
CHAPTER 2 

Edgeworth Expansions, 
Curved Exponentials and 
Fisher Consistent Estimates 

2.1. Edgeworth expansions for functions of sample mean. To ex
plain what the expansions for asymptotic mean and variance mean, we need 
the concept of Edgeworth expansions. 

Let X;, i = 1,2, ... ,n, be m-dimensional, i.i.d., fJ(·), ... ,/j,(·), k real val
ued (measurable) functions on Rm and 

with finite mean fL = E(Zi) and finite positive definite dispersion matrix 
[ (Ti.i']. The i th coordinates of Zi and J-t are Zu and fL;. Let 

- 1 fl 

Z=-LZ,, T=T,=H(Z), n . 
1 

where H is a real valued function which is (s - 1) times continuously 
differentiable in a neighborhood of fL, s ;:::: 2. 

By Taylor expansion around fL, 

(2.la) 

where 

H(Z) = H( !L) + Ll;(Z;- !L;) + Ll;;·(Z;- !L;)(Z;·- fL;•) 

+ ... + "z . . (z - II )(z - II ) ••• L...J z1 , L2 , ..• , t s 1 i 1 l"""'i 1 i2 ri 2 

x(z - ~~.. ) + R 
l s 1 r"t s 1 n 

z. = iJli(Z. ) I 
' rlz ' 

' fL 

and so on, 

6 
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and R, = a(IIZ- FLII" 1 ). The order of the remainder R 11 can be strengthened 
to o(IIZ- !Lin if we assume His s times continuously differentiable. Clearly, 
this implies 

(2.lb) 

Let 

R, = op( n <"- 1 ll 2 ) if 11 is ( s -1) times continuously differentiable 

= Op( n ·' 12 ) if H is s times continuously differentiable. 

w, = rn ( H < z) - 11 < fL)) , 

W,; = vn(H1(Z)- H( FL)). 

Applying the central limit theorem to the first term in the expansion for W, 
or w,;, and noting that the subsequent terms are oP(l), it is easy to see W, 
and w,; are A.N. (0, b2 ), where b2 = L.lJ;•O'u·· We will always assume the l;'s 
are not all zero so that, [ (T;;·] being positive definite, b2 > 0. 

Our object is to have an expansion of P{W, E B), which is valid, that is, 
correct, up to o(n-<" Z)/ 2 ), for all Borel sets B. 

If s = 2, we have asymptotic normality of W,, which leads to first order 
calculations. If s = 3, we have a one-term Edgeworth expansion, correspond
ing to second order calculations and if s = 4, we have a two-term Edgeworth 
expansion, corresponding to third order calculations. In statistical applica
tions of higher order asymptotics we never need to go beyond s = 4. 

We need another technical result to motivate how the expansion is calcu
lated. It turns out that under the assumption of (s - 1) times continuous 
differentiability of H, Condition D, which will be discussed a little later, and 
appropriate moment assumptions, 

P{W, E B} -- P{W~ E B} = o(n <s- 2ll 2 ). 

The following simple lemma makes it plausible. 

LEMMA 2.1. Let Y, = Y~ + R', and assume 

(2.2a) P{R'n =~ o(n (s- 2>1 2 )} = 1 -- o(n <s 2>1 2 ) 

and, uniformly in y, 

P{Y,; < y} '= A 1(Y) + A 2(.Y)/vn + ... +A, 2(y)/(vn)" 2 

(2.2b) 
+ o( n -<" 2)/2), 

where each Ai( ·) is continuously differentiable. Then 

(2.3) 
P{Y, < y} = A1(y) + Az(Y)/vn + ... +A,_2(Y)/(vn)"- 2 

+ o(n-(s 2)/2). 

By way of proof, note that for any e > 0, 

P{IR', > B-(s 2)/2} = o(n (s-2)/2). 
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Hence 
P{Y~::::; Y-En (s 2)/2} + o(n (s-2)/2) 

::::: P{Y,,::::: y} :< P{Y;::::; y +En (s 2 >1 2 } + o(n · (.< 2 >1 2 ). 

Now use (2.2b) for y ± En <s 2 >1 2 and the fact that E may be made arbitrar
ily small. 

