Third Order Efficiency for Curved Exponentials

3.1. The main result. Consider a curved exponential as introduced in the previous chapter, that is, except for a factor involving x only,

$$p(x|\theta) = c(\theta) \exp\left\{\sum_{i=1}^{k} \beta_i(\theta) f_i(x)\right\}.$$

For the time being, $\Theta \subset R$. Extensions to higher dimensions will be considered briefly later in the chapter. Recall also that $Z_{ij} = f_i(x_j)$, $Z_j = (Z_{1j}, \ldots, Z_{kj})$, $\overline{Z} = n^{-1} \sum_{i=1}^{n} Z_j$, $\mu_i(\theta) = E(Z_{ij}|\theta)$, $\mu = (\mu_1, \ldots, \mu_k)_{\theta}$ and $[\sigma_{ii},(\theta)]$ is the dispension matrix of Z_j . Moreover, $\beta(\theta)$ lies in the interior of the natural parameter space of the multiparameter exponential, which is, apart from a factor of x,

$$p(x|\beta) = d(\beta) \exp\{\sum \beta_i f_i(x)\}.$$

So $p(x|\beta)$ is (real) analytic in β , and, hence, by our assumption of thrice continuous differentiability of $\beta(\theta)$, it follows that $p(x|\theta)$ is thrice continuously differentiable in θ . Also by assumption, $1, f_1, f_2, \ldots, f_k$ are linearly independent, so that, among other things, $[\sigma_{ii'}]$ is positive definite.

Fisher consistent estimates T_n are of the form

$$T_n = H(\bar{Z}),$$

where $H(\mu(\theta)) = \theta$ and H is thrice continuously differentiable in a neighborhood of $\mu(\theta)$ for all θ . In Section 2.5 the mle was exhibited as a Fisher consistent estimate.

We will use frequently the calculations of Ghosh and Subramanyam (1974). So it is convenient to occasionally use the notations there, namely, p or p^n for \overline{Z} for π for μ . Of the three interpretations for expansions considered in Section 2.7, the third is the most convenient, and so we also introduce a

notation for expectation with truncation, namely,

$$E^U(Y| heta_0) = E(I_UY| heta_0),$$

where Y is a random variable depending on p only, U is a neighborhood of $\pi(\theta_0)$ which also contains neighborhoods of $\pi(\theta)$ for all $|\theta - \theta_0| < \delta$ and I_U is the indicator of U. By Chernoff's inequality (1952),

$$E^{U}(Y|\theta) = E(Y^{t}|\theta) + O(\rho^{n}),$$

where $|\theta - \theta_0| < \delta$, Y^t is Y truncated in any arbitrary way so that |Y| is bounded on the complement of U and $0 < \rho < 1$. If Y_n is a sequence of random variables such that $E^U(Y_n^2|\theta_0)$ is $o(a_n^2)$ or $O(a_n^2)$, we will write Y_n is $o(a_n)$ or $O(a_n)$ accordingly, If Y_n is $o(a_n)$ or $O(a_n)$, Z_n is $O(b_n)$, then by Cauchy–Schwarz, Y_nZ_n is $o(a_nb_n)$ or $O(a_nb_n)$. With some abuse of notation, we will write E for E^U , since in this chapter [except in (3.1) to (3.4)] E will stand for E^U . The set U depends on the function H. However, given a finite collection H_1, H_2, \ldots, H_m , we can find a single U to accommodate all the T's. Since we will only be comparing two estimates at a time, some T and $\hat{\theta}$, this is all that we need.

Recall the formulation of third order efficiency in Chapter 1. Among all Fisher consistent estimates $T_n = H(p)$ with a fixed asymptotic bias $b(\theta)/n$,

(3.1a)
$$E\{(T_n - \theta)|\theta\} = b(\theta)/n + o(n^{-1}),$$

(3.1b)
$$E\left\{\left(T_n - \theta - b(\theta)/n\right)^2 | \theta\right\} = 1/nI(\theta) + \psi(H,\theta)/n^2 + o(n^{-2})$$

for $|\theta - \theta_0| < \delta$, minimize $\psi(H, \theta)$. A FC estimate T_n for which minimization holds for all $\theta_0 \in \Theta$ is TOE.

Alternatively, as in Rao (1963), given an efficient FC estimate T_n , make it unbiased up to $o(n^{-1})$,

(3.1c)
$$T_n^* = T_n - b(T_n)/n$$
,

and among such estimates minimize the coefficient of n^{-2} in the expansion of variance

(3.1d)
$$E\{(T_n^* - \theta)^2 | \theta\} = \frac{1}{nI(\theta)} + \frac{\psi^*(H, \theta)}{n^2} + o(n^{-2}).$$

In Ghosh and Subramanyam (1974), $\psi^*(H, \theta)$ is denoted as $\psi(\{T_n^*\}, \theta)$.

Note that $b(\cdot)$ is a real analytic function of $\beta(\theta)$ and hence thrice differentiable in θ . Hence the remarks on expansions associated with T'_n in Section 2.7 apply to T^*_n and other such perturbations of T_n . We note for later use (3.1e) $E(T^*_n|\theta) = \theta + o(n^{-1})$,

$$E\left\{\left(T_{n}^{*}-\theta\right)^{2}|\theta\right\}$$

$$=E\left[\left\{\left(T_{n}-\theta-b(\theta)/n\right)-\frac{b'(\theta)}{n}\left(T_{n}-\theta\right)\right\}^{2}|\theta\right]+o(n^{-2})$$

$$=\frac{1}{nI(\theta)}+\frac{\psi(H,\theta)}{n^{2}}-\frac{2b'(\theta)}{n^{2}I(\theta)}+o(n^{-2}),$$

so that

(3.1g)
$$\psi^*(H,\theta) = \psi(H,\theta) - \frac{2b'(\theta)}{I^2(\theta)}.$$

In addition, there is Fisher's original formulation via loss of information in T_n , which is defined as the limit of

$$(3.2) \qquad (nI(\theta) - I_{T_n}(\theta)) \\ = E\left\{ \left(\frac{d \log p(X_1, \dots, X_n | \theta)}{d\theta} - \frac{d \log p(T_n | \theta)}{d\theta} \right)^2 \right| \theta \right\},$$

where $p(T_n|\theta)$ is the marginal p.f. or p.d.f. of T_n and

$$I_{T_n}\!\!\left(\, heta\,
ight)\,=\,E_ heta\!\left(rac{d\,\log\,pig(T_n| hetaig)}{d\, heta}ig)^2$$

is the Fisher information carried by T_n . The limiting difference is the limiting difference in the total information in the sample and the information in T_n . The relation (3.2) follows from

