
CHAPTER 3 

Third Order Efficiency for 
Curved Exponentials 

3.1. The main result. Consider a curved exponential as introduced in 
the previous chapter, that is, except for a factor involving x only, 

p(xl8) =c(8)expC~1 {3;(8){;(x)}. 
For the time being, @ cR. Extensions to higher dimensions will he consid­
ered l~iefiy later in the chapter. Recall also that Zii = {;(x), Z1 = (Z11 , ... , 
Z"), Z~n 1 L;'Z1, p)O)=E(Z;)8), JL=(JL1, ... ,f.Lk)11 and [(r;;,(8)] is the 
dispension matrix of z1. Moreover, {3( e) lies in the interior of the natural 
parameter space of the multiparameter exponential, which is, apart from a 
factor of x, 

p(x1{3) = d( {3)exp{Lf3J;(x)}. 

So p( xI {3) is (real) analytic in {3, and, hence, by our assumption of thrice 
continuous differentiability of {3(8), it follows that p(xl8) is thrice continu­
ously differentiable in e. Also by assumption, 1, {1 , { 2 , ... , fk are linearly 
independent, so that, among other things, [ (T;;'] is positive definite. 

Fisher consistent estimates T,, are of the form 

where H( f.L( 0 )) = 0 and H is thrice continuously differentiable in a neigh­
borhood of f.L( 8) for all e. In Section 2.5 the mle was exhibited as a Fisher 
consistent estimate. 

We will use frequently the calculations of Ghosh and Suhramanyam 
(1974). So it is convenient to occasionally use the notations there, namely, p 
or p n for Z for 7T for JL. Of the three interpretations for expansions considered 
in Section 2. 7, the third is the most convenient, and so we also introduce a 
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notation for expectation with truncation, namely, 

Eu(YIH0 ) = E(IuYI8 0 ), 

where Y is a random variable depending on p only, U is a neighborhood of 
7T( 00 ) which also contains neighborhoods of 7T( f)) for all I 8 - 80 I < 8 and lu is 
the indicator of U. By Chernoffs inequality (1952), 

Eu(YIH) = E(Y 1IH) + 0( p"), 

where IH- 00 1 < o, Y 1 is Y truncated in any arbitrary way so that IYI is 
bounded on the complement of U and 0 < p < 1. If Yn is a sequence of 
random variables such that Eu0';,2 l80 ) is o(a~) or O(a;,), we will write Y" is 
o(an) or O(an) accordingly, If Yn is o(a,,) or O(an), Zn is O(b,), then by 
Cauchy-Schwarz, YnZn is o(anbn) or O(anbn). With some abuse of notation, 
we will write E for Eu, since in this chapter [except in (3.1) to (3.4)] E will 
stand for Eu. The set U depends on the function H. However, given a finite 
collection H 1, H 2 , ... , Hm, we can find a single U to accommodate all the T's. 
Since we will only be comparing two estimates at a time, some T and e, this 
is all that we need. 

Recall the formulation of third order efficiency in Chapter 1. Among all 
Fisher consistent estimates Tn = H(p) with a fixed asymptotic bias b(H)jn, 

(3.la) E{(T, - 8)18} = b( 8)/n + o( n- 1 ), 

(3.lb) E{(Tn- 0- b(H)/n) 2 IB} = 1jnl(8) + !J!(H, O)jn 2 + o(n 2 ) 

for IH- 80 1 < 8, minimize !J!(H, e). A FC estimate Tn for which minimization 
holds for all e0 E ® is TOE. 

Alternatively, as in Rao (1963), given an efficient FC estimate T,,, make it 
unbiased up to o(n- 1), 

(3.lc) T,'; == Tn- b(Tn)fn, 

and among such estimates minimize the coefficient of n 2 in the expansion of 
variance 

(3.1d) { * 2 } - 1 1/1* ( H' 0) 2 
E ( T,, -- f)) I e - -( -) + 2 + o( n ) . 

nl e n 

In Ghosh and Subramanyam (197 4), 1/J* (H, e) is denoted as 1/J({T,':}, f)). 
Note that b(·) is a real analytic function of {3(e) and hence thrice differen­

tiable in e. Hence the remarks on expansions associated with T:, in Section 
2.7 apply to Tn* and other such perturbations ofT,. We note for later use 