Note (2.2a) is stronger than R'n = oP(n <s 2 >1 2 ) and it is the condition we 
need to have equality of the left-hand sides of (2.2b) and (2.3). Condition 
(2.2a) will often be used in the sequel tacitly. Let us verify it in the case of 

Wn = w,; + R'n, 

where R'n = /nRn = oP(n <s - 2ll 2 ), from the Taylor expansion [see (2.la) and 
(2.1b)]. Assume His s times continuously differentiable and ZJ has finite sth 
order moments. Under the second assumption, 

(2.4) P{IIZ + f.LII >log n/Vn} = o(n <s 2 ll 2 ) 

by a result of von Bahr; see Bhattacharya and Ghosh (1978). Under s times 
continuous differentiability of H, we have, with a suitable c > 0, 

(2.5) JR'nl =JvnRnl <c(logn)"12/(n{' u;2 

on the set liZ- f.LII ::::; log nj rn. The condition (2.2a) now follows from (2.4) 
and (2.5). 

We now get back to Edgeworth expansion of P{W; E B}, hoping by the 
above argument that it will also be Edgeworth expansion of P{W11 E B}. 

AssuMPTION B. H is (s - 1) times continuously differentiable in a neigh
borhood of f.L, and Zi has finite sth order (absolute) moments, [ u;;'] is positive 
definite and l; = (lJH(Z)/ BZ;)/1., i = 1, ... , k, are not all zero. 

Since w,; is a polynomial in (Z - f.L), its moments and hence its cumulants 
are relatively easy to calculate. Let these moments and cumulants calculated 
up to o(n <s- 2 ll 2 ) be denoted by m,. "' K,. ,. Our Assumption B suffices for 
these calculations. These moments a~d cu'mulants are often also called the 
moments and cumulants of Wn, calculated by the delta method, that is, 
essentially by Taylor expansion. This terminology is somewhat misleading for 
the following reason. The moments of w,; are not, in general, good approxi
mations to the moments of wn' which are very sensitive to the tail of wn; 
rather, it will turn out they are the moments of a distribution which approxi
mates the distribution of W,, up to o(n- <s 2ll 2 ). 

The K 's have expansions of the following kind. Let [ ·] denote the integral 
part and let ( ) denote a suitable coefficient free of n: 

(2.6) 

Kl,n = ( )n·l/2 + ( )n·:l/2 + ... +( )n-[(s-3)/2]+1/2, 

K 2 ,n = b2 + ( )n- 1 + ... +( )n-[<s 2)/2], 

K,., 11 =( )n-<r- 2)/ 2 + .. ·+( )n[(s 3l12l+l/2 ifrisodd 

= ( )n<r 2ll 2 + ... +( )n-[<s· 2ll2l ifr is even. 
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For s = 4, K 1, n, K 3, n and K 4, n each has one term and K 2, n has two terms. 
Also K 5 n onward are o(n 1). Note that, in general, K ~~ o(n--(s- 2ll2) for , r,n 
r > s and hence is negligible. This is a nontrivial fact; see Bhattacharya and 
Ghosh (1978) or Bhattacharya and Denker (1990). Finally, as noted before, 
b2 = L,lJi,(Tii' is the variance of the limiting normal distribution of W,; or Wn. 

For fixed real t, one has formally 

so that 

s 

log E(eitW~) = L Kr,n(it)rjr!+ o(n -(s-2)/2), 
r~ 1 

E(eitw:,) = e-t 2 !2[1 + ( )n-112 + ( )n-1 + ... +( )n-<s-2)/2] 
(2.7) 

+ o(n-<s-2)/2), 

where the coefficient of n- r 12 is a polynomial 1r/it ). It is easy to prove by 
repeated integration by parts that 

7Tr(it)e-tz/2 = /"' eity(7Tr(-D)e_Y2/2hz)dy, 
-"" 

(2.8) 

where D = djdy and 1r/ -D)f(y) is the result obtained by operating the 
polynomial in (-D) on f. So inverting term by term on the right-hand side of 
(2. 7) and using (2.8), we get 

s-2 

E(eitW;,) = c.f. of L {1rr( -D)<f>(yiO, b2 )}n-r/2 + o(n-(s- 2)/ 2 ) 

r=O 

= c.f. of 1/1,, n + o(n-(s- 2)1 2 ), 
def ·' 

where c.f. denotes characteristic function and <fJ(yiO, b2 ) is the normal density 
with mean 0 and variance b2 • The expression 

s-2 

(2.9) 
1/Js,n = L 7Tr( -D)<fJ(yJO, b2)n-r/2 

0 

where the coefficient of n -r 12 is a polynomial in y, is called a formal, as 
distinct from a rigorous or valid, Edgeworth expansion of the density of Wn. 
We will call it a valid Edgeworth expansion if 

(2.10) P(Wn E B)= f 1/Js,n(Y) dy + o(n-(s 2)/2). 
B 

Often one requires (2.10) to hold uniformly in B. 
To prove (2.10) one needs the following condition. 

