
CHAPTER 7 

Small Sample Efficiency 

7.1. Introduction. There is no small sample analogue of third order 
efficiency, but the same ideas can be used to derive exact results for small 
samples. Bickel, Gotze and van Zwet (1985) use a Bayesian argument and 
perturbation of loss functions to prove the old result that x is a minimum 
variance unbiased estimate for a normal mean, without using the Cramer-Rao 
inequality or the Rao-Blackwell theorem. (The result is slightly weaker in 
that there is a restriction on the estimates considered.) We reproduce this 
argument in Section 7.4. 

Consider the following scenario. You have a practical problem, the sample 
size n is reasonably large, say, n ~ 50, you know fj is not only FOE but TOE, 
and simulations show asymptotic normality is well borne out by simulations. 
Out of this clear, blue sky appears an estimate T which is always at least 
80% as efficient as (J, most of the time more efficient and occasionally more 
than 30 times more efficient than e. That this nightmare (to people who have 
come to adore the mle) can be a reality is documented in Khedr and Katti 
(1982). 

Note that not only higher order optimality of e, but even first order 
optimality of e seems to be in doubt. What has gone wrong? 

It is a weakness of all asymptotic theories of optimality that they apply 
only to sequences of estimates and are silent about what can happen with a 
particular n (even if large) and a particular estimate. The situation is similar 
to that with asymptotic expansions which may be correct to o(n- 1 ), but may 
be pretty bad for a particular n, even if n is large. (This is not the case in the 
above example since simulation of the mean square of e seems to agree well 
with its asymptotic value.) This can happen for the trivial reason that a term 
An :J; 2 is o(n 1 ), but may be large for n as large as 50 because the constant 
A is large. For most asymptotic expansions, we do not have good bounds on 
the constant A, but accuracy can be and often is checked by simulation. Also, 
one has the Berry-Esseen bound for asymptotic normality for Vn(x- 8) 
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with a sharp bound on the associated constant. This may be used to get 
reasonably good, though conservative, bounds for at least asymptotic normal
ity of {;; ( 8 - e). Simulation is no answer in the problem with asymptotic 
optimality because there are infinitely many estimates to worry about. So 
something like a (conservative) lower bound to the mean square of an 
estimate is needed. 'fhe Cramer-Rao bound will not do because it either 
requires unbiasedness or it provides a lower bound depending on the bias of 
the estimate, and the potentially much better estimates than 8 are likely to 
have an unknown bias b(8), where lb(H)I itself is small but its derivative 
b'(8) is large in magnitude. In Section 7.3 we will develop a lower bound to 
the local minimax risk over ( e -- 8, e + 8 ). If this lower bound is close to 
(n/(8)) 1 (which is approximately the risk of the mle for all 8, it would be 
impossible to have the phenomenon of an estimate which is much better in 
(8 0 - 8, 80 + 8) for some 80 . Ideally, it should be possible to improve the 
bound at each 80 by confining to estimates whose risk at all 0 is no worse 
than, say, a certain specified function of 0, which may be a specified fraction 
(like 80%) of(n/(0)) 1 . However, that seems analytically intractable. 

The bound in Section 7.3 is obtained by an application of a Cramer-Rao 
type lower bound to the (integrated) Bayes risk and a variational result. The 
lower bound to Bayes risk is due to Borovkov and Sakhanienko (1980). This 
will be the subject of Section 7.2. Improvements have been obtained recently 
by Brown and Gajek (1990) and, in one special case, by DasGupta and 
Vidakovic; see Vidakovic (1992). (See also Bobrovosky, Mayer-Wolf and Zakai 
(1987).) The variational result is used in Bickel (1981), and Levit (1980) and, 
in a more general form, is owing to Huber (1974) (it was rediscovered by 
Ghosh and Bhattacharya in 1983, and it is probably an old result in calculus 
of variations). The results of Bickel (1981) and Levit (1980), in the context of 
estimating a normal mean knowing that it lies in a specified interval, has far 
reaching implications in much recent work on asymptotic or approximate 
minimaxity. 