(3.3)
$$E\left(\frac{d \log p(X_1,\ldots,X_n|\theta)}{d\theta} \middle| T_n = t, \theta\right) = p_{T_n}(t|\theta).$$

To prove (3.3), note that for all bounded (measurable) $U(T_n)$,

(3.3a)

$$E\left(\frac{p(X_1, X_2, \dots, X_n | \theta')}{p(X_1, X_2, \dots, X_n | \theta)} U(T_n) \middle| \theta\right) = E(U(T_n) | \theta')$$

$$= \int \frac{p_{T_n}(t | \theta')}{p_{T_n}(t | \theta)} U(t) P(dt | \theta)$$

so that

(3.3b)
$$E\left(\frac{p(X_1, X_2, \dots, X_n | \theta')}{p(X_1, X_2, \dots, X_n | \theta)} \middle| T_n = t, \theta\right) = \frac{p_{T_n}(t | \theta')}{p_{T_n}(t | \theta)}$$

Hence the left-hand side of (3.2) is, assuming all interchanges of operations below are justified,

$$\lim_{h \to 0} E\left\{ \left(\frac{p(X_1, X_2, \dots, X_n | \theta + h)}{p(X_1, X_2, \dots, X_n | \theta)} - 1 \right) \frac{1}{h} \middle| T_n = t, \theta \right\}$$

$$(3.4) \qquad = \lim_{n \to 0} \left(\frac{p_{T_n}(t | \theta + h)}{p_{T_n}(t | \theta)} - 1 \right) \frac{1}{h}$$

$$= \frac{d \log p_{T_n}(t | \theta)}{d\theta}.$$

 $\mathbf{24}$

Note that (3.3) shows that, with respect to squared error loss, $(d \log p_{T_n}(t|\theta))/d\theta$ is the best predictor of $(d \log p(X_1, X_2, \ldots, X_n|\theta))/d\theta$ based on T_n . If T_n is sufficient, the loss of information is zero, so loss of information is a measure of the sufficiency of T_n . A FC estimate which minimizes this limiting loss may be called TOE in Fisher's sense. It appears Fisher was sure that $\hat{\theta}$ is TOE in this sense. It seemed so obvious to him—not to us—that he did not even sketch a proof.

Since densities or p.f.'s are involved in this measure, one needs expansions for these, rather than expansions for probabilities or distribution functions. Even in the continuous case, expansions for densities of T_n would be difficult to justify, and we would need much stronger assumptions than those made of Theorem 2.1. To avoid this, especially to have a theory for the (discrete) multinomial of Chapter 1, in which Rao's main interest lay, Rao (1961) proposed a modified formulation, which leads to the Fisher-Rao criterion

(3.5)
$$E_{2} = \inf_{\lambda} \lim_{n \to \infty} \operatorname{Var}_{\theta} \left\{ \frac{d \log p(X_{1}, X_{2}, \dots, X_{n} | \theta)}{d \theta} - nI(\theta)(T_{n} - \theta) - \lambda n(T_{n} - \theta)^{2} \right\}$$

in which the best predictor of Fisher is being replaced by a quadratic in T_n . If T_n were exactly normal with mean θ and variance $(nI)^{-1}$, I being free of θ , then the linear term in $(T_n - \theta)$ would be exactly equal to the best predictor. So the quadratic in $(T_n - \theta)$ is a natural refinement compensating for approximate normality and, presumably, for the dependence of I on θ . The significance of the linear term can also be seen from the following fact. A FC (continuously differentiable) T_n is efficient if and only if

(3.6)
$$\frac{1}{\sqrt{n}} \frac{d \log p(X_1, X_2, \dots, X_n | \theta)}{d \theta} - \sqrt{n} I(\theta) (T_n - \theta) \to {}_p 0.$$

Rao (1961, 1973) often takes this as the definition of efficiency, that is, of FOE. A proof of this appears in the course of proving Theorem 3.1; see Step 3 in the proof.

A FC T_n is TOE in the Fisher-Rao sense if it minimizes E_2 . The first statement below merely repeats (3.1b). We shall prove only parts (iii)(a) and (iv).

THEOREM 3.1.

(i)
$$E\{(T_n^* - \theta_0)^2 | \theta_0\} = \frac{1}{nI(\theta_0)} + \frac{\psi^*(H, \theta_0)}{n^2} + o(n^{-2}),$$

where T_n^* is defined in (3.1c) and is unbiased up to $o(n^{-1})$. (ii) E_2 for T_n equals

$$\psi^*(H, \theta_0) I^2(\theta_0) - 2(J(\theta_0)/2 + \mu_{11}(\theta_0))^2/I^2(\theta_0),$$

where

$$egin{aligned} J(heta) &= Eigg(rac{d^3\log p(X_1| heta)}{d heta^3}igg| hetaigg), \ \mu_{ij}(heta) &= Eigg\{igg(rac{d\log p(X_1| heta)}{d heta}igg)^i\cdotigg(rac{d^2\log p(X_1| heta)}{d heta^2}igg)^jigg| hetaigg). \end{aligned}$$

(iii)(a) ψ* is minimized for all θ₀ when the FC, FOE T_n is the mle θ̂.
(b) The minimum value of ψ* is

$$egin{aligned} \psi^*(\, heta_0) &= ig\{I(\, heta_0)\,\mu_{02}(\, heta_0) - \mu_{11}^2(\, heta_0)ig\}/I^4(\, heta_0) \ &+ 2ig\{J(\, heta_0)/2 + \mu_{11}(\, heta_0)ig\}^2/I^4(\, heta_0) \end{aligned}$$

and the minimum value of E_2 is $E_2(\theta_0) = \{I(\theta_0)\mu_{02}(\theta_0) - \mu_{11}(\theta_0)^2\}/I^2(\theta_0)$. (iv) Given any FC, FOE T_n , one can find a function $c(\theta)$, such that

$$E\left\{\left(\hat{\theta}+c(\hat{\theta})/n-\theta_{0}\right)^{2}|\theta_{0}\right\} \leq E\left\{\left(T_{n}-\theta\right)^{2}|\theta_{0}\right\}+o(n^{-2})^{2}|\theta_{0}|$$

for all θ_0 .