CONDITION D. For some positive integer M, the M-fold convolution of Z 1 

has an absolutely continuous nonzero component. 
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An easily verifiable sufficient condition is provided in the following lemma. 
Recall that Zi 1 = t;(X1), where Zi 1 is the ith component of the vector Z 1. 

LEMMA 2.2. Suppose X1 has a probability density function (with respect to 
the Lebesgue measure) which is positive on some open ball B. Suppose also 
f 1 , ••• , fk are continuously differentiable on B and 1, f 1 , f 2 , ... , fk are linearly 
independent (as elements of the linear space of continuous functions on B). 
Then Condition D holds with M = k. 

A proof is available in Bhattacharya and Ghosh (1978). It is essentially 
similar to a proof of a famous result of Dynkin on sufficiency. 

THEOREM 2.1. Suppose X/s are i.i.d., f 1, f 2 , ... , fk, Z1, Wn and W,; are 
defined as before and Assumption B and Condition D hold. Then 

(2.10a) s~p,P{Wn E B}- ~~~,,n(Y) dyl = o(n-(s- 2ll 2 ), 

(2.10b) s~p,P{W~ E B}- fB!/Is,n(Y) dyl = o(n -(s-2)/2), 

where the supremum is over all Borel sets. 

Thus under the conditions of Theorem 2.1 we do have validity of the formal 
Edgeworth expansion for W,, and W~. 

We first give two examples, and then, in the next two sections, remark on 
the proof and assumptions. 

EXAMPLE 2.1 (Student's t). Assume X/s are real valued and have positive 
density in some interval B. Consider Student's t, where 

_ _ 1 n 1 -
t = Xjs where X=- L;X1 and s 2 =- I;X/- X 2 , 

n 1 n 

which may be written as H(Z), where 

Clearly, the conditions of Lemma 2.1 hold. If X1 has finite mean v1 and finite 
variance v2 , then 

J-t = (Ill' IJ2 + vn. 
If further X1 has finite fourth order moment, then [ <Tu'] is finite and positive 
definite. H is infinitely differentiable in a neighborhood of J-t. If X1 has finite 
moment of order q, q even, then Theorem 2.1 applies with s = qj2. For 
s = 3, v1 = 0, the expansion is given by 
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where <I> and c/> are the standard normal distribution and density functions, 
and 

1 113 2 
P 1(y) = - 312 {2y + 1}. 

6 112 

Note that we need only third order moments to write down the one-term 
Edgeworth expansion but need six moments to prove validity by Theorem 2.1. 

EXAMPLE 2.2. X1 = (U;, 1j), U;, 1j real valued, 

r = sample correlation coefficient between U and V 

= H(Z) = (uv ·- Dv);{D 2 -(U) 2)(Y 2 - (V) 2)r12
, 

where Z1 = (U;, "J, U}, 1j2 , ~"j). Assume X1 has a p.d.f. which is positive on 
a ball B and has finite moments of order q, q even. Then Theorem 2.1 holds 
with s = q /2, since H may be differentiated as often as one wants in any 
neighborhood of E(Z) that excludes zero as a denominator. Note that if X1 
has a positive density in a ball B, then E(~2 ) - (E(~))2 > 0 and E(V/) -
(E("j))2 > 0. 

2.2. Remarks on the proof. The proof with s times continuous differ
entiability appears in Bhattacharya and Ghosh (1978). By paying more 
careful attention to the remainder in the Taylor expansion, Bhattacharya 
(1985) shows essentially the same proof works with (s - 1) times continuous 
differentiability, that is, Assumption B. We provide a sketch of the main 
steps. 

One begins by noting that the formal Edgeworth expansion for the vector 
liiXz - J..d is a valid one, by the results in Bhattacharya and Rao (1976). The 
proof of this fundamental fact is quite technical and involves Fourier argu
ments, a Berry--Esseen type argument and truncation to avoid making 
unnecessary moment assumptions. When Z is one dimensional, a proof is 
available in Feller (1966). 

One then makes a change of variables, 

and notes that this is a perturbation of a linear transformation since wn is a 
perturbation of a linear function of In (Z -- p,). This is used to show that the 
joint density of T may be taken as the product of a multivariate normal and a 
polynomial in T and n -l/Z. Essentially it shows T has an Edgeworth 
expansion. If Zl, ... ' zp-1 are integrated out, one gets the marginal of Wn, 
which is also an Edgeworth expansion but the coefficient polynomials cannot 
be written down explicitly. 