The multiparametric extension in Section 7.2 and the lower bound in 
Section 7.3 are joint unpublished work of Ghosh and Joshi. The lower bound 
of Section 7.3, along with the variational result and the multiparameter 
extension with Joshi, was part of one of three examples presented at the 
Neyman-Kiefer Conference in Berkeley in 1983 by Ghosh, but has not been 
published before. [Of the other two examples presented at the Neyman-Kiefer 
Conference, one was published as part of DasGupta and Ghosh (1983) and 
the other appears in Ghosh and Sen (1985).] 

Some problems are posed in the final section. 

7 .2. A lower bound to Bayes risk. The following inequality on the 
(integrated) Bayes risk is due to Borovkov and Sakhanienko (1980). Let X/s 
be n i.i.d. r.v.'s with density p(x1, x 2 , ... , xnl8) satisfying the regularity 
conditions of Chapter 1. 
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THEOREM 7.1. Under regularity conditions, 

( 7 .1) 
b7T(0) 

R(1r) ~ n 1 j -(-)dO 
a I 0 

where [a, b] is the support of 7T, I is positive and continuously differentiable 
on [a, b ], 7T is continuously differentiable on [a, b] and 7T = 0 at a and b. 

The theorem is proved under weaker assumptions in Borovkov and 
Sakhanienko (1980). It is derived from the Carmer-Rao inequality in Brown 
and Gajek (1990). 

PROOF OF THEOREM 7 .1. Assume without loss of generality the second 
integral in (7.1) is finite. Let 

1 d 
(7.2) G = I(O) dOlog(7r(O)p(x 1 ,x2 , .•• ,xniO)/I(O)). 

Check that 

( 7.:3) 1 d ( 7T ) 1 ( d log p ) G =--log- +-
I dO I I dO 

and the first term in (7.3) is 

( 7 .4) ( d 7T) 1 
dO I 1r' 

which is square integrable with respect to 7T under the assumption made at 
the beginning of the proof. The second term in G in (7.3) is square integrable 
with respect to 7T 0 P0 , so G is square integrable. 

Let 

(7.5) B = theBayesestimate,thatis, E(OIX1,X2 , ... ,X,). 

By (7.3, (7.4) and 7T(a) = 7T(b) = 0, 

(7.6) E(G) = ~b :o(;) +E(E(~ d~!P/o)) =0. 

Similarly, 

( 7.7) 
f b ( d 7T) 2 1 b 7T E(G2 ) = --- - + nj -dO 

a dO I 1r a I 

= A 1 + nA2 , 
def 

Cov( B, G) = J · · · J B ( X 2 , x 2 , ... , x n) 

(7.8) 
x!!_(_7T_.p(x x ···x [o))dodx ···dx dO I 1> 2 n 1 n 

= 0. 
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Also integrating by parts, 

(7.9) Cov(e,G) = Jbe(.!_ 'TT) de= 
a de I 

f b1T 
- -d0=-A2 , 

a I 
so 
(7.10) Cov(B- e, G) = -A2 

and by (7.6), (7.7) and (7.10), 

R(7r)=E(B- 0) 2 ?A~(A 1 + nA2 ) 1 

(7.11) 
= A 2 ( 1 + ~~-) 1 ~ A 2 ( 1 _ ~~) 

n nA2 n nA 2 

since (1 + x) 1 ~ 1 - x for x 2: 0. This completes the proof. D 
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If one has a k-dimensional parameter, (J = ( 81, 82 , .. :? Ok ), let [ IJ 0 )] be 
the information matrix, assumed nonsingular, and let [I'1(e)] be the inverse. 
To get a multiparameter analogue of Theorem 7.1, we assume the same 
regularity conditions on p, take the support of 1T to be compact, 7r = 0 on the 
boundary of its support, 7r is continuously differentiable on its support and 
the information matrix is positive definite and continuously differentiable on 
the support of 7T. Let B1 be the Bayes estimate of 01, that is, E(e1 lx 1 , 

x 2 , ... , xn), and let R 1(7T) = E(B- e1 ) 2 be the Bayes risk. Then we have the 
following result due to Ghosh and Joshi (unpublished); see also Prakasa Rao 
(1992). 

