
CHAPTER 5 

Expansion of the Posterior, 
Bayes Estimate and 
Bayes Risk 

5.1. Expansion of the posterior. Let P(8) as well as 7T(0) stand for a 
prior probability density and, deviating slightly from Ghosh, Sinha and Joshi 
[( 1982), page 422] 

( 5.1) 

Let 

(5.2) 

be the posterior distribution function of the normalized 8. Under various 
conditions, Fn(h) is approximately <P(h), where <P is the standard normal 
distribution function. 

Here is a typical result. Assume regularity conditions on p(xlfJ) and let 
7T( 8) be continuous and positive at a fixed point 00 • Then 

(5.3) lim supl.li'n(h) -- <P(h)l-~ 0 a.s. (P0 ). 
n-~ h o 

Le Cam (1958) has a similar theorem under P"', where P"' is the marginal 
distribution of {Xn} under 7T ® P0 • Here 7T ® P0 stands for the joint distribu
tion of 8 and X's under which 8 has density 7T(8) and, given 8, X's have the 
joint distribution P0 • Under P8 , X's are i.i.d. p(xl8). 

Under stronger conditions on p(xl8) and the assumption of(k + 1) times 
continuous differentiability of 7T(8) at 00 and P(80 ) > 0, Johnson (1970) 
proves the following rigorous and precise version of a refinement due to 
Lindley (1961). 
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Pix positive integers r and k. Then under regularity conditions depending 
on rand k, 

( 5.4) 

P,,( s~p]F,(h) - <P(h) - 1t1 (·)n ii'J <;; Mn-'"1ll') 
= 1 - O(n-r), 

where ( ·) are terms similar to those appearing in Edgeworth expansions, 
namely, each is 

qy( h) {polynomial in h with coefficients depending on X1 , X2 , ... , X"}. 

An explicit result is given in (5.4£). The above result is a reformulation of 
Johnson's theorem and is taken from Ghosh, Sinha and Joshi (1982). Under 
the same assumptions one can get a similar theorem involving the L 1 

distance between the posterior density and an approximation. If we take 
r > 1 we can immediately get, by the Borel-Cantelli lemma, an a.s. version 
which is similar to (5.3). 

The proof of (5.4) is similar to the derivation of the formal Edgeworth 
expansion in Chapter 2, except that Taylor expansion of log likelihood and 
prior takes on the role of expansion of f, the log characteristic function, and 
hence no inversion 1ike (2.8) is needed. Since no inversion is needed, rigorous 
justification is much easier than that for Edgeworth expansions, and consists 
of essentially two steps. The first step is to show that the tails of the posterior 
are negligible. The second step is to expand by Taylor's theorem in the 
remaining part, that is, for, say, le- e1 <(log n)j /n. Note that the first 
term in the expansion is zero because e satisfies the likelihood equation, the 
second term is a quadratic - nb( e - e) 2 which leads to posterior normality 
as in (5.3) and the subsequent terms provide the refinement in (5.4). A 
"formal" argument showing how the terms are calculated is presented below 

Let 

( 5.4a) 
a= 2_ d;logp(X1 ,X2 , ..• ,X,Ie)l 

l n de' ii' 

so that b = -a2 • Let h 1 = /n(e --e)= hj /b. Then 

( 5.4b) ~(II+ n -II'h1 ) ~ ~< •+ + n 11'h1 :((:; + ~n 1 hl :·(r:;] 
+o(n 1 ). 

Let L(e) =log p(X1, X2 , •.. , Xnle). Then 

L(e+ n- 112 h!) -L(e) = -~hib + tn 1 1 2 h~a3 
( 5.4c) 

1 1 h4 ( - 1) + 24 n 1 a4 + o n . 
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Hence, 

1r( e + n -t;2 h 1 )exp( L( e-+- n. 112 h 1 ) - L( 0)] 

= 7T ( 8 ) [ exp { - ~ hi 6} ] 

( 5.4d) [ -1;2( 1 ·3 1r'{ e)) X 1 -+- n -h' a. -+- h --~-
6 1 .3 1 1r{ e) 

- 1 ( 1 4 1 6 2 1 2 7T" ( 0) 1 4 7T' ( (J) ) l +n -h1a 4 -+- -h 1a.3 + -h 1 --~--+- -h 1 a.3 --~- , 
24 72 ' 2 7T ( ()) 6 ' 7T ( (:1) 

