
Chapter 2 

Estimation in the LMCD 
Assuming Normally 
Distributed Errors and 
Complete Data 

In this chapter we consider maximum likelihood inference for the pa
rameters of the Linear Model for Correlated Data (LMCD) of Section 
1.2 under the additional assumption that the error vectors are normally 
distributed. To present the basic ideas, we will assume that the data are 
obtained from a complete study with each ni = n and we restrict atten
tion to the setting in which ~i is assumed not to depend on covariates, so 
that ~i =~is the same for all i. We will consider both maximum likeli
hood (ML) and restricted maximum likelihood