead of the first kind. This
result relies on a coherent state construction in [16].

The latter case (use of D(A) to define an electron) leads to stability
of the second kind if Z and α are not too large. Otherwise, there is
instability of the first kind. The rigorous estimates are comparable to
the ones in Sect. 5.1.

Clearly, many things have yet to be done to understand the stability
of matter in the context of QED. Renormalization and pair production
have to be included, for example.

The results of this section suggest, however, that a significant change
in the Hilbert space structure of QED might be necessary. We see that
it does not seem possible to keep to the current view that the Hilbert
space is a simple tensor product of a space for the electrons and a Fock
space for the photons. That leads to instability for many particles (or
large charge, if the idea of ‘particle’ is unacceptable). The ‘bare’ electron
is not really a good physical concept and one must think of the electron
as always accompanied by its electromagnetic field. Matter and the
photon field are inextricably linked in the Hilbert space Hphys.
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The following tables [25] summarize some of the results of this and
the previous sections

Electrons defined by projection onto the positive
subspace of D(0), the free Dirac operator

Classical or Classical or
quantized field quantized field
without cutoff Λ with cutoff Λ
α > 0 but α > 0 but

arbitrarily small. arbitrarily small.

Without Coulomb Instability of Instability of
potential αVc the first kind the second kind
With Coulomb Instability of Instability of
potential αVc the first kind the second kind

Electrons defined by projection onto the positive
subspace of D(A), the Dirac operator with field

Classical field with or without cutoff Λ
or quantized field with cutoff Λ

Without Coulomb The Hamiltonian is positive
potential αVc

Instability of the first kind when either
With Coulomb α or Zα is too large
potential αVc Stability of the second kind when

both α and Zα are small enough

6.2. Mass Renormalization. In both classical and quantum elec-
trodynamics there is a problem of mass renormalization. This means
that when a charge is accelerated its accompanying electromagnetic field
is also accelerated and acts like an additional mass. The ‘bare mass’ of
the particle (which is the mass that appears in the Hamiltonian) must
be chosen so that the final, physical mass (as measured in experiments)
agrees with the physically measured value.

For a point particle, the additional mass is infinity, classically. For
QED it is also infinite, but the divergence is less rapid as the radius
of the charge goes to zero. In any case, with a finite ultraviolet cutoff
Λ the additional mass is finite, but it is far from clear that, for each
Λ > 0 one can adjust the bare mass (while keeping it positive) to give
the correct physical mass. Opinions differ on this point and very little
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is known rigorously about the problem outside of perturbation theory.
See [17].

There are two ways to define mass renormalization. Take one par-
ticle (N = 1) and then either

1. Find the bottom of the spectrum of T +Hf under the condition
that the total momentum of particle plus field is p. Call it E(p) and
write, for small p,

E(p) = E(p = 0) + p2/2mphysical

or else

2. Compute the binding energy of hydrogen (N = 1,K = 1, Z = 1).
Call it E0 and set

E0 = mphysicalc
2α2/2~

2

The first way is the usual one; the second is motivated by the earliest
experiment in quantum mechanics. These two definitions are not the
same. In any case, we [26] can now obtain non-trivial bounds on the
binding energy (in the context of the Schrödinger Hamiltonian or the
Pauli Hamiltonian interacting with the quantized field) and thereby get
some bounds on the renormalized mass using definition 2. For large
cutoff Λ, these bounds differ in their Λ dependence from what might be
expected from perturbation theory.

7. Existence of Atoms in Non-relativistic QED

One of the most recent topics concerns the seemingly trivial question
of the existence of atoms. In some sense this question is the opposite of
the stability of matter question.

The Hamiltonian we shall use to describe an atom or molecule with
N electrons is

(27) HN =

N
∑

i=1

TP
i (A) + αVc +Hf

where TP
i (A) is the Pauli kinetic energy operator (15), but A is the

quantized magnetic field given by (22), and Hf is the energy of the
quantized field given by (24). As before, Vc is the Coulomb potential (4)
of some fixed nuclei whose total nuclear charge is denoted by Z =

∑

Zj .
To show the existence of stable atoms we need to establish two things

about HN

1. The ground state energy (bottom of the spectrum) of HN is
lower than that of HN ′ i.e., of a system with N ′ < N electrons (with
the remaining N − N ′ electrons being allowed to escape to infinity).
This is called the binding condition.