THEOREM 7.2. Under the conditions stated above, 

(7.12) 

PROOF. Let 

(7.13) 

{ 
() }

2 1 
- n-2 ~f ... f -.. (7riii) -df). 

i ()~ 1T 

. () . 
G = ~ I 1' -.-log( 7r pilL) 

()(:!, 

1 o ol 
= ~ __ ( 7T I 11) + ~I 11 og P . 

7T r/01 ()(:!1 

Proceeding in an identical way, we get 

(7.14) E( G) = 0, 

(7.15) 

Also, 

(7.16) 
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Using (7.13) and (7.16), 

( 7 .1 7) v ar( G) = I: J · · · J ( _!!___ 7T I u ) 
2 2. de + n J · · · J I 11 ( e ) 7T ( e ) de. 

i rlei 7T 

The inequality (7.12) now follows, exactly as in the proof of Theorem 7.1, by 
an application of the Cauchy-Schwarz inequality and the elementary fact 
(1 + x) I ~ 1- X for X~ 0. 0 

7.3. A lower bound to the local minimax risk. Consider the setup for 
Theorem 7.1 and let the interval (a, b) be (e 0 + 8, e0 + 8). Then the local 
minimax risk at e0 is, for all 7T satisfying the conditions of Theorem 7.1, 

inf sup E{(T -- e) 2 /e} ~ R(1r) 
T I!E(00 -·8, 11 0 +8) 

(7.18) 

2 

> ~ -· _1_Jeo+8( g'( e)) de 
- nl l[n 2 00 -80 g( e) 

where i(e0 ) and J(e0 ) are the maximum and minimum of I( e) over [ e0 -

8,00 + 8] and 

(7.19) { 1r( e) }/Jo0 +o 1r( e) g(e) = --- ---de 
I( 0) o0 -ll I( e) 

is a probability density. 
To get the best bound of this kind, we maximize it with respect to 7T and 

make use of the variational result 

(7.20) inf f ( 1r'( O) )2 de= 47T 2 . 

71"(.) 0 7T ( 0 ) 

(The infimum is over twice differentiable 7T with 7T equal to zero at 0 = 0, 1.) 
Using (7.20) in (7.18) we get, finally, 

1 7T2 

(7.21) inf sup E{(T- e) 2 /e} ~ ......,_=-·-
7' I!E(I! 0 o, o0 +8) ni( eo) n 2I( 00 )!( 00 ) 8 2 . 

It is clear from (7.21) that ifCl(e0 ))- 1 is close to (1(00 ))-1, no estimate can 
do much better than 0, provided E{(O- 0)2 /e} is well approximated by 
(ni(O)) 1 and n[(e0 )8 2 is moderately large. These conditions are likely to be 
violated if I is small in (0 0 - 8, 00 + 8). In any case, for given I(·) and 8 > 0 
and c: > 0, one can calculate the smallest value of n, say n 0 , for which 

(7.22) 1r 2 jn[( 00 ) 8 2 <e. 
Then for n ;:::: n 0 , 

( 7 .23) 
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For a suitable o, s, the value of n 0 can be used as a diagnostic tool for 
deciding whether the asymptotic lower bound (nl((j))- 1 is usable for a given 
n. 

The same sort of thing can be done for the multi parameter case, using as 
support of 1T a k-dimensional rectangle and a 1r under which 81 , 82 , .•. , Ok 
are independent. In any case, it is clear from Theorem 7.2 that the optimality 
of rJ may be doubtful at 80 if the information matrix is nearly singular in 
[0 0 -- o, 00 + 8]. 