(3.1e) E(Tn*IH) = e + o(n 1 ), 

E{(T,*- 0) 2 1e} 

[{ b'( 0) } 21] ( 3 .lf) = E ( T, - e - b ( e) 1 n) - -n- ( 1~ - e) e + o ( n 2 ) 

1 1/1( H, e) 
= -- + ----;:;----

nl(e) n2 

2 b' (f)) 
--=--- + o( n- 2 ), 
n 21( H) 
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so that 

(3.1g) 

HIGIUJR ORDER ASYMPTOTICS 

2b'( e) 
,/,*(H, e)= !(!(H, e)- I 2 (e) 

In addition, there is Fisher's original formulation via loss of information in 
T,, which is defined as the limit of 

( nl( e) - Ir,( e)) 

(3.2) 
= E ( ( d log p (X 1 , ... , X, I e) _ d log p ( T, I e) ) 2 1 e) 

do de ' 

where p(T, I e) is the marginal p.f. or p.d.f. of T, and 

( d log p(T,Ie) ) 2 

Ir,(e) =Eo de 

is the Fisher information carried by T,,. The limiting difference is the limiting 
difference in the total information in the sample and the information in T,. 
The relation (3.2) follows from 

(3.3) ( d log p (X 1 , ... , X, I e) I ) 
E T =t,e =p (tie). de n T, 

To prove (3.3), note that for all bounded (measurable) U(T,), 

( 3.3a) 

E( P( xl, x2, ... , X,le') U(T,,) I e) = E(U(T,)I e') 
p(X1 ,X2 , ••• ,X,.Ie) 

f Pr (tiO') 
= -" ···-U(t)P(dtle) 

Pr,(tle) 

so that 

(3.3b) 

Hence the left-hand side of (3.2) is, assuming all interchanges of operations 
below are justified, 

(3.4) 

hmE - 1 - 1 = t e . ((p(X1,X2, ... ,X,Ie+h) )11,, ) 
h->O p(X1,X2 , ••• ,X,I8) h " ' 

= lim ( P d tIe + h) - 1) h1 
n __, 0 Pr,( t 18) 

d log pr,( tl e) 

de 
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Note that (3.3) shows that, with respect to squared error loss, 
(d log PT,<tiO))jdO is the best predictor of (dlog p(X1 , X 2 , ... , X,IO))jd(} 
based on T,. If T, is sufficient, the loss of information is zero, so loss of 
information is a measure of the sufficiency of T,. A FC estimate which 
minimizes this limiting loss may be called TOE in Fisher's sense. It appears 
Fisher was sure that {j is TOE in this sense. It seemed so obvious to 
him-not to us--that he did not even sketch a proof. 

Since densities or p.f.'s are involved in this measure, one needs expansions 
for these, rather than expansions for probabilities or distribution functions. 
Even in the continuous case, expansions for densities of T, would be difficult 
to justify, and we would need much stronger assumptions than those made of 
Theorem 2.1. To avoid this, especially to have a theory for the (discrete) 
multinomial of Chapter 1, in which Rao's main interest lay, Rao (1961) 
proposed a modified formulation, which leads to the Fisher-Rao criterion 

(3.5) 

.. {dlogp(X1 ,X2 , ... ,X"I8) 
E 2 = mf hm Var0 

A n->X de 

2} -nl(e)(T,- 0)- An(T,- 0) 

in which the best predictor of Fisher is being replaced by a quadratic in T". If 
Tn were exactly normal with mean f:J and variance (nl) 1 , I being free of 0, 
then the linear term in (T, -- e) would be exactly equal to the best predictor. 
So the quadratic in (Tn - 0) is a natural refinement compensating for approx­
imate normality and, presumably, for the dependence of I on e. The signifi­
cance of the linear term can also be seen from the following fact. A FC 
(continuously differentiable) T,, is efficient if and only if 

(3.6) 
1 d log p(X1 , X 2 , ..• , X"le) c 

Vn de -- v n I ( 0 )( Tn - 0 ) -~ P 0. 

Rao (1961, 197:3) often takes this as the definition of efficiency, that is, of 
FOE. A proof of this appears in the course of proving Theorem 3.1; see Step 3 
in the proof. 