The function $c(\cdot)$ is found by matching the bias of T_n , that is, if

(3.7)
$$E(\hat{\theta}_n|\theta) = \theta + b_0(\theta)/n + o(n^{-1}),$$

then

(3.7a)
$$c(\cdot) = b(\cdot) - b_0(\cdot).$$

Note that $c(\cdot)$ is thrice continuously differentiable since so are $b(\cdot)$ and $b_0(\cdot)$. From (3.9) of Step 1 of the proof of Theorem 3.1, it will be seen that

(3.7b)
$$b_0(\theta_0) = \{J(\theta_0)/2 + \mu_{11}(\theta_0)\}/I^2(\theta_0)$$

Note its appearance in (iii)(b) of Theorem 3.1. In the following we will write

(3.7c)
$$\hat{\theta}_n^* = \hat{\theta}_n - b_0(\hat{\theta}_n)/n.$$

In the proof of Theorem 3.1 we will need the following simple facts. Let $Y_{1j}, Y_{2j}, Y_{3j}, Y_{4j}$ be i.i.d. real r.v.'s with zero expectations and finite moments of order 4. Let $\overline{Y}_i = (\sum_{j=1}^n Y_{ij}) n^{-1}$. Then, up to $o(n^{-2})$,

(3.7d)
$$\operatorname{Cov}(\overline{Y}_{1}^{2}, \overline{Y}_{2}, \overline{Y}_{3}) = 2 \operatorname{Cov}(Y_{11}, Y_{21}) \operatorname{Cov}(Y_{11}, Y_{13}) / n^{2},$$

(3.7e)
$$\operatorname{Cov}\left(\overline{Y}_{1} \ \overline{Y}_{2}, \overline{Y}_{3} \ \overline{Y}_{4}\right) = \{\operatorname{Cov}(Y_{11}, Y_{31})\operatorname{Cov}(Y_{21}, Y_{41}) + \operatorname{Cov}(Y_{11}, Y_{41})\operatorname{Cov}(Y_{21}, Y_{31})\}/n^{2}.$$

PROOF OF THEOREM 3.1. Statement (i) follows from easy direct calculation by the delta method, which is easily justified since E stands for EI_U , and (ii) follows from fairly direct but involved calculations, making use of the proof of part (iii)(a) below. We refer the reader to Ghosh and Subramanyam [(1974), pages 344 and 345]. (iv) follows easily from (iii)(a). To see this, note, by (3.7a),

$$\hat{\theta} + c(\hat{\theta})/n = \hat{\theta}^* + b(\hat{\theta})/n$$
$$= \hat{\theta}^* + b(\theta_0)/n + b'(\theta_0)(\hat{\theta} - \theta_0)/n + \text{smaller terms.}$$

By the delta method,

$$\begin{split} E \left\{ \left(\hat{\theta} + \frac{c(\hat{\theta})}{n} - \theta_0 \right)^2 \middle| \theta_0 \right\} \\ &= E \left\{ \left(\hat{\theta}^* - \theta_0 \right)^2 \middle| \theta_0 \right\} + \frac{b^2(\theta_0)}{n^2} + 2 \frac{b'(\theta_0)}{n} E \left(\hat{\theta} - \theta_0 \right)^2 + o(n^{-2}) \\ &= E \left\{ \left(\hat{\theta}^* - \theta_0 \right)^2 \middle| \theta_0 \right\} + \frac{b_2(\theta_0)}{n^2} + \frac{2b'(\theta_0)}{n^2 I(\theta_0)} + o(n^{-2}). \end{split}$$

Similarly,

$$E\{(T_n - \theta_0)^2 | \theta_0\} = E\{(T_n^* - \theta_0)^2 | \theta_0\} + b^2(\theta_0)/n^2 + 2b'(\theta_0)/n^2 I(\theta_0) + o(n^{-2}).$$

Hence (iv) follows from parts (i) and (iii)(a).

(iii)(a) The idea behind the proof is to show

$$T_n^* - \theta_0 = \hat{\theta}_n^* - \theta_0 + R_n$$

where R_n is orthogonal to $(\hat{\theta}_n^* - \theta_0)$ in the sense $E\{R_n(\hat{\theta}_n^* - \theta_0)|\theta_0\} = o(n^{-2})$.

STEP 1. Let $I = I(\theta_0)$,

(3.8a)
$$Z_n = n^{-1} \frac{d \log p(X_1, X_2, \dots, X_n | (\theta))}{d \theta} \bigg|_{\theta_0} = \sum \beta'^{(i)} (p_i - \pi_i(\theta_0)),$$

(3.8b)
$$W_n = n^{-1} \frac{d^2 \log p}{d\theta^2} \bigg|_{\theta_0} + I = \sum \beta''^{(i)} (p_i - \pi_i(\theta_0)),$$

(3.8c)
$$S'_n = I^{-2}(\theta_0)(Z_n W_n) + (2J^3)^{-1} J Z_n^2,$$

where $J = J(\theta_0)$ is defined in (iii)(b) of the theorem.