2. The bottom of the spectrum of HN is actually an eigenvalue, i.e.,
Schrödinger’s equation has a square integrable solution with E = the
bottom of the spectrum.
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In the case of the Schrödinger equation without the field, problem 1.
was solved by Zhislin in 1960 for the case N < Z+1, which includes the
neutral molecule. He did this by using a localization technique, whose
positive localization energy (r−2) is more than offset by the Coulomb
attraction (−r−1) of a positively charged system (Z − N ′) to a nega-
tively charged electron. The existence of the ground state (problem 2.)
follows from standard arguments because in this case the bottom of the
spectrum is negative while the bottom of the essential spectrum (which,
in this case, is the bottom of the continuum) starts at zero. Thus, there
is a gap in the spectrum and the technique of taking weak limits easily
yields a non-zero eigenfunction [24].

When we turn on the interaction with the quantized magnetic field
the situation changes significantly. One major difference is that the
bottom of the essential spectrum is now the bottom of the spectrum be-
cause we can always create photons with arbitrarily small energy (recall
that the energy of a photon with momentum k is |k|). Therefore, if a
ground state exists it necessarily lies at the bottom of the essential spec-
trum and is not isolated. Eigenvalues in the continuum are notoriously
difficult to handle, even for the simple Schrödinger operator.

A second major difference is that it is necessary to localize the A
field as well as the electrons. This localization costs an energy r−1, not
r−2 as before, essentially because the field energy is proportional to |k|
instead of k2. Thus, the field localization competes with the Coulomb
attraction.

Problems 1. and 2. were solved in [4] under the condition that α
and Λ are small enough.

The first general result, valid for all values of the various constants,
was in [15], where it was shown that 2. holds whenever 1. holds.

Finally, 1. was shown to hold for all values of the constants [27]
under the same natural condition as Zhislin’s, i.e., N < Z + 1.

8. Thermodynamic Limit in Non-relativistic QED

We close this mini-review with with a partial result and an open
problem.

Stability of the second kind for a many-body Hamiltonian, HN of N
particles is only the starting point for thermodynamics and statistical
mechanics. The next step is to compute the partition function

(28) Z = Trace e−HN/kBT ,

where kB is Boltzmann’s constant and T is the temperature. Here, the
N particles are localized in a large box (a domain Ω ⊂ R3) of volume
V (Dirichlet boundary conditions on the boundary of Ω) and we want
to take the “‘thermodynamic” limit N → ∞ with the density ρ = N/V
held fixed. The physical significance of Z is that the free energy per
unit volume, f , is given by f = −kBTV

−1 lnZ.
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Some years ago the problem of proving the existence of the ther-
modynamic limit for electrons, nuclei and other particles interacting
via Coulomb forces was settled in the context of the non-relativistic
Schrödinger equation [19, 20]. The key ingredients in this proof, in
broad outline, were:

a) Stability of the second kind easily led to an upper bound on the
partition function Z, and hence a lower bound on f , the free energy per
particle, independent of the shape of the sequence of Ω’s.

b) A rigorous version of screening together with a variational argu-
ment for a lower bound on Z, which led to the fact that f could only
decrease as the size of the domain Ω containing the particles increases.
Charge neutrality is needed for this monotonicity of f (but not for the
lower bound). Since f is bounded below, this monotonicity guarantees
that f has a limit as V tends to ∞.

Since then much progress has been made in understanding non-
relativistic QED, as discussed in this mini-review, and it is appropriate
to extend the proof of the thermodynamic limit to the QED case. This is
not just an idle exercise, for several new matters of a physical nature, as
well as a mathematical nature, arise. Among these is the fact that this
model completely takes account of everything that we know about low
energy physics except for the hyperfine interaction (for which nuclear
physics is necessary) and except for the fact that the dynamics of the
particles (but not the electromagnetic field) is non-relativistic. Indeed,
no completely satisfactory relativistic Hamiltonian is presently available
and, therefore, the fully relativistic generalization will have to await
further developments. Another problem, which is yet to be resolved,
is the renormalization of physical parameters in order to deal with the
infinities that arise as Λ, the ultraviolet cutoff on the electromagnetic
field, tends to infinity.