It remains to verify that this expansion agrees with the formal Edgeworth 
expansion. This is done by an indirect argument which shows the two 
expansions have the same moments of all order and hence must be identical. 
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2.3. Remarks on assumptions, extensions, background and other 
applications. For a general H, the moment assumptions just suffice for 
writing down the Edgeworth expansion. However, for special H, say, Student's 
t, the one-term Edgeworth expansion requires only finite third order moment 
of X 1, whereas Theorem 2.1 would require finiteness of twice as many 
moments. Hall (1987) shows third order moments suffice for the validity of 
the one-term Edgeworth expansion for Student's t. For relaxation of moment 
assumptions in a more general setting, see Bhattacharya and Ghosh (1988), 
and Babu and Bai (1992). 

Condition D holds in all common examples where Xi is a continuous 
random variable or a random vector. On the other hand, Condition D as well 
as the conclusion of Theorem 2.1 fails when X is lattice valued, the case of 
greatest interest when X is discrete. To see this, take Xi _to be b~omi~l 
P{Xi = x} = pxql X, X= 0, 1, p = 1/2, say, zi =Xi, l!_(Z) = H(X) =X. 
Then, using Stirling's approximation, it is easy to show P(Z = 1/2) - n -l/2 , 

that is, the ratio of the two quantities has a positive limit. However if 
the (s - 2)-term Edgeworth expansion holds for s ~ 3, P(Z = 1/2) = 
o(n-<s- 2>1 2 ) = o(n- 112 ), since the expansion puts zero mass on singletons. 

Using results of Gotze and Hipp (1978), one can show, without Condition 
D, 

(2.10c) J fdP = J flf!s,n(Y) dy + o(n-(s 2)/2) 

for f belonging to a certain class of smooth functions with conditions on 
growth at infinity. See Bhattacharya and Ghosh (1978) and Ghosh, Sinha and 
Subramanyam (1979) for more details. Later we apply (2.10c) for expansion of 
asymptotic mean, variance and risk E(l(/n(Tn- 8)) of an estimate Tn = 

H(Z), in discrete cases. 
Consider Borel sets B, satisfying 

(2.10d) j <l>(dy/0, 1) = 0(8) as 8 tO, 
(i!B)<: 

where aB is the boundary of B, (aB)" is the set of all points within a 
distance of 8 from aB and <I> is the standard normal. For any RP, the 
measurable convex sets satisfy this condition. If we want Theorem 2.1 only 
for Borel sets satisfying (2.10d), we can relax Condition D to Condition C, 
Cramer's condition: 

limsupiE{expi(t,Z1>}1 < 1, 
lit II--> co 

where (t, Z) is the scalar product. However, we do not know of any interest
ing statistical example where Condition D fails but Condition C holds. For a 
proof of this version of Theorem 2.1, see Bhattacharya and Ghosh (1978), 
Bhattacharya (1985) and Bhattacharya and Denker (1990). 

Theorem 2.1 along with all the above remarks continue to hold if W is a 
- n 

random vector of dimension less than or equal to that of Z; see Bhattacharya 
and Ghosh (1978). 
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If the conditional distribution of one component of Z 1, given the remaining 
components, satisfies Condition C, then, under slightly stronger moment 
assumptions, Bai and Rao (1991) show Theorem 2.1 holds for Borel sets 
satisfying (2.10d). Such examples occur naturally in the context of life testing 
and survival analysis, owing to the discreteness of one or more components 
due to censoring. For an early example of Edgeworth expansion in this 
setting, see Basu and Ghosh (1980). Presumably a p-dimensional analogue of 
Bai and Rao (1991) is easy to prove. 

We end this section with a few remarks on the very extensive literature on 
Edgeworth expansions and applications to areas other than higher order 
efficiency. 

The best treatment of Edgeworth expansion for the sample mean of 
independent random vectors is Bhattacharya and Rao (1976). Bhattacharya 
and Denker (1990) contains a very readable self-contained account under 
Condition C. The one-dimensional case, which is technically much simpler, 
can be found in Feller (1966). Wallace (1958) and Bickel (1974) contain 
excellent reviews with a focus on statistical applications. Both contain Theo
rem 2.1 or some version in the form of conjecture. 

The most notable application of Edgeworth expansions, other than in the 
study of higher order efficiency of estimates or the [Hodges-Lehmann (1970)] 
deficiency of tests, is the proof of superiority of the bootstrap over the 
classical delta method. The pioneering paper in this context is Singh (1981), 
who shows that for Student's t the bootstrap does as well as the one-term 
Edgeworth expansion, if X1 satisfies Condition C. Refinements or extensions 
are available in Babu and Singh (1984), Bhattacharya and Qumsiyeh (1989) 
and Hall (1986). An altogether different point of view on the superiority of the 
bootstrap is taken in Ghosh (1992). 

For asymptotic expansions of sums of dependent r.v.'s the basic paper is 
Gotze and Hipp (1983). For sums of the form '£{(X) or '£{(Xi, Xi 1) for 
Markov chains, see Jensen (1986), which also contains a very readable 
introduction to the whole subject and a good overview. 