Essentially by Taylor expansion, as in Section 2.6,

(3.9a)
$$\hat{\theta}_n - \theta_0 = Z_n / I + S'_n + \hat{R}_n,$$

where the remainder $\hat{R}_n = O(n^{-3/2})$ as defined earlier in this chapter, that is, $E(|\hat{R}_n|^2|\theta_0) = O(n^3)$. Let

$$S_n = S'_n - E(S'_n | \theta_0)$$

and note that

$$E(S'_n|\theta_0) = b_0(\theta_0)/n.$$

It follows that

(3.9b)
$$\hat{\theta}_n - \theta_0 = Z_n / I + S_n + b_0(\theta_0) / n + \hat{R}_n$$

STEP 2. On the set U introduced earlier in this chapter, the FC T_n estimate has a Taylor expansion around $H(\pi(\theta)) = \theta$,

$$T_n = H(p) = \theta + \sum l_i (p_i - \pi_i(\theta)) + \sum l_{ij} (p_i - \pi_i(\theta)) (p_j - \pi_j(\theta)) + o(n^{-3/2}) + \sum l_{ijk} (p_i - \pi_i(\theta)) (p_j - \pi_j(\theta)) (p_k - \pi_k(\theta)),$$

where $l_i = l_i(\pi(\theta))$, and so on. We record for later use

(3.10a)
$$\sum l_i(\pi(\theta))\pi'_i(\theta) = \frac{dH}{d\theta} = \frac{d\theta}{d\theta} = 1.$$

Let the sum of the first three terms on the right side of (3.10) be denoted by $H_2(p)$, and let $H_3(p)$ stand for the sum when the fourth term is included. The terms on the right side of (3.10) will be denoted as the constant, linear, quadratic, and cubic terms. Write E for $E\{|\theta\}$ and note

(3.11)
$$E(T_n) = E(H_2) + o(n^{-1})$$

and

(3.12)
$$E(H_2) = \theta + b(\theta)/n.$$

It follows, at least formally, on differentiating under the expectation sign, that

$$E(H_2Z_n) = E(T_nZ_n) + o(n^{-2})$$

= $\frac{1}{n}\frac{d}{d\theta}E(T_n) + o(n^{-2})$
= $\frac{1}{n}\frac{d}{d\theta}E(H_2) + o(n^{-2})$
= $\frac{1}{n} + \frac{b'(\theta)}{n^2} + o(n^{-2}),$

that is,

(3.13)
$$E(H_2Z_n) = \frac{1}{n} + \frac{b'(\theta)}{n^2} + o(n^{-2}).$$

The second and third line in (3.12a) are hard to justify, so we prove (3.13) directly. Clearly

(3.13a)
$$E(H_2 - H_3)Z_n = o(n^{-2}).$$

So to prove (3.13), it suffices to show

(3.13b)
$$E(H_3Z_n) = \frac{1}{n} + \frac{b'(\theta)}{n^2} + o(n^{-2}).$$

 $E(\theta Z_n) = 0.$

Toward this end, note, using (3.10a),

(3.14a)

$$E\{\text{linear term in } H_3\}Z_n = \frac{1}{n}\sum l_i\pi'_i(\theta)$$

$$= \frac{1}{n}.$$
Also

(3.14b) Managaran

Moreover,

 $E\{(\text{quadratic term of } H_3)Z_n\}$

$$(3.14c) = \frac{1}{2n} \frac{d}{d\theta} E \left\{ \sum_{i,j} l_{ij} (p_i - \pi_i(\theta)) (p_j - \pi_j(\theta)) \right\}$$
$$+ \frac{1}{2n} E \left\{ \sum_{i,j} l_{ij} \frac{d}{d\theta} (p_i - \pi_i(\theta)) (p_j - \pi_j(\theta)) \right\}$$
$$- \frac{1}{2n} E \left\{ \sum_{i,j,k} l_{ijk} \pi'_k(\theta) (p_i - \pi_i(\theta)) (p_j - \pi_j(\theta)) \right\}$$

To prove this, apply Leibnitz's rule to evaluate

$$rac{d}{d heta}ig\{l_{ij}(\,p_i^{}-\pi_i^{}(\, heta^{}))ig(p_j^{}-\pi_j^{}(\, heta^{})ig)pig(X_1^{},X_2^{},\ldots,X_n^{}| hetaig)ig\}$$

and observe that interchange of differentiation and expectation is justified for polynomials in p, since $\beta(\theta)$ is in the interior of the natural parameter space. The first term on the right side of (3.14c) is $b'(\theta)/n^2$, and the second term on the right side of (3.14c) is

$$\frac{2}{2n}\sum_{i,j}l_{ij}\pi'_i(\theta)\big(p_j-\pi_j(\theta)\big)=0.$$

So,

 $E\{(\text{quadratic term in } H_3)Z_n\}$

(3.14d)
$$= \frac{b'(\theta)}{n^2} - \frac{1}{2n} E \bigg\{ \sum_{i,j,k} l_{ijk} \pi'_k (p_i - \pi_i) (p_j - \pi_j) \bigg\}.$$

Finally, in a similar way,

 $E\{(ext{cubic term in } H_3)Z_n\}$

$$(3.14e) = \frac{1}{n} \frac{d}{d\theta} E(\text{cubic term})$$

$$(-\frac{1}{6n} E\left\{\sum_{i,j,k} \left(\frac{d}{d\theta} l_{ijk}\right) (p_i - \pi_i) (p_j - \pi_j) (p_k - \pi_k)\right\}$$

$$+ \frac{3}{6n} E\left\{\sum_{i,j,k} l_{ijk} \pi'_k (p_i - \pi_i) (p_j - \pi_j)\right\}.$$

The first two terms on the right side of (3.14e) are $o(n^{-2})$, while the last term here cancels the last term in (3.14d). Hence, adding up the right sides of (3.14a), (3.14b), (3.14d) and (3.14e), we get (3.13b). Hence, via (3.13a), (3.13) is proved.