A FC T, is TOE in the Fisher-Rao sense if it minimizes E 2 . The first 
statement below merely repeats (3.lb). We shall prove only parts (iii)(a) and 
(iv). 

THEOREM 3.1. 

( i) 
1/l*(H, f:Jo) ( -2) + 2 +on , 

n 

where Tn* is defined in (3.1c) and is unbiased up to o( n- 1 ). 

(ii) E 2 for T, equals 

~1*(H, 00 )1 2 (00 )- 2(J(00 )/2 + JL11(00 ))2/I 2 (00 ), 
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where 

( d
3 log p(X1 IO) I ) 

J( 0) = E 0 
d(:}3 ' 

.. = f(dlogp(X1 IO))i·(d 2 logp(X1 l8))J o). 
J.L,J( o) E\ de d0 2 

(iii)(a) ~,* is minimized for all 00 when the FC, FOE Tn is the mle iJ. 
(b) The minimum value of 1/J* is 

1/!*(0o) = {I(8o)fLo2(8o)- J.Lit(8o)}/l4 (0o) 

+ 2{J(00 )/2 + J.Lu(80 )} 2/l4 (00 ) 

and the minimum value of E 2 is Ez(00 ) = {I(00 )J.L02(80)- J.Lu(00 ) 2}/I2(80 ). 

(iv) Given any FC, FOE T11 , one can find a function c(8), such that 

E { ( 8 + c ( 8) In - e 0 ) 
2

1 e 0 } :s; E {( Tn - e ) 2 1 e 0 } + o ( n 2 ) 

for all 00 • 

The function c( ·) is found by matching the bias of Tn, that is, if 

(3.7) 

then 
(3.7a) c(·) = b(-)- b0 (-). 

Note that c(-) is thrice continuously differentiable since so are b(·) and b0(-). 

From (3.9) of Step 1 of the proof of Theorem 3.1, it will be seen that 

(3.7b) b0 (80 ) = {J(00 )/2 + J.Ln(80 )}/I 2 (80 ). 

Note its appearance in (iii)(b) of Theorem 3.1. In the following we will write 

(3.7c) en* = {Jn - bo( en)/n. 
In the proof of Theorem 3.1 we will need the following simple facts. Let 

Y 1J,Y2J, Y3J, Y4J be i.i.d. real r.v.'s with zero expectations and finite moments 
of order 4. Let Y; = 0::]~ 1 ~) n- 1 . Then, up to o( n- 2 ), 

(:3.7d) Cov(1?, Y2 Y:3) = 2 Cov(Y11 , Y21 )Cov(Y11 , Y13 )/n2 , 

(3.7e) Cov(Y1 Y2 , Y3 Y4 ) = {Cov(Y11 , Y31 )Cov(Y21 , Y41 ) 

+ Cov( Y11 , Y41 )Cov( Y21 , Y31 )} /n2 . 

PROOF OF THEOREM 3.1. Statement (i) follows from easy direct calculation 
by the delta method, which is easily justified since E stands for Elu, and (ii) 
follows from fairly direct but involved calculations, making use of the proof of 
part (iii)(a) below. We refer the reader to Ghosh and Subramanyam [(1974), 
pages 344 and 345]. 
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(iv) follows easily from (iii)(a). To see this, note, by (3.7a), 

e + c( e);n = o* + b( e);n 
= o* + b( e0 )/n + b'( eo)( fJ -- e0 )/n +smaller terms. 

By the delta method, 

{ 

A 2 } b 2 ( () 0) b' ( () 0) A 2 
=E (o*- 00 ) 100 + -~- +2-n-E(o- 00 ) +o(n- 2 ) 

- E{(o*- o )21e} + bzCeo) + ~J!_?]_ + o(n-z). 
~... o o n2 n2I( Oo) 

Similarly, 

{ 2 } { '* 2 } 2 2 E (Tn - e0 ) 100 = E (1n - 00 ) le0 + b ( 00 )/n 

+ 2b'(00 )/n 21(00 ) + o(n -2 ). 