Otherwise, the theory is potentially complete and an example of
this completeness is that it is not necessary to exclude the spin-spin
inter-electron magnetic interaction, as in [19, 20]. The usual non-QED
approximation is to mimic the interaction by a |x|−3 spin-dependent
potential, which cannot possibly be stable of the first kind, and which
is, therefore, normally omitted from discussion unless a hard core inter-
action is introduced to stabilize it. In contrast, a full theory in which
the magnetic field B(x) is a dynamical variable and the particles inter-
act with the field via a σ ·B(x) term (but without any explicit spin-spin
interaction) is perfectly well behaved and stable and has all the right
physics in the classical limit.

(We note in passing that stability of matter requires more than
just the field energy to stabilize the σ · B(x) terms. It also requires
the ‘kinetic’ energy terms (p + eA(x)/c)2. In other words, the terms
2p · A(x) + A(x)2 are essential for understanding the interaction of
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particles with each other at small distances; the dipole-dipole approxi-
mation while correct at large distances, is certainly inadequate at short
distances.)

Another major difference between the Schrödinger and the QED
theories of the thermodynamic limit is the necessity of treating the
thermodynamics of the field correctly. In 1900 Planck [36] gave us the
free energy density of the pure electromagnetic field (in the whole of
R3 at temperature T , which implies that the field cannot be confined
to the container Ω without invoking artificial constraints. This requires
that we first take a limit in which the size of the universe U tends to
infinity (after subtracting the enormous pure Planck free energy) and
afterward take the limit |Ω| → ∞. Obviously, the subtraction has to be
done carefully and that is an exercise in itself.

In [28] topic a) above was achieved in the non-relativistc QED set-
ting (with fixed ultraviolet cutoff Λ). I.e., a finite upper bound for
V −1 lnZ, or lower bound for f , was found (after taking the double
limit, of course). In the previous work [19, 20] the upper bound re-
quired only a few lines but our QED setting presents significant diffi-
culties that have to be overcome. While stability of the second kind is
known for this QED case, as discussed in the previous sections, it is far
from sufficient for obtaining the upper bound on Z in the manner of
[19, 20].

It is easy to show (by simply producing one state in the Hilbert
space of finite energy) that f is bounded above, but this does not mean
that there is a limit The problem of proving this V → ∞ limit remains

open. The ideas hinted at in b) above do not work, for a reason that is
ultimately traceable to the presence of the nonlinear A(x)2 term.
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[4] V. Bach, J. Fröhlich, I.M. Sigal, Spectral analysis for systems of atoms and

molecules coupled to the quantized radiation field, Comm. Math. Phys. 207

249–290 (1999).
[5] J.G. Conlon, The ground state of a classical gas, Commun. Math. Phys. 94

439–458 (1984).

[6] J.G. Conlon, E.H. Lieb, H.-T. Yau, The N7/5 law for charged bosons, Commun.
Math. Phys. 116 417–448 (1988).

[7] I. Daubechies, An uncertainty principle for fermions with generalized kinetic

energy, Commun. Math. Phys. 90 511–520 (1983).



108 ELLIOTT H. LIEB

[8] I. Daubechies, E.H. Lieb, One electron relativistic molecules with Coulomb in-

teraction, Commun. Math. Phys. 90 497–510 (1983).
[9] F.J. Dyson, Ground state energy of a finite system of charged particles, J. Math.

Phys. 8 1538–1545 (1967).
[10] F.J. Dyson, A. Lenard, Stability of matter I and II, J. Math. Phys. 8 423–434

(1967), 9 1538–1545 (1968).
[11] W.D. Evans, P.P. Perry, H. Siedentop, The spectrum of relativistic one-electron

atoms according to Bethe and Salpeter, Commun. Math. Phys. 178 733–746
(1996).

[12] C. Fefferman, Stability of Coulomb systems in a magnetic field, Proc. Nat.
Acad. Sci. USA 92 5006–5007 (1995).

[13] C. Fefferman, R. de la Llave, Relativistic stability of matter, I, Rev. Mat.
Iberoamericana 2 119–213 (1986).
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