It follows, using (3.13) and expanding $b(H_2)$,

$$E(T_n^*Z_n|\theta_0) = E\{(H_2 - b(H_2)/n)Z_n|\theta_0\} + o(n^{-2})$$
(3.15)

$$= \frac{1}{n} + \frac{b'(\theta_0)}{n^2} - \frac{b'(\theta_0)}{n}E(H_2Z_n|\theta_0) + o(n^{-2}),$$
(3.16)

$$E(H_2Z_n|\theta_0) = \frac{1}{n} + o(n^{-1}).$$

Hence, using (3.16) in (3.15), we get

(3.17)
$$E(T_n^*Z_n|\theta_0) = \frac{1}{n} + o(n^{-2}).$$

STEP 3. We now use the fact that T_n is FOE. The asymptotic variance of $\sqrt{n}(T_n - \theta_0)$ equals

$$\operatorname{Var}(\sqrt{n}\sum l_i(p_i-\pi_i(\theta_0))|\theta_0),$$

which, by Cauchy-Schwarz, (3.15) and (3.16),

$$(3.18) \ge \frac{1}{I(\theta_0)}$$

with equality if and only if

(3.19) $\sum l_i(p_i - \pi_i(\theta_0)) = Z_n/I.$

Hence, by (3.8a),

(3.20)
$$l_i = \beta^{\prime(i)}(\theta_0) / I(\theta_0).$$

Since (3.20) is true for all θ_0 , we may differentiate it once more, getting

(3.21)
$$\sum l_{ij}\pi'_{j}(\theta_{0}) = \frac{d}{d\theta} \left(\frac{\beta'^{(i)}(\theta)}{I(\theta)} \right) \bigg|_{\theta_{0}}$$

By (3.10) and (3.14),

(3.22)
$$T_n^* - \theta_0 = T_n - \theta_0 - b(\theta)/n + O(n^{-3/2}) = Z_n/I + O(n^{-1}),$$

(3.23) $\hat{\theta}_n^* - \theta_0 = \hat{\theta} - \theta_0 - b_0(\theta)/n + O(n^{-3/2}) = Z_n/I + O(n^{-1})$
so that

(3.24)
$$(T_n^* - \theta_0) - (\hat{\theta}_n^* - \theta_0) = O(n^{-1}).$$

Also, by (3.9b) and (3.7b),

(3.25)
$$\hat{\theta}_n^* - \theta_0 = (Z_n/I)(1 - b_0'(\theta_0)/n) + S_n + O(n^{-3/2}).$$

STEP 4. Let $A_n = T_n - \theta_0 - Z_n / I$. By (3.20),

(3.26)
$$A_n = \frac{1}{2} \sum l_{ij} (p_i - \pi_i(\theta_0)) (p_j - \pi_j(\theta_0)) + O(n^{-3/2}).$$

We claim

(3.27) $E(A_n S_n | \theta_0) = \text{a constant (not depending on } T_n) + o(n^{-2}).$

In view of the definition of S_n , it is enough to prove the above with S_n replaced by $Z_n^2 - I/n$ or $Z_n W_n - E(Z_n W_n)$, and in view of (3.22) and the fact that $S_n = O(n^{-1})$, it is enough to replace A_n by $\sum l_{ij}(p_i - \pi_i(\theta_0))(p_j - \pi_j(\theta_0))$. In the following, E stands for $E\{|\theta_0\}$:

$$E\left\{\left(\sum_{i,j} l_{ij}(p_i - \pi_i)(p_j - \pi_j)\right)(Z_n^2 - I/n)\right\}$$

= $\sum_{i,j} l_{ij} \operatorname{Cov}\{Z_n^2, (p_i - \pi_i)(p_j - \pi_j)\}$
(3.28) = $\sum_{i,j} l_{ij} \operatorname{Cov}\{Z_n, p_i\} \cdot \operatorname{Cov}\{Z_n, p_j\} + o(n^{-2}) \quad [by (3.7c)]$
= $\sum_i \operatorname{Cov}\{Z_n, p_i\} \sum_i l_{ij}\pi'_j + o(n^{-2}) \quad [by (3.15)]$
= $\sum_i \operatorname{Cov}\{Z_n, p_i\} \frac{d}{d\theta} \left(\frac{\beta'^{(i)}}{I}\right)\Big|_{\theta_0} + o(n^{-2}) \quad [by (3.21)].$

This does not involve H or its derivatives. The proof with $Z_n W_n - E(Z_n W_n)$ replacing $Z_n^2 - I/n$ is quite similar; it makes use of (3.7d), (3.15) and (3.21). Details are omitted. [The interested reader may consult Lemma 4 of Ghosh and Subramanyam (1974).]

STEP 5.

This completes the proof of (iii)(a). The proof (iii)(b) follows from straightforward direct calculation; see Ghosh and Sumbramanyam [(1974), page 344].

The fact that $\hat{\theta}$ minimizes E_2 among FC estimates is the Fisher-Rao theorem. The fact that the third order unbiased estimate $\hat{\theta}_n^*$ based on $\hat{\theta}_n$ minimizes the variance [up to $o(n^{-2})$] among third order unbiased estimates T_n^* based on FC, FOE T_n , is Rao's theorem. These results were proved for a multinomial by Rao, (1961, 1962, 1963). The present proof is taken from Ghosh and Subramanyam (1974), except that whenever we use their Lemma 3, we provide complete justification and streamline the proof of (iii)(a) in Theorem 3.1. Even if specialized to the multinomial, the present argument is different from Rao's.

Similar theorems have been obtained by Efron (1975) and also by Akahira and Takeuchi and Pfanzagl and his co-workers, at about the same time. Their results are described in Akahira and Takeuchi (1981) and Pfanzagl (1979).

The fact that $\hat{\theta}$ minimizes E_2 is interesting as well as amenable to geometrical analysis. However, the properties (iii) and (iv) seem the most convenient if one wants to apply these results to get better estimates: (iii) is relevant if unbiasedness is a concern and (iv) is relevant in the absence of that. It is worth mentioning that the $o(n^{-2})$ term in (i) is uniformly so on compact θ_0 -sets. This is true of (iv) also.