Hence (iv) follows from parts (i) and (iii)( a). 
(iii)( a) The idea behind the proof is to show 

Tn*- eo= en*- Oo +Rn, 

where Rn is orthogonal to (e,; - 00 ) in the sense E{Rn(On* - 00 )100 } = o(n 2 ). 

( 3.8b) d 2 logpl c·l 
Wn =on- 1--2- +I= L /3"' (Pi - 7Ti( Oo) ), 

dO 80 

(3.8c) S~ = r 2 ( 00 )(ZnWn) + (2J 3 )- 1 JZ~, 
where J == J( e0 ) is defined in (iii)(b) of the theorem. 

Essentially by Taylor expansion, as in Section 2.6, 

(3.9a) en- eo= Zn/1 + s;, + Rn, 
where the remainder Rn = O(n - 3 12 ) as defined earlier in this chapter, that 
' A 2 3 
lS, E(IRnl IOo) = O(n· ). 

Let 

and note that 
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It follows that 

(3.9b) 

HIGHER ORDER ASYMPTOTICS 

STEP 2. On the set U introduced earlier in this chapter, the FC Tn 
estimate has a Taylor expansion around H(rr(8)) = 8, 

Tn=H(p) = e + '[);(P;- rr;(e)) 

+ Ll;;(P;- 7T;(8))(P;- 7r;(8)) 
(3.10) 

+ o(n-312) 

+ Lli.ik(P; ·- rr;(8))(P;- rr;(O))(Pk- rrk(8)), 

where l; = l;(rr(O)), and so on. We record for later use 

dH dO 
(3.10a) Ll;(rr(O))rr;(e) =de= de= 1. 

Let the sum of the first three terms on the right side of(3.10) be denoted by 
H 2(p), and let Hip) stand for the sum when the fourth term is included. 
The terms on the right side of (3.10) will be denoted as the constant, linear, 
quadratic, and cubic terms. Write E for E{l8} and note 

(3.11) E(Tn)=E(H2)+o(n 1 ) 

and 
(3.12) E(H2 ) = 8 + b( 0)/n. 

It follows, at least formally, on differentiating under the expectation sign, 
that 

(3.12a) 

that is, 

(3.13) 

E( H 2 Zn) = E(TnZn) + o( n - 2 ) 

1 d 
=- -d E(Tn) + o(n- 2 ) 

n 8 

1 d 
= --d E(H2 ) + o(n- 2 ) 

n () 

1 b'( 8) 
=- + -- + o(n- 2 ), 

n n 2 

The second and third line in (3.12a) are hard to justify, so we prove (3.13) 
directly. Clearly 

(3.13a) 

So to prove (3.13), it suffices to show 

_ 1 b'(O) _2 (3.13b) E(H3 Zn) --- + - 2- + o(n ). 
n n 
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Toward this end, note, using (3.10a), 

1 

(3.14a) 
E{linear term in H3}Zn = - Ll;1Ti( e) 

n 

1 

n 
Also 
(3.14b) E( eZ,J = 0. 
Moreover, 

E{( quadratic term of H 3 )Zn} 

= 2~ :eE{ L);J(P;- 1T;(e))(P;- 1T1(e))} 
£ • .I 

+ 21nE(L:ziJ:0 (P;- 1T;(O))(p1 - 1T;(e))) 
£, J 

(3.14c) 

To prove this, apply Leibnitz's rule to evaluate 

d 
de{zi.i(P;- 1T;(O))(PJ -- 1TJ(8))p(X1,X2 , ... ,Xnl8)} 

and observe that interchange of differentiation and expectation is justified for 
polynomials in p, since {3(8) is in the interior of the natural parameter space. 
The first term on the right side of(3.14c) is b'(O)jn2 , and the second term on 
the right side of (3.14c) is 

So, 

( 3.14d) 

2 
- L:liJ1T;(e)(P; -- 1TJ(e)) = o. 
2n- -

£, J 

Finally, in a similar way, 

(3.14e) 

E{( cubic term in H 3 )Zn} 

1 d 
= - --E( cubic term) 

n dO 

-6~E( I: (:8ziJk)(P; -1T;)(PJ -- 1TJ)(Pk- 1T;,)) 
l, J, k 
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The first two terms on the right side of(3.14e) are o(n - 2 ), while the last term 
here cancels the last term in (3.14d). Hence, adding up the right sides of 
(3.14a), (3.14b), (3.14d) and (3.14e), we get (3.13b). Hence, via (3.13a), (3.1:3) is 
proved. 