The posterior density of h 1 = In ( e ·- 8) is the ratio of the above two expres
sions and equals 

1r( h 1 IX1 , X 2 , ... , X,) 

~ {[, 'l + + n 'I' ( ~h'a, + <((:;) 
( 5.4£) 

-t-n ·l((~h4a + ~h6a 2 
24 4 72 3 

-+- !_h 2 1r"( ~) -+- !_h 4a. 1r'( ~)) 
2 7T(8) 6 .l 7T(8) 

( 
a 4 15 1 1r"(e) 1 1r'(e) ))] 

- 86 2- + 726 6 a~ + 26 1r(H) + 26 2 a 3 1r(8) + o(n- 1
). 

Transforming to h = ( /b)h 1, we get the expansion for the posterior density of 
/nb ( (:1 - 8 ), and integrating that from - oo to h, we get the terms in (5.4). 

Integrating h 1 with respect to 7T(h 1IX2 ,X2 , .•. ,Xn), we get a formal 
expansion for the posterior mean: 

(5.4g) 
~ j a3 1 1r' ( 8) ) _ 

B, = 0 + n-1\ 2b-+- b 7r(H) + o(n 3!2). 
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The constant M appearing in (5.4) can be somewhat misleading. See the 
first section of Ghosh, Sinha and Joshi (1982) for more details on M and the 
possibility of drawing wrong conclusions from (5.4). We note that M depends 
on 80 through the values of p(O) and its derivatives at 00 . Moreover, if 7T(8) 
is, say, the uniform density on (0, 1), then the assumption of continuity at 00 , 

needed even for (5.3), fails at 00 = 0, 1. Of course for any prior supported on a 
bounded interval, (5.3) cannot hold for 00 equal to the endpoints of the 
support. It is these facts which lead to technical difficulties if we try to get a 
P7T result in a simple minded way from (5.4). It turns out that a P7T version 
exists if 1r( 8) is supported on a bounded interval and has smooth contacts at 
both endpoints, that is, 7T(8) and (di1T(fJ))jdOi, i = 1, 2, ... , k + 1, are zero at 
both endpoints. 

The proof of this is nontrivial, because, under these conditions on the prior, 
the constant M in (5.4) blows up as 00 tends to the endpoints. The detailed 
treatment in Ghosh, Sinha and Joshi (1982) is both very technical and 
tedious. We shall only reproduce later some of the conclusions we will need in 
dealing with third order efficiency in the general regular case. 

We make one final remark about (5.4). So far we have assumed 7T( 0) is 
proper, that is, j7T(fJ) dO= 1. However, (5.3) and (5.4) continue to hold even if 
1r is improper, provided the other assumptions hold and there is an n 0 such 
that the posterior given (X1 , X 2 , •.. , Xn ) is proper for all (X1 , X 2 , ... , Xn ). If 

{) 0 

1r is improper, P7T versions are not true. Throughout this chapter 1r is proper. 
Improper priors will be used in Chapters 8 and 9. 

We now introduce classes of priors for which P7T versions are available. 

DEFINITION 5.1. Dk+Z is the class of priors 7T(8) with support [a, b], 
which are at least (k - 1) times continuously differentiable on [a, b] and 
positive on (a, b) with 

di7r(O) k . 
1T U J ( (} ) = -d(ii = ( (} - a) ' ( c; + o ( 1) ) as fJ t a 

=(b-O)k i(c;+o(1)) asOjb, 

C;, c; > 0, k z 2. Doc is the class of infinitely differentiable priors which are 
positive on (a, b) and zero on [a, b]c, monotone in a neighborhood of each 
endpoint and 7T<il(fJ){7T(O)}v 1 -~ 0 as (}-)a, b 'V 0 < V < 1. 