If one compares a FC, FOE estimate T_n directly with $\hat{\theta}_n$ [i.e., without either of the adjustments in (iii) or (iv)], then, in general, neither is better than the other in the third order for all θ_0 .

3.2. Third order efficient approximate solution of likelihood equation. Since the mle is often hard to calculate, one may wish to have approximate solutions of the likelihood equations which will continue to be TOE. Let T_n be a \sqrt{n} -consistent estimate of θ , that is, $\sqrt{n}(T_n - \theta) = O_p(1)$. The likelihood equation may be written as

$$\begin{split} 0 &= \frac{d \log L_n}{d\theta} \bigg|_{\hat{\theta}} = \frac{d \log L_n}{d\theta} \bigg|_{T_n} + \left(\hat{\theta} - T_n\right) \frac{d^2 \log L_n}{d\theta^2} \bigg|_{T_n} \\ &+ \frac{\left(\hat{\theta} - T_n\right)^2}{2} \frac{d^3 \log L_n}{d\theta^3} \bigg|_{T_n} + \frac{\left(\hat{\theta} - T_n\right)^3}{6} \frac{d^4 \log L_N}{d\theta^3} \bigg|_{T_n} + O_p \bigg(\frac{1}{n}\bigg) \end{split}$$

Then the successive approximations to $\sqrt{n}(\hat{\theta}_n - \theta)$ are

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) = \sqrt{n}\left(T_n - \theta\right) + U_{in} + R_{in}, \quad i = 1, 2, 3,$$

where $R_{in} = O_n(n^{-i/2}),$

$$U_{1n} = \frac{\left((1/\sqrt{n}) (d \log L_n/d\theta) |_{T_n} \right)}{\left(-(1/n) (d^2 \log L_n/d\theta^2) |_{T_n} \right)},$$

$$U_{2n} = \left\{ \frac{1}{\sqrt{n}} \frac{d \log L_n}{d\theta} \Big|_{T_n} + \frac{U_{1n}^2}{2} \frac{1}{n^{3/2}} \frac{d^3 \log L_n}{d\theta^3} \Big|_{T_n} \right\} \left(-\frac{1}{n} \frac{d^2 \log L_n}{d\theta^2} \Big|_{T_n} \right)^{-1}$$

$$\begin{split} U_{3n} &= \left\{ \frac{1}{\sqrt{n}} \left. \frac{d \log L_n}{d\theta} \right|_{T_n} + \frac{U_{2n}^2}{2} \frac{1}{n^{3/2}} \left. \frac{d^2 \log L_n}{d\theta^3} \right|_{T_n} + \frac{U_{2n}^3}{6} \frac{1}{n^2} \left. \frac{d^4 \log L_n}{d\theta^4} \right|_{T_n} \right\} \\ &\times \left\{ -\frac{1}{n} \left. \frac{d^2 \log L_n}{d\theta^2} \right|_{T_n} \right\}^{-1}. \end{split}$$

Our approximate solution is $\tilde{\theta} = T_n + U_{3n}$.

If T_n is FC with a thrice continuously differentiable H, in addition to being \sqrt{n} consistent, we can Taylor expand $\tilde{\theta}$ in U and show, with our present interpretation of $E = EI_U$, that

$$egin{aligned} &Eig\{(ilde{ heta}- heta)| hetaig\} = Eig\{(ilde{ heta}- heta)| hetaig\} + o(n^{-1}), \ &Eig\{(ilde{ heta}- heta)^2| hetaig\} = Eig\{(ilde{ heta}- heta)^2| hetaig\} + o(n^{-2}), \end{aligned}$$

so that $\tilde{\theta}$ will inherit third order optimal properties of $\hat{\theta}$.

Alternatively, in addition to \sqrt{n} -consistency, one may require T_n to have a moderate deviation property, that is, there exists a sufficiently large c such that $P\{|T_n - \theta| > c\sqrt{\log n} / \sqrt{n}\} = o(n^{-1})$ uniformly on compact sets of θ . In this case one can show R_{3n} satisfies the conditions of Lemma 2.1 with s = 4. Hence if $\sqrt{n}(\hat{\theta} - \theta)$ has a valid Edgeworth expansion for s = 4, then so will $\sqrt{n}(\tilde{\theta} - \theta)$. This means the first interpretation of expansions of moments in Section 2.7 is applicable. We may also use the interpretation based on the result of Götze and Hipp (1978).

3.3. Example 2.3 (Berkson's bioassay example) revisited. Suppose, for simplicity, β is known and the parameter of interest if α . The likelihood equation is

$$0 = \sum_{i=1}^{k} n(p_i - \pi_i(\alpha)).$$

Let $\hat{\alpha}_n$ be the mle. Let $L_i = \log\{\pi_i/(1 - \pi_i)\} = \alpha + \beta d_i$ and $l_i = \log\{p_i/(1 - p_i)\}$. Minimizing $\sum p_i(1 - p_i)(l_i - L_i)^2$ with respect to α , one gets Berkson's minimum logit chi-square estimate T_n . T_n is the solution of

$$\sum p_i (1-p_i)(l_i - L_i^*) = 0,$$

where $L_i^* = T_n + \beta d_i$. Clearly T_n is easy to calculate explicitly, unlike the mle $\hat{\alpha}_n$. It is also FC and FOE. So on the grounds of easy calculation, one might prefer T_n to $\hat{\alpha}_n$ if first order efficiency were the only other concern. If we invoke third order efficiency, we can do strictly better than T_n by using a suitable perturbation of $\hat{\alpha}_n$; see Theorem 3.1, part (iv). If third order unbiasedness is also a concern, we can perturb T_n to make it unbiased up to $o(n^{-1})$, and do the same with $\hat{\alpha}_n$. By Theorem 3.1, part (iii)(a), we know $\hat{\alpha}_n^*$ is third order better than T_n^* . Actually, in this example $\hat{\alpha}_n^*$ is strictly better in the third order sense. Some simulations reported in Subramanyam's 1980 thesis (submitted to the Indian Statistical Institute) bear this out.