2.4. Curved exponential families and Fisher consistent estimates. 
Begin with a k-parameter exponential density or probability function 

(2.11) 

where f3 = ( {31, ... , f3k) is an element of some open k-dimensional rectangle 
V c Rk, { 1, { 2 , ... , fk are real valued and 1, {1, •.. , fk are linearly indepen-
dent in the sense 

k 

a0 + '£aJ1 = 0 a.e. [under p(xl /3)] 
1 

implies all a's are zero. 
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Let 0 be an open interval in R and let 

e ~ ( f31(e), f3z(e), ... , f3k(e)) = {3(e) 

be a curve in V. Let 

d(f3(&)) =c(&). 
def 

Then 

(2.12) p(xl&) = c(&)exp{Lf3i(&)f;(x)}A(x), 0 E ®, 

is a curved exponential. It reduces to a one parameter linear exponential if 
{3;( & )' s are all linear in (}. 

Of course if (-) is a p-dimensional open rectangle contained in R P, p < m, 
we have a p-dimensional curved exponential. 

Such densities have often been used. The terminology is due to Efron 
(1975). The multinomial in Chapter 1 is a special case, with 

(2.13) {; = I{x = xJ. 

EXAMPLE 2.3 (Berkson's logistic bioassay model). Suppose the probability 
of death at a given dose d; (of a particular substance) is 

(2.14) 1T;(a,{3) = (1 +e (<>+f:ld,l)- 1 . 

Suppose each of the k doses d 1, ... , dk is given to n animals, different for 
different doses, and the number of survivors at each level noted. The joint p.f. 
is a product of k binomials, which may be regarded as an exponential family 
with 

xi} = 1 if the jth animal getting the i th dose d i dies 

= 0 otherwise. 
f;(X) =Xu, {3; = log 1r;{1 - 1r)- \ (} = (a, {3 ). It is actually a linear exponen
tial family. 

EXAMPLE 2.4 (Behrens-Fisher). Let XJ = ([~, Yj) be i.i.d., where ~ and VJ 
are independent N( p,1 , O"n and N( p,2 , O"f), respectively. Behrens and Fisher 
considered the problem of testing H 0 : p,1 = p,2 . Historically this was the first 
example which made clear the fundamental difference between Fisher's 
fiducial probability and Neyman's confidence coefficient. Let us assume H 0 is 
true and denote the common value of p,;'s as p,. Then we have a curved 
exponential with (} = ( p,, cr12 , cr22 ), { 1(X) = ~, {2(X) = ~2 , f 3(X) = Vj, 
{ 4(Xi) = Yj2 • The dimension of the (minimal) sufficient statistic CE]~·I {/Xi), 
i = 1, 2, 3, 4) is 4 while the dimension of the parameter space is 3. The 
(minimal) sufficient statistic is not even boundedly complete, and Unni, in a 
thesis submitted to the Indian Statistical Institute in 1978, showed no 
function of (}, including its components, has a minimum variance unbiased 
estimate. However, TOE estimates for the components of (}, asymptotically 
unbiased up to o( n · 1 ), are easy to construct. 
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In this example, the curved exponential is obtained by imposing a polyno
mial relation on the natural parameters, where {3 1 = ~-Ld2 cr12 , {3 2 = - 1/2 cr12 

and {33 , {34 are similarly defined. Such curved exponentials, sometimes called 
algebraic exponential families, have a rich theory drawing on algebra and 
algebraic geometry. There is a beautiful theorem due to Kagan and Palam
odov which completely characterizes all parametric functions for which a 
minimum variance unbiased estimate exists. A source for all this is Linnik 
(1967). 

We return to the general curved exponential and let 

(2.15) ~L( {3) = E( fl {3). 

Then for {3 e.: V, 1-L is (reaD analytic. So if we assume {3(8) IS q times 
continuously differentiable, then 

1-L( {3( 8)) = 1-L( 8) 

is also q times continuously differentiable. The same fact holds for c( 0 ). 
Let 

(2.16) 

so that 1-Li(O) = E(fil8) = E(Zi)8). To make the analogy with a multinomial 
clear, we will sometimes have the identification 

(2.17) 1-Li ( 8) = 7Ti ( 8)' Z=p, 

DEFINITION 2.1. An estimate T, is Fisher consistent (FC) if 

T,, = H(Z), 

where H is a real valued function such that 

H(~-L(8))=8 VO. 