Take a= 0, b = 1. Then the following 1r E DK+z: 

(5.5) 
1r( 0) = ceK- 1(1- e)K 1 on (0, 1) 

= 0 outside(O, 1). 
The following 1T E Doc: 

(5.6) 7f ( e) o= c exp { - (} ( 1 ~- (}) } on( 0' 1) 

=0 outside(0,1). 
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Even with such priors, the following is, in general, false. There is a finite, 
positive A such that 

( 5.7) 
P7T{ s~piFn(h) - <l>(h)l :o; An 112 } 

=1-0(n-r) \:fr>O 

[even when the regularity conditions needed for (5.4) hold]. 
Specifically assume the X's are i.i.d. N( 8, 1) and 7r( 8) satisfies (5.5) with 

K = 6. It is shown in Ghosh, Sinha and Joshi (1982) that (5.7) is false here. 
To get a flavor of P7T versions that are true, consider a (linear) exponential 

(5.8) p(xl8) = c(8)exp{8f(x)}A(x). 

This satisfies all the regularity conditions on the family of densities for (5.4) 
to be true for all r, k. Then, writing cpn, k for the expansion appearing in (5.4), 

P7T{ supiFn(h)- <l>n,k(h)l <An <K+ 1l/ 2 - 8} 
n 

(5.9) =1-0(n r) 

=1-0(n 11 )--0(n- 1") if7rED",s>}~+2, 

where 

(s+1)(s-h-3 ) 
t1 = 2 2 + 8 ' 

(s+1)s 
tz = . 

k + 1 

This is taken from Ghosh, Sinha and Joshi (1982), where references are given 
to similar work of Burnasev (1979) for a location parameter. 

5.2. Expansion of the Bayes estimate and Bayes risk. We will need 
expansions for the (integrated) Bayes risk for squared error loss in the form 

( 5.10) 

where R 11 (7r) = 7r X P0-expectation of (B - 8)2 , B = posterior mean 
E(8IX1 , X2 , ... , X,) and a 1, a 2 do not depend on n. 

We begin by noting that without smooth contact at the endpoints of the 
support, such an expansion need not exist. Take X;'s to he i.i.d. N( 8, 1), 7r( 8) 
the uniform density on (0, 1). It is plausible from the P7T version of (5.3), and 
is in fact proved in Ghosh, Sinha and Joshi (1982), that in this case 

(5.11) 
1 

Rn(7r) =- + o(n 1 ). 
n 

Assuming (5.11), we now verify that (5.10) is false. 
Consider an estimate 

- (X)r 
1~=X-c--, 

n 
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where c is a positive constant and r is a positive integer, 

_ d(X) 
=X+--, 
def n 

E((x+ d(;)- o)' o) ~E[(cx- e)+ d(X) :d(o) + d~))' e] 
1 d 2 ( e) 2d'( e) -2 

+ --2- + 2 + o( n ) ' 
n n n 

which is easy to get by the delta method and justify rigorously; since d(X) is 
a polynomial, one can write down the exact value of the left-hand side. 

Now, 

1\ d 2 ( 8) + 2d'( e)) dO= c2 /(2r + 1) - 2c ~ -oo 
0 

if c, r -) oo such that c2 jr is bounded. 
Suppose (5.10) is true [with a 1 = 1, by (5.11)]. Then 

Rn(1r) ~R(1r,Tn) 

implies, for each fixed c, r 

a 2 ~ c2/(2r ·t- 1)- 2c --> -oo, 

which is a contradiction. 

THEOHEM 5.1a. Under regularity conditions stated in Ghosh, Sinha and 
,Joshi (1982) and for 7T E Ds, 11 < s ~ oo, 

(5.12) 

where 

( 5.13) 

( 5.14) 

a 2 = ['a 2(8)1r(e) de, 
a 

d( 1 d 7T(8)) 
az(B) =de I(e) dOlog I(e) 

I( e) d ( 1 d 1r( e)) 
+ 1r( e) de I( e) dO I( e) 

+ a function ijJ ( 8) which does not depend on 7T. 

(The expression for a 2 given here agrees with that in Ghosh, Sinha and 
Joshi [(1982), page 427] after we add to the latter the term 
2I 2(0)7T"(O)j7T(8), which was dropped by mistake.) 
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THEOREM 5.1b. Under the same conditions as in Theorem 5.1a and f'or 
1T E D" 11 < s ~ oc, 

P7T{IE(OIX1 , ... ,X,) ·-Bnl sMn <:l/ 2 +,·), 

(5.15) 
and In 17T'(8)7r(H)I s Mn 6 } = 1 ·- o(n 2 ), 

where Bn is the expansion f'or the posterior mean due to Lindley (1961) and 
Johnson (1970), namely, 

(5.16) 

(5.17) 

(5.18) 

Bn = 8- Ann·l 

a. b- 2 
A = .l,n 

n 2 

a. = ~ d 3 log p(X1 ,X2 ,. 2 X,IO) I 
3 ·" n d0:3 tl 

and b is defined in (5.1). 