It follows, using (3.13) and expanding b(H2 ), 

E(T,.*Z,.I80 ) = E{(H2 - b(H2 )/n)Z,.I80 } + o(n- 2 ) 

(3.15) 1 b'( 80 ) b'( 80 ) ( I ) _2 )' 
=- + --2 -- --E H 2 Z,. 80 + o(n 

n n n 

(3.16) 

Hence, using (3.16) in (3.15), we get 

(:3.17) 

STEP 3. We now use the fact that Tn is FOE. The asymptotic variance of 
/il(T,, - 80 ) equals 

Var(vn[l;(p;- 7T;(Oo))leo), 

which, by Cauchy-Schwarz, (3.15) and (3.16), 

1 
(:3.18) :2: 1(8o) 

with equality if and only if 

(3.19) 

Hence, by (3.8a), 

(3.20) 

Since (3.20) is true for all 00 , we may differentiate it once more, getting 

(3.21) 

By (3.10) and (3.14), 

(3.22) T~""- 00 = Tn- 80 - b(O)/n + O(n 3 12 ) = Zn/1 + O(n -1 ), 

(3.23) 0,.*- 00 = 0- 80 - b0 ( 0)/n + O(n 312 ) = Zn/1 + O(n 1 ) 

so that 

(3.24) 

Also, by (3.9b) and (3. 7b), 

(3.25) 0,';- 80 o~ (Z,,/1)(1- b~(00 )/n) + Sn + O(n-- 31 2 ). 
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STEP 4. Let An = Tn - 00 - Zn/l. By (3.20), 

(3.26) An·= t L);;(P; -- 1T;(80 ))(P;- 1rj{00 )) + O(n 31 2 ). 

We claim 

(3.27) E( AnSni00 ) =a constant (not depending on Tn) + o( n 2 ). 

In view of the definition of Sn, it is enough to prove the above with Sn 
replaced by z; - ljn or Zn W" - E(Z"W,), and in view of (3.22) and the fact 
that Sn o= O(n -l ), it is enough to replace An by L:lJp; - 1T;(00 ))(p1 - 1r}80 )). 

In the following, E stands for E{l 00 }: 

(3.28) 

E{( L);;(P;- 7rJ(p1 - 1r;) )(z,; -- lfn)} 
L, J 

=· Eli.i Cov{z; ,( P; - 1r;)( P;- 1r1)} 
i, j 

= L li.i Cov{Zn, p;} · Cov{Zn, p;} + o( n 2 ) [by (3.7c)] 
i, j 

= L:Cov{Zn, p;} L);;1Tj + o(n · 2 ) [by (3.15)] 
i i 

d ( f3'(i)) I 
= L Cov{Z", p;} dO - 1- + o( n 2 ) [by (3.21)]. 

L fio 

This does not involve H or its derivatives. The proof with Zn W, - E(ZnWJ 
replacing z; - ljn is quite similar; it makes use of (3.7d), (3.15) and (3.21). 
Details are omitted. [The interested reader may consult Lemma 4 of Ghosh 
and Subramanyam (197 4).] 

STEP 5. 

E{(Tn*- 80 ) -··(en*-· Oo)}(en*- Oo) 

= E{(Tn*- 00 )- (en*-- 00 )}{ ~" ( 1 -- b~~o)) + S"} + o(n 2 ) 

[by (3.24) and (3.25)] 

= E{(Tn*- 00 )- ( o,;- 00 )}{sn} + o(n 2 ) 

(by Step 2, applied to 7~* and en*) 

=E{(Tn- 00 )- (en- 80 ),Snl80 } + o(n- 2 ) 

(by (3.22), (3.23) and E( S'") ~~ OJ 

= o( n 2 ) (by Step 4 applied to Tn and en). 
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This completes the proof of (iii)(a). The proof (iii)(b) follows from straight­
forward direct calculation; see Ghosh and Sumbramanyam [(1974), page 344]. 