If p(xl {3) is probability density (rather than a probability function) and 
A(x) is positive on an open interval, then Condition D holds with f/s and Z/s 
as defined in Section 2.1. All moments of Z 1 are finite. So if His (s - 1) times 
continuously differentiable in a neighborhood of 1-L( 8 ), the estimate T,, = H(Z) 
has a valid Edgeworth expansion correct up to o(n <s 2 >1 2 ). 

2.5. Maximum likelihood estimator for curved exponentials. We 
turn to the maximum likelihood estimate (mle) 8,. For us it will mean a 
suitably chosen consistent solution of the likelihood equation based on n i.i.d. 
observations X 1, X 2 , ... , X,. 

Here the common density of p.f. is given by (2.12). We assume the {3/s are 
thrice continuously differentiable in 8. The likelihood equation is 

(2.18) 
6(8) k . _ 

C(O) + ~{3(8)Zi = 0, 
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which has a solution (} = (} 0 if Z is replaced by p/80 ). If we denote the 
left-hand side of(2.18) by A(B, Z), then 

(2.19) aAI -- = -(Fisher information at 80 ) < 0. 
88 flo,j.L(flo) 

It follows by the implicit function theorem that there exists a neighborhood N 
of J.L( 00 ) and 8 > 0 such that for Z in N, a thrice continuously differentiable 
solution of (2.18), 

can be found. This solution is unique. If f) is sufficiently close to 80 , I 8 - 00 I < 
81 < 8, then J.L(O) EN, so that by uniqueness of H on N, 

H( J.L( 0)) = o. 
It is this solution that we will call an mle and denote by 0 whenever we have 
a curved exponential. Of course this is a local construction. A global construc
tion is provided in the next paragraph under a compactness assumption. The 
reader who is not interested in this may skip the next paragraph. 

Suppose(") has a compact closure, 0, {3(·) has a continuous extension on 0, 
{ {3(0): 0 E 0} c V, and we have the identifiability condition {3(0) =1= {3(0'), 
0, 8' E 0, 8 =!= 0'. Under these assumptions, we have enough uniformity to 
choose 8, 81 to be the same for all 00 E 0, N a ball B( J.L(00 ), 82 ), 82 free of 
00 , 83 > 0 such that B( J.L(8), 83 ) c B( J.L(O'), 82 ) if IO- 8'1 < 81. Moreover, 

84 = inf{ll J.L( O) - J.L( O')ll; o, 8' E 0, I 8- O' I ~ 8I} > o. 
Choose 85 to be smaller than 88 as well as 84/2. Then two balls B(Oi, 85 ) and 
B( Oi, 85 ) intersect only if I 8i -- Oil < 81 and, moreover, the union of both balls 
is contained in N = B( J.L( 8), 82 ), so that H is unambiguously defined on 
their union. Cover the compact set { J.L( 8 ); 8 E 0} by the balls B( J.L( 8 ), 85 ), 

find a finite subcover B( J.L(8;), 85 ), i = 1, 2, ... , m, by the Reine-Borel theo
rem and define H unambiguously on U :~~ 1 B( J.L( 8), 85 ). The probability that 
Z falls outside this set is exponentially small, uniformly in 8 E 0, by an 
inequality of Chernoff (1952). Hence there we may assign arbitrary values in 
(") to our mle. This completes the construction. 

Since 

O=H(Z) 

for Z in a neighborhood of J.L( 00 ) and H is thrice continuously differentiable, 
Theorem 2.1 applies with s = 4 whenever we have a continuous curved 
exponential. Of course if we assume {3( (}) is s-times differentiable, the 
theorem would hold with that s. 

2.6. Maximum likelihood estimator in the general regular case. 
Suppose Assumption A of Chapter 1 is strengthened so that p(xl8) is five 
times continuously differentiable and holds with the third derivative replaced 
by the fifth derivative. Assume E 00 IM(X)I 4 < oo. 
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We will assume Condition D for ZJ, where ZJ = (Zu, Z 2 ;, Z 3;, Z 4 ;), 

Zi=d;logp(x)e)j. 
J de' oo 

17 

We also assume ZJ has finite fourth moments. In the following, Z = 
(ljn)[ZJ. 

We essentially reproduce the proof of Theorem 2.3 of Bhattacharya and 
Ghosh (1978), for s = 4. 