We end this section by sketching a proof of the variational result (7.20). 
Put q = {7r(0)}112. Then, 

1 1 ( 7r')z d 11( ')z 11 " ( L ) -- e = 4 q = - 4 qq = -- 4 q, q , 
0 1T () () 

(7 .24) 

where ( f, g) = J fg d 0 and L is the differential operator defined by Lf = f". 
A pair (A, f) is an eigenvalue and eigenfunction of L if 

(7.25) f" =,.\f. 

The only possible values of,.\ are -(k1r )2 , k = 1, 2, 3, ... , and the solution 
of (7.25) with ,.\ = -- (k7T )2 is 

(7 .26) fk = sin k1r8. 

The set { fk, k ~ 1} is complete for the family of square integrable functions on 
[0, 1], vanishing at the endpoint. 

We wish to minimize (7.24) subject to q(O) = 0 at 0 = 0, 1, and 

11q2 dO= 1. 
0 

(7 .27) 

Let q have the expansion 

(7.28) 

Then we have to minimize 

(7.29) 

subject to 

(7.30) 

where 11!11 2 = fr dO. 
0 

It follows that the minimum value of (7.29) is obtained when w 1 = 1, 
wk = 0 if k > 2. Thus 

inf1!( 1r'( O) )
2 

dO= 47r 2 

o 1r( e) 

and the minimizing 7T(O) is const. sin2 1rO. 
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7.4. A "third order efficiency" proof that X is the minimum vari
ance unbiased estimate of the normal mean. Let X1 , X 2 , ... , Xn be 
i.i.d. N(&, 1). We consider unbiased estimates T of & satisfying 

(7.31) 
and 

(7.32) 

V& 

Condition (7.31) implies, by a property of exponential distributions, that 
E{(T- &)2 1&} is continuous in &. 

We want to show X is the minimum variance unbiased estimate (MVUE) 
in the class of all unbiased T satisfying (7.31) and (7.32). 

Consider a conjugate prior 7T under which & is N( J.L, T 2 ). The posterior 
mean is 

( 7 .33) 

where A = (nT 2 - 1) 1 . This is the Bayes estimate under the squared error 
loss. We now consider a perturbed loss 

( 7.34) L( 0, a) = ( & - a) 2 - 2 B ( 0 - c) ( & - a) 

and note that one can choose B and c to ensure that the Bayes estimate 
under this loss is X itself. [In fact B = A/(1 - A) and c = J-L.] Also for an 
unbiased T, 

(7 .35) 

Hence 

(7.36) 

E{(7'- 0) 2 10} =E(L(&,T)I&). 

jE{(X- 0) 2 1&}7T(&)d&= jE{L(O,X)I&}7T(&)d& 

:;;; jE{L(&,T)I&}7r(&)dO 

= jE{(T- 0) 2 1&}7r(O) d&. 

Now making T ~ 0, conclude, using (7.32) and continuity of E{(T- &) 2 1&), 

(7 .37) 

Since this is true for all J-L, X is MVUE among T's. 

7.5. Problems. As indicated in Section 7.3, on the basis of Theorem 7.2, 
optimality of mle is doubtful when the information matrix is nearly singular. 
Can one exhibit an example with nearly singular information matrix where 
one can exhibit a much better estimate without having to go through simula
tions as in Khedr and Katti (1982)? In the same vein, but more precisely, one 
can ask if, for the multivariate normal, or more generally a multiparamter 
exponential density, one can do much better than a minimum variance 
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unbiased estimate of the population mean if there is a near singularity of the 
information matrix. 

It is known that near singularity can cause problems in deriving the 
asymptotic distribution of the mle for the independent, nonidentically dis
tributed random variables. For an example in a reliability growth model, see 
Bhattacharya and Ghosh (1991). It would be nice to have a general theorem 
of which the result in reliability growth is a special case. 

The proof of posterior normality and expansions would also be in trouble in 
the situation described in the previous paragraph. That too needs attention. 
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