D 

The fact that fi minimizes E 2 among FC estimates is the Fisher-Rao 
theorem. The fact that the third order unbiased estimate (Jn* based on fin 
minimizes the variance [up to o(n 2 )] among third order unbiased estimates 
T,"; based on FC, FOE Tn, is Rao's theorem. These results were proved for a 
multinomial by Rao, (1961, 1962, 1963). The present proof is taken from 
Ghosh and Subramanyam (1974), except that whenever we use their Lemma 
3, we provide complete justification and streamline the proof of (iii)(a) in 
Theorem 3.1. Even if specialized to the multinomial, the present argument is 
different from Rao's. 

Similar theorems have been obtained by Efron (1975) and also by Akahira 
and Takeuchi and Pfanzagl and his co-workers, at about the same time. Their 
results are described in Akahira and Takeuchi (1981) and Pfanzagl (1979). 

The fact that fi minimizes E 2 is interesting as well as amenable to 
geometrical analysis. However, the properties (iii) and (iv) seem the most 
convenient if one wants to apply these results to get better estimates: (iii) is 
relevant if unbiasedness is a concern and (iv) is relevant in the absence of 
that. It is worth mentioning that the o(n- 2 ) term in (i) is uniformly so on 
compact &0-sets. This is true of (iv) also. 

If one compares a FC, FOE estimate Tn directly with On [i.e., without 
either of the adjustments in (iii) or (iv)], then, in general, neither is better 
than the other in the third order for all 00 • 

3.2. Third order efficient approximate solution of likelihood equa­
tion. Since the mle is often hard to calculate, one may wish to have 
approximate solutions of the likelihood equations which will continue to be 
TOE. Let Tn be a vn-consistent estimate of&, that is, vn(Tn- &) = 0/1). 
The likelihood equation may be written as 

O = dlogLnl =~logLnl + (fi- T)d2 logLnl 
d 0 rJ d fJ 1', n d () 2 T, 

+ (o--rn) 2 d 3 l~gLnl + (fi-1~)3 d 4 l_og.LNI +o (~). 
2 d fJ 3 T, 6 d fJ ,J 7', P n 

Then the successive approximations to vn (fin - fJ) are 

vn(fin- &) = vn(1~- &) + ll;n +R;n, i = 1,2,3, 

h - ( - i/2) w ere Rin - OP n , 

U = ~/r"l)( d log Lnfd?)ITJ_ 
ln (- (ljn )( d 2 log Lnfd& 2 )IT,) ' 

u2n = ( ~ d log Ln I + Ul2n _1_ d 3 log Ln I ) (- ~ d 2 log Ln I ) 1 

vn dO 2 n 312 dfJ 3 T n dfJ 2 T Tn !I n 
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Our approximate solution is ii = T,, + Ua,. 
If T,, is FC with a thrice continuously differentiable H, in addition to being 

{n- consistent, we can Taylor expand ii in U and show, with our present 
interpretation of E = Elu, that 

E{(ii- 0)10} = E{(e -- 8)10} + o(n 1 ), 

E{(ii- 0) 2 to} =c E{(ii- 0) 2 to} + o(n 2 ), 

so that 0 will inherit third order optimal properties of 0. 
Alternatively, in addition to vn- -consistency, one may require 1:, to have a 

moderate deviation property, that is, there exists a sufficiently large c such 
that P{l7:, - 8 I > cylog n- I Vn-} = o( n ·· 1 ) uniformly on compact sets of 0. In 
this case one can show R 3 , satisfies the conditions of Lemma 2.1 with s = 4. 
Hence if Vn-( 8 - (}) has a valid Edgeworth expansion for s = 4, then so will 
In ( 0 - () ). This means the first interpretation of expansions of moments in 
Section 2. 7 is applicable. We may also use the interpretation based on the 
result of Gotze and Hipp (1978). 