[See Ghosh, Sinha and Joshi (GSJ) (1982), page 425; note our aa, is 6 
times their a 3, n and they miss a factor of 1/2; see (5.20), which agrees with 
GSJ, page 434.] 

Note that the first term in the expression for A11 can be shown to be 
bounded with probability 1 - o(n 2 ), but the second term is unbounded. The 
following result takes care of this, by truncating B 11 to B, = a or b according 
as Bn is less than a or exceeds b. 

THEOREM 5.1c. Under the same conditions as in Theorem 5.1a, a trun
cated version of' B, namely Bn, attains the Bayes risk up to o(n 2 ), that is, 

(5.19) 

[See Ghosh, Sinha and ,Joshi (1982), pages 435 and 436.] 
Finally we replace B, and B, by estimates depending on 8 only. To do 

this, we replace the terms in A11 by functions of (J which are close. Let 

( 5.20) 

where 

Let 

( 5.21) 

B~ = e + n 1 z.l-J 2(&) +I 1(0)-A- ' 
~ ( (fJ) ~ A 1T'(H)) 

' 2 7T(&) 

B~ = B~ if B~ E (a, b) 

=a if B~ <a 

= b if B~ >b. 

THEOREM 5.1d [Ghosh, Sinha and Joshi (1982), pages 434 and 435]. Un
der the same conditions as in Theorem 5.1a, B;, attains the Bayes risk up to 
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o(n 2 ), that is, 

( 5.22) 

for 1T ED,, 11 < s :::; CIJ. 

Theorem 5.1d is a somewhat surprising fact since 8 is not asymptotically 
sufficient up to the third order. Even from the point of view of zero third order 
information loss (Section 4.4), one needs fj and b for some sort of third order 
sufficiency. An intuitive argument making Theorem 5.1d plausible appears in 
Ghosh and Subramanyan (1974), where Theorem 5.ld is conjectured. As 
indicated there, this result is at the heart of third order efficiency of 8. 

We recall briefly the plausibility argument in favor of Theorem 5.ld. Note 
that B, has been chosen so as to have the same bias up to o(n 1 ). Suppose, 
by the delta method, both B, and B~ satisfy 

(5.23) E(B,IO) = 8 + d(O)jn + o(n 1 ), 

( 5.24) E0 (B;,Io) = 8 + d(O)jn + o(n 1 ). 

Then, again by the delta method, the mean squares are 

2 { A 2 } d 2 ( 0) 2d( 8) b0 ( 8) 
E{(Bn- 0) lo} = E (0- 0) IO + --;;:2- + n 2 

( 5.25) 2d'( 0) ( 2) 
+ 2 )+on 

n 1(0 

{ 1 2 } = E ( B, - o) I 8 . 

To make these calculations rigorous expansions of the mean square (rather 
than the second moment of an Edgeworth expansion), one needs to truncate 
BII,B;,. 

Note the following interesting fact. B~ is a perturbation of 8 with two 
components, one of which is free of 1r. If we ignore the contribution from 1T 

(e.g., if we assume 1T is a constant over R), then the remaining part of En has 
expectation, from (5.20), 

1 { ___ J(O) }~ _1{P-11 (f!l_ J(!!]_ .J(O)} 
n bo( 8) 2/2( 0) - n J2 + 2/2 + 2/2 

=n 1 {11-11(8~ J(e)} 
(5.26) /2(8) + /2(0) 

=n 1{1'(8)} 
/2( 8) ' 

which is zero for a location family. The expressions 11-n and J are defined in 
Theorem 3.1. 

The expansions obtained here are identical to those of Kadane and Tierney 
(1986) up to o(n 2 ). Their form is more convenient for numerical computa
tions, whereas the present version seems more suitable for theoretical appli
cations or algebraic manipulations. 
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