This example is actually a linear exponential and so a complete sufficient statistic exists, namely, $\sum_{i=1}^{k} p_i$. T_n^* is not a function of it, but α_n^* is. In fact $\hat{\alpha}_n^*$ may be thought of as an approximation to the Rao-Blackwellized estimate $E(T_n^*|\Sigma p_i)$, which is superior to T_n^* .

Since T_n is FC and FOE, we may use it to approximate $\hat{\alpha}_n$ or $\hat{\alpha}_n^*$; see Section 3.2.

3.4. Multiparameter extensions. To fix ideas, suppose $\theta = (\theta_1, \theta_2)$, $T_n - H(\overline{Z})$ is FC, FOE (in the sense that each component of T_n is FC, FOE) and $\hat{\theta} - H_0(\overline{Z})$ is mle. If one considers the expansions of the dispersion matrix of $T_n^* = T_n - b(T_n)/n$ and $\hat{\theta}_n^* = \hat{\theta}_n - b_0(\theta)/n$, then the difference of the coefficient matrices of n^{-2} is positive semidefinite. This is a generalization of Rao's theorem.

To generalize the Fisher-Rao theorem, consider the analogous of E_2 , namely, $\inf_{\lambda} E_{12}(\lambda, H, \theta_0)$ and $\inf_{\gamma} E_{22}(\gamma, H, \theta_0)$, where

$$L_n = p(X_1, X_2, \ldots, X_n | \theta),$$

$$(3.29) \begin{aligned} E_{12}(\lambda, H, \theta_0) &= \lim_{n \to \infty} \operatorname{Var}_{\theta_0} \left[\frac{\partial \log L_N}{\partial \theta_1} \bigg|_{\theta_0} - \sum n(T_{in} - \theta_{i0}) I_{1i}(\theta_0) \right. \\ &\left. - \sum n \lambda_{ij} (T_{in} - \theta_{j0}) (T_{jn} - \theta_{j0}) \right], \end{aligned}$$

$$E_{22}(\gamma, H, \theta_0) = \lim_{n \to \infty} \operatorname{Var}_{\theta_0} \left[\frac{\partial \log L_N}{\partial \theta_2} \Big|_{\theta_0} - \sum_{\iota} n(T_{\iota n} - \theta_{\iota 0}) I_{2\iota}(\theta_0) - \sum_{\iota} n\gamma_{\iota j}(T_{\iota n} - \theta_{\iota 0}) (T_{j n} - \theta_{\iota 0}) \right].$$

Let the random variables within [] above be denoted as $Y_1(n, \lambda, H, \theta_0)$ and $Y_2(n, \gamma, H, \theta_0)$. Then one can show that for each λ, γ , the limiting dispersion matrix of

$$\{Y_1(n, \lambda, H, \theta_0) - Y_1(n, \lambda, H_0, \theta_0)\}$$

and

$$\left\{Y_2(n,\gamma,H,\theta_0)-Y_2(n,\gamma,H_0,\theta_0)\right\}$$

is positive semidefinite. (This implies that E_{12} , E_{22} are minimized by $\hat{\theta}$.) This is the generalization of the Fisher-Rao theorem.

The proof in both cases is exactly identical.

The extensions are taken from Ghosh and Subramanyam (1974).

3.5. Example 2.4 (Behrens–Fisher) revisited. The likelihood equations reduce to

(3.31) $\hat{\sigma}_1^2 = s_1^2 + \left(\overline{U} - \hat{\mu}\right)^2,$

(3.32)
$$\sigma_2^2 = s_2^2 + \left(\overline{U} - \hat{\mu}\right)^2,$$

(3.33) $0 = A(\hat{\mu}),$

where

n

$$A(\mu) = (\overline{U} - \mu) \left(s_1^2 + (\overline{U} - \mu)^2 \right) + (\overline{V} - \mu) \left(s_2^2 + (\overline{V} - \mu)^2 \right),$$

and $s_1^2 = n^{-1} \Sigma_1^n (U_j - \overline{U})^2, \ s_2^2 = n^{-1} \Sigma_1^n (V_j - \overline{V})^2, \ \overline{U} = n^{-1} \Sigma_1^n U_j \text{ and } \overline{V} = n^{-1} \Sigma V_j.$

Equation (3.33) means $\hat{\mu}$ is a weighted mean of \overline{U} and \overline{V} with the weights being proportional to the inverse of $\hat{\sigma}_1^2$ and $\hat{\sigma}_2^2$. Note that (3.33) is a cubic equation, $A(\mu)$ changes sign only when μ is between \overline{U} and \overline{V} , $A(\overline{U})$ and $A(\overline{V})$ have opposite signs and $A'(\mu) < 0$ for μ between \overline{U} and \overline{V} . It follows that (3.33) has a unique real root, and the root lies between \overline{U} and \overline{V} . This root must be consistent as both \overline{U} and \overline{V} are, so this is $\hat{\mu}$.

It is also clear that if we define T_n as the weighted mean of \overline{U} and \overline{V} , with the weights proportional to the inverse of s_1^2 and s_2^2 , then T_n is FC and FOE. So T_n may be used to approximate $\hat{\mu}$.