3.3. Example 2.3 (Berkson's bioassay example) revisited. Suppose, 
for simplicity, {3 is known and the parameter of interest if a. The likelihood 
equation is 

k 

0= l:n(p;-7TJa)). 
i ~ 1 

Let a11 be the mle. Let L; = log{7Tj(l - 1r)} = a+ {3d; and l; = log{pj(1 -
p;)}. Minimizing I:p/1 -· p)Cl; -· LY with respect to a, one gets Berkson's 
minimum logit chi-square estimate T,. T, is the solution of 

where L'"; = T" + {3d;. Clearly T, is easy to calculate explicitly, unlike the 
mle an. It is also FC and FOE. So on the grounds of easy calculation, one 
might prefer T, to an if first order efficiency were the only other concern. If 
we invoke third order efficiency, we can do strictly better than T, by using a 
suitable perturbation of an; see Theorem 3.1, part (iv). If third order unbi­
asedness is also a concern, we can perturb T, to make it unbiased up to 
o(n 1 ), and do the same with a,. By Theorem 3.1, part (iii)(a), we know a: is 
third order better than T,'('. Actually, in this example a: is strictly better in 
the third order sense. Some simulations reported in Subramanyam's 1980 
thesis (submitted to the Indian Statistical Institute) bear this out. 
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This example is actually a linear exponential and so a complete sufficient 
statistic exists, namely, E~p,. T11* is not a function of it, but a,; is. In fact &~ 
may be thought of as an approximation to the Rao-Blackwellized estimate 
E(T,'/'IEp,), which is superior toT,'/'. 

Since T11 is FC and FOE, we may use it to approximate &11 or &~; see 
Section 3.2. 

3.4. Multiparameter extensions. To fix ideas, suppose 8 = (01, 02 ), 

T11 - II(Z) is FC, FOE (in the sense that each component of Tn is FC, FOE) 
and (j ~ H 0(Z) is mle. If one considers the expansions of the dispersion 
matrix of T,'/' = 1:, - b(T11)jn and 8,; = en -- b 0(8)jn, then the difference of 
the coefficient matrices of n 2 is positive semidefinite. This is a generaliza­
tion of Rao's theorem. 

To generalize the Fisher-Rao theorem, consider the analogous of E 2 , 

namely, infA E 12(A, H, 00 ) and inf'Y E 22(y, H, 00 ), where 

Ln = p(X1 , X2 , •.. , XniO), 

E 12 ( A, H, 80 ) = lim Var11 ---.-- - L:n(Tw - 0, 0)/d 00 ) [ 
illog LN I 

n-. x 0 (I {:I 
(3.29) 1 0 o 

- LnA, 1(Tw- 010 )(T111 - 010 )], 

. [;;log LN I E 22 ( y, H, 00 ) = hm Var110 - L:n(T, 11 -- 0,0 )12 ,( 00 ) 
n--->-Y. (1{} 2 11 

(3.30) () 

- L:ny,1 (T, 11 - 0, 0 )(T111 - O,o)]. 

Let the random variables within [ ] above be denoted as Y 1(n, A, H, 00 ) and 
Y2(n, y, H, 80 ). Then one can show that for each A, y, the limiting dispersion 
matrix of 

and 
{Y1(n, A, H, 00 ) - Y 1(n, A, H 0 , 00 )} 

{Y2 (n, y, H, 80 )- Y 2 (n, y, H 0 , 00 )} 

is positive semidefinite. (This implies that E 12 , E 22 are minimized by e.) This 
is the generalization of the Fisher-Rao theorem. 

The proof in both cases is exactly identical. 
The extensions are taken from Ghosh and Subramanyam (1974). 

3.5. Example 2.4 (Behrens-Fisher) revisited. The likelihood equa­
tions reduce to 

( 3.31) 

( 3.32) 

(3.33) 0 =A( ,u), 
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where 

A(~)= (U- ~)(sf+ (D- ~) 2 ) + (V- ~)(s~ + (V- ~)2 ), 
and s 2 = n 1L:"(U - U) 2 s 2 = n - 1L:"(V- V) 2 D- n h'"U and V o~ ' I ' 1 j ' 2 ' 1 j ' - L] j 
n-li:Vj. 

Equation (3.33) means A is a weighted mean of D and V with the weights 
being proportional to the inverse of (r12 and a-t Note that (:3.33) is a cubic 
equation, A(~) changes sign only when ~ is between D and V, A(U) and 
A(V) have opposite signs and A'(~)< 0 for~ between D and V. It follows 
that (3.33) has a unique real root, and the root lies between D and V. This 
root must be consistent as both D and V are, so this is A. 