Use a standard argument involving the sign change of a continuous 
function, or a fixed point theorem in the multiparameter case [see Bhat
tacharya and Ghosh (1978)] to prove that the likelihood equation has a 
solution which converges in probability to e0 . Applying von Bahr's inequality 
on Z, it is possible to ensure that, with P0 -probability 1 - o(n -l ), (J satisfies 

o r-
the likelihood equation and lies in ( 80 ± log n 1 v n ). It is this solution that we 
take as our mle. Of course there is a problem of identify-ing such a solution if 
the likelihood equation has multiple roots, since the true e0 will be unknown 
to the statistician. This problem can be resolved if we have a consistent 
estimate Tn such that Tn lies in (e 0 ± log nj {;;) with P110-probability 1 -
o(n 1 ). In this case, we may take the solution nearest to Tn. By the preceding 
reasoning, this solution, which is identifiable from the sample, will lie in 
(e 0 ±log nj Vn) Awith P110-probability 1- o(n - 1 ). 

Clearly, with () as above, with probability 1 - o(n 1 ), 

where, as defined earlier, 

and 

1 d i log p (X 1 , X 2 , • • · , X 11 ) ()) 

Z= 
' n dOi 

1d5 logpl A 4 (logn) 4 
R = - ( 0- 0) = 0 --

n n d{) 5 II' Vn 
We rewrite this equation as 

0 = A( Z, e) + R" . 

Note 

and 

dAI - = -(Fisher information) =I= 0. 
dO 11 0 , !L(Ii 0 ) 

Hence, as in the previous section, 

o = A(Z, e) 
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has a solution 8 = H(Z), IH- 81 < 8, in a neighborhood of p/80 ) and H is 
continuously differentiable to all order. Moreover, by definition of e and 
uniqueness of H, 

e = H(Z1 + Rn,Z2 ,Z3 ,Z4 ) 

with P0 -probability 1 - o(n 1 ). This implies, with probability 1 - o(n - 1 ), 
() 

I (j --- el :::; K(log nj/n-)4 

Also Theorem 2.1 applies to 0. We now apply Lemma 2.1 to deduce that 
P0 { Vn ( e - 00 ) < y} is given by the integral of the valid two-term Edgeworth 
e~pansion for rn ( (j - ()) up to o( n 1 ). 

The same method applies to M-estimates. 
Note that we have not been able to prove whether P0J/n(e- 80 ) E B}, for 

arbitrary Borel sets, has an expansion. 
We write down the two-term Edgeworth expansion for /n(e -- 80 ) explic

itly below. Let the cumulants of Vn ( e - e) found by the delta method be 
written as follows [up to O(n- 1)]: 

(2.20a) 

Let 

(2.20b) 

Then 

(2.21) 

first cumulant = k; 1 n 112 , 

second cumulant = b2 + k~2 n- 1 

third cumulant = k~ 1 n 1 / 2 , 

fourth cumulant = k~1 n 1 

kll = k;d-/[J;' 

k22 = k~dbz' 

k31 cc k:ll!b~/2' 

k41 = k~l/b~. 

Po"{!n(e- eo) :o;yjv'J(00 )} 

= <P(y) + cJ> 1(y)j/n + <P 2(y)jn + o(n- 1 ), 

where ct> is the standard normal distribution function, 

(2.22a) cJ> 1(y) = JY {k 11 H 1(u) + k 31 H8 (u)}¢>(u) du, 
---.r.. 

ct>2(Y) = J.Y {k 22 H 2(u)j2 + k 41 H 4(u)j24 
- Y~ 

(2.22b) 
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with cf>(y) equal to the standard normal density and HP, given by 

( d ) p 
H"(y)cf>(y) = - dy cf>(y), 

is the pth Hermite polynomial. Note that the above integrals can he evalu
ated by making use of 

2.7. Remarks on expansion of asymptotic mean, variance and risk. 
These expansions were introduced and used in Chapter 1 to define TOE 
estimates. They will appear frequently in the later chapters also. These 
expansions are exact_!y what one would get if one calculates E( ..(;z-(1~, - 8 )), 
E(n(T,- 8)2 - {E(/n(T,- 8))}2 ) by the delta method, correct up to o(n 1 ). 

This presupposes Vn(Tn- 8) can be written as /i;(H(Z)- !J.) + R'tv in a 
neighborhood of f)= H( !J.), R'tv satisfies the condition of Lemma 2.1 with 
s = 4, H is thrice continuously differentiable and Z has finite fourth order 
absolute moment. In Section 2.3 we have exhibited such a Z and H for the 
mle. In Section 2.2 this was done for Fisher consistent estimates. 

As explained in Section 2.1, these expansions may not always provide 
asymptotic expansions of the moments they are supposed to approximate. 
What meaning can be assigned to them then? There are three slightly 
different answers. 

Notethattheexpansionsupto o(n <s 2li2 )ofthemomentsofVn(T,- 0) 
calculated by the delta method are exactly the moments of lj!s , up to 
o(n <s 2)/ 2 . This is easily verified by reversing the steps by which the formal 
Edgeworth expansion was derived. At least two of the interpretations are 
based on this fact. 