Let

$$\hat{W}_1 = \hat{\sigma}_2^2 / (\hat{\sigma}_1^2 + \hat{\sigma}_2^2), \qquad W_1 = s_1^2 / (s_1^2 + s_2^2).$$

Then

(3.34)
$$n(\hat{\mu} - T_n) = \sqrt{n} (\hat{W}_1 - W_1) \{ \sqrt{n} (\overline{U} - \mu) - \sqrt{n} (\overline{V} - \mu) \} \rightarrow P_0.$$

Also, using the fact that s_1^2, s_2^2 are independent of $\overline{U}, \overline{V}$.

$$(3.35) E(T_n|\theta) = \mu$$

Using (3.34) and (3.35), it is easy to show

$$E(\hat{\mu}|\theta) = \mu + o(n^{-1}),$$

that is, $\hat{\mu}$ is unbiased up to third order. Since

$$n^{3/2} \Big[\left(\overline{U} - \hat{\mu} \right)^2 - \left(\overline{U} - T_n \right)^2 \Big] \rightarrow_P 0,$$

 $n^{3/2} \Big[\left(\overline{V} - \hat{\mu} \right)^2 - \left(\overline{V} - T_n \right)^2 \Big] \rightarrow_P 0,$

let

$$ilde{\sigma}_{1}^{2} = s_{1}^{2} + \left(\overline{U} - T_{n}\right)^{2}, \qquad ilde{\sigma}_{2}^{2} = s_{2}^{2} + \left(\overline{V} - T_{n}^{2}\right)^{2}$$

and $\tilde{\mu}$ be the weighted mean of $\overline{U}, \overline{V}$ with weights inversely proportional to $\tilde{\sigma}_1^2$ and $\tilde{\sigma}_2^2$. Then $(\tilde{\sigma}_1^2, \tilde{\sigma}_2^2, \tilde{\mu})$ has the third order properties of $\hat{\theta}$, and, in particular, $\tilde{\mu}$ is third order efficient among all third order unbiased estimates.

Easy calculation shows

$$E(\tilde{\sigma}_{1}^{2}|\theta) = \sigma_{1}^{2} + \left(\frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\right)^{2} \left(\frac{\sigma_{1}^{2}}{n} + \frac{\sigma_{2}^{2}}{n}\right) + o(n^{-1}),$$

and similarly for $\tilde{\sigma}_2^2$.

3.6. Hodges-Lehmann deficiency. Comparing the coefficient of n^{-2} in the expansion of variance or mean square can be interpreted in terms of "equivalent" sample sizes in the manner of Hodges and Lehmann (1970).

HIGHER ORDER ASYMPTOTICS

Suppose T_{1n} and T_{2n} are two estimates and

$$E\{(T_{in} - \theta)^2 | \theta\} = \frac{a_1}{n} + \frac{a_{i2}}{n^2} + o(n^{-2})$$

Suppose we define two sample sizes n_1 and n_2 to be equivalent if T_{1n_1} and T_{2n_2} have (nearly) equal accuracy in the sense

$$\frac{a_1}{n_1} + \frac{a_{12}}{n_1^2} = \frac{a_1}{n_2} + \frac{a_{22}}{n_2^2} + o(n_2^{-2}).$$

Then, as shown in Hodges and Lehmann (1970),

$$\lim_{n_2 \to \infty} \frac{n_1}{n_2} = 1, \qquad \lim_{n_2 \to \infty} (n_2 - n_1) = d.$$

Then d must satisfy

$$\frac{a_1}{n_1} - \frac{a_1}{n_1 + d} = \frac{a_{22}}{\left(n_1 + d\right)^2} - \frac{a_{12}}{n_1^2} + o\left(n_1^{-2}\right),$$

which, on simplification, leads to

$$a_1 \cdot d = rac{(a_{22} - a_{12})n_1^2 + o(n_1^2)}{n_1^2 + o(n_1^2)},$$

so that

$$d=\frac{a_{22}-a_{12}}{a_1},$$

a formula due to Hodges and Lehmann (1970). As noted in Ghosh and Subramanyam [(1974), page 347], Theorem 3.1 then shows T_n^* is deficient with respect to $\hat{\theta}^*$ in the sense of requiring $(\psi^*(H, \theta_0) - \psi^*(\theta_0))/I(\theta_0)$ additional observations for the same accuracy.

3.7. Asymptotic sufficiency. The following is a slight correction of a result stated without proof in Ghosh and Subramanyam (1974). Under suitable regularity conditions, there is a compact neighborhood Θ_0 of θ_0 and densities $q_{\theta,n}, \theta \in \Theta_0$, such that

(A)
$$\hat{\theta}, \frac{d^i \log p(X_1, X_2, \dots, X_n | \theta)}{d\theta^i} \Big|_{\hat{\theta}} \equiv L_i, \quad i = 2, 3,$$

are sufficient for $q_{\theta,n}$ and

(B)
$$\sup_{\theta \in \Theta_0} \int \cdots \int \left| p(x_1, x_2, \dots, x_n | \theta) - q_{\theta, n}(x_1, x_2, \dots, x_n | dx_1, \dots, dx_n) \right|$$
$$= o(n^{-1}).$$

The proof is by Taylor expanding to get an approximation and then normalizing to get a density.

In a similar sense, $\hat{\theta}$ and L_2 are asymptotically sufficient up to $o(n^{-1/2})$. Asymptotic sufficiency of $\hat{\theta}$ and L_2 in a different sense appears in Chapter 4. Since the $q_{\theta,n}$'s are curved exponentials, in a sense Theorem 3.1 and the

Since the $q_{\theta,n}$'s are curved exponentials, in a sense Theorem 3.1 and the above approximation theorem can be used to generalize third order results to general densities. We follow a different route in Chapter 6.

3.8. Third order efficiency and Bhattacharya bounds. Since first order efficiency has a small sample analogue in the Cramér-Rao inequality, it is natural to ask if the third order results have an analogue in the Bhattacharya bounds. That is not the case.

Ghosh and Subramanyam [(1974), page 350] note that if one regresses T_n on $d \log p/d\theta$ and $(1/p)d^2p/d\theta^2$ as in Bhattacharya bounds, one gets

$$E\{(T_n^*-\theta_0)^2(\theta_0)\} \geq \frac{1}{nI(\theta_0)} + \frac{1}{n^2I^4(\theta_0)} \left(\frac{J(\theta_0)}{2} + \mu_{11}(\theta_0)\right) + o(n^{-2}),$$

which, in view of Theorem 3.1, is not sharp. In fact, it can be attained up to $o(n^{-2})$ for all θ if and only if the curved exponential is linear.

There is no small sample analogue of third order efficiency.