It is also clear that if we define T,, as the weighted mean of D and V, with 
the weights proportional to the inverse of s~ and s~, then T,, is FC and FOE. 
So Tn may be used to approximate A. 

Let 

Then 

(:3.34) n( A- Tn) = ln(Wl- wl){vn(D- ~)- {n(V- ~)} --) ,,o. 
Also, using the fact that s~, s~ are independent of D, V, 
( 3.35) 

Using (3.34) and (3.35), it is easy to show 

E( AIH) = ~ + o(n 1 ), 

that is, A is unbiased up to third order. Since 

na12 [(D- A) 2
- (U- T") 2

] 

'l/2 [ (- ~ )2 (- )2] n · V -- ~ -- V - T, 

let 

a}"~ sr + (U- T"/' ir.} = s~ + (v -- 1~n 
and fL be the weighted mean of U, V with weights inversely proportional to 
(r? and (r l. Then ( (r 12 , (r 22 , fL) has the third order properties of (J, and, in 
particular, fL is third order efficient among all third order unbiased estimates. 

Easy calculation shows 

E(ii-(18) = (Ttz + (-;-rlz 2)2(~12 + crz~) + o(n 1), 
(T1 + cr2 n n 

and similarly for ii-l. 

3.6. Hodges-Lehmann deficiency. Comparing the coefficient of n 2 in 
the expansion of variance or mean square can be interpreted in terms of 
"equivalent" sample sizes in the manner of Hodges and Lehmann (1970). 
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Suppose T1n and T2 n are two estimates and 

{(T ) 2/ } al ai2 ( z). E in - 0 0 = - + ----:2 + o n. 
n n 

Suppose we define two sample sizes n 1 and n 2 to be equivalent if T 1 n 1 and 
T2 ,~ have (nearly) equal accuracy in the sense 

a 1 a12 al azz . 2) 
- + ----:2 =- + ---:l + o(n 2 . 
ni nl nz nz 

Then, as shown in Hodges and Lehmann (1970), 

nl 
lim - = 1, lim (n 2 - n 1 ) =d. 
n~-> x n 2 n2~x 

Then d must satisfy 

which, on simplification, leads to 

so that 

a formula due to Hodges and Lohmann (1970). As noted in Ghosh and 
Subramanyam [(1974), page 347], Theorem 3.1 then shows T,'; is deficient 
with respect to H* in the sense of requiring (1/J*(H, 80 )- l/f*(80 ))jl(80 ) 

additional observations for the same accuracy. 

3.7. Asymptotic sufficiency. The following is a slight correction of a 
result stated without proof in Ghosh and Subramanyam (1974). Under suit­
able regularity conditions, there is a compact neighborhood (0 0 of () 0 and 
densities q 0 , n' () E N0 , such that 

(A) 
H dilogp(~1 ,X2 , ... ,Xn/8)1 =L. 

' d ()' !! l' 
i = 2,3, 

are sufficient for q o, n and 

(B) 

= o( n 1 ). 

The proof is by Taylor expanding to get an approximation and then 
normalizing to get a density. 
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In a similar sense, fj m;d L 2 are asymptotically sufficient up to o( n 1 12 ). 

Asymptotic sufficiency of () and L 2 in a different sense appears in Chapter 4. 
Since the q 11 ,'s are curved exponentials, in a sense Theorem 3.1 and the 

above approximation theorem can be used to generalize third order results to 
general densities. We follow a different route in Chapter 6. 

3.8. Third order efficiency and Bhattacharya bounds. Since first 
order efficiency has a small sample analogue in the Cramer-Rao inequality, 
it is natural to ask if the third order results have an analogue in the 
Bhattacharya bounds. That is not the case. 

Ghosh and Subramanyam [(1974), page 350] note that if one regresses T, 
on d log pjd() and (ljp)d 2pjd8 2 as in Bhattacharya bounds, one gets 

{ '* 2 } 1 1 (J(80 ) ) _ 2 
E (T,,- 8o) (8o) ~-;_I( eo)+ n2I'i(Oo) --2-· + P-n(Oo) + o(n ), 

which, in view of Theorem 3.1, is not sharp. In fact, it can be attained up to 
o( n ···· 2 ) for all 0 if and only if the curved exponential is linear. 

There is no small sample analogue of third order efficiency. 
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