The first and, to us, the most satisfying, interpretation is based on the 
assumption that 1/J.,,, is, in fact, a valid Edgeworth expansion for s = 4. The 
expansions of asymptotic bias and variance are then the exact bias and 
variance [up to o(n- 1 )] of lj!4 n which approximates the distribution of 
Vn(Tn- O)upto o(n- 1 ). • 

Unfortunately for discrete examples, like binomials or multinomials, even 
the one-term formal Edgeworth expansion is not valid. In such cases, we can 
regard the expansions as expansions for suitably truncated mean and vari
ance of {n-(T, - 8) and apply [see (2.10c)] the results of Gotze and Hipp 
(1978) on the validity of Edgeworth expansions for expectations of smooth 
functions. This is done in Ghosh, Sinha and Subramanyam (1979). 

The third option, available for curved exponentials, is to use a somewhat 
different truncation used in Ghosh and Subramanyam (1974). Then it is 
almost trivial to check directly the validity of the expansions for the trun
cated mean and variance. 
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Similar remarks hold for E(l( J;; (T,, - 8 ))), which we calculate as 

jt(y)!/Js,n(Y) dy + o(n (s-2)/2). 

If l is only known to be bounded and measurable, only the first interpretation 
is available. If l is also smooth, the other two interpretations are also 
available. In particular, if l is the indicator of the complement of a symmetric 
interval, only the first interpretation is available; see Ghosh, Sinha and 
Wieand (1980). 

In the study of higher order efficiency, we will often encounter estimates of 
the form T~ = Tn + c(T,)jn. If f;;(Tn - 8) has a valid Edgeworth expansion 
up to o(n -I) and c is twice differentiable at 8, then 7~ also has a valid 
Edgeworth expansion up to o(n 1 ). This may be seen as follows. Note 

r- r- ( c' ( 8 ) ) 
y n (1:; - 8) = y n ( Tn - 0) 1 + -n- + R n , 

where IR,I can be shown to satisfy the condition of Lemma 2.1 by making use 
of the Edgeworth expansion of Vn (T, - 8) up to o(n 1 ), and the first term on 
the right-hand side, which is a linear function of Vn (T, - 8 ), is easily seen to 
have a valid Edgeworth expansion. It follows by Lemma 2.1 that Vn(T~ - 8) 
has a valid Edgeworth expansion also. It turns out that by imitating the proof 
of Theorem 2.1, we can show this under the weaker assumption that cis once 
continuously differentiable. It is easy to show the valid Edgeworth expansion 
agrees with the formal expansion obtained by the delta method. 

The three interpretations of expansions associated with Vn (T, - 8) will 
also apply to expansions associated with Vn (T~ - 8 ). 

2.8. Problems. Theorem 2.1, along with its application and extensions, 
suggests a variety of interesting problems. 

1. In the case of curved exponentials (with absolutely continuous dominating 
measure), 

sup,P110{/n(e- 80 ) r=B}- J !fr.,;,(y)dyl =o(n-<s- 2 ll2 ). 
B B 

Is this true in the general case (under suitable regularity conditions and 
absolutely continuous dominating measure)? 

2. Weakening of assumptions: 
(A) Suppose 'LlizVl satisfies Condition D (or the weaker condition of 
Cramer). Then is the conclusion of Theorem 2.1 true at least for s = 4 
(possibly with stronger moment assumptions)? 
(B) How far can one weaken the moment assumption? The best results 
seem to be those of Babu and Bai (1992). 
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3. Validity of formal Edgeworth expansion. Suppose 

and 

B2(Z) B8 I(Z) 
W, =B (Z) + . + ··· +-----

1 In (In)'' 2, 

where A's and B's are polynomials free of n, and 1>~ is the multivariate 
normal density with zero mean and dispersion matrix ~- The c.f. of W" 
under p will have an expansion in powers of n · 112 . Suppose the coefficient 
of n-i 12 (j = 0, 1, ... , n - 2) is the c.f. of a (signed) density q.i. Is it then 
always true that 

s- 2 1 t J pd9 =' L --.i J q.i(y) dy ·+ o(n <s 2)/2)? 
W,<t j~O (vn) 70 

(2.23) 

Theorems in Bhattacharya and Ghosh (1978) and Chandra and Ghosh 
(1979) may he thought of as examples where (2.23) holds. Bhattacharya 
(personal communication) has pointed out that (2.23) does not hold uniformly 
in t without additional assumptions: Let p he standard one-dimensional 
normal, Wn = Z 2/2 + 1jn112 . If t = 1/n112 , then the left-hand side of(2.23) 
is zero, while the first term on the right is O(n- 114 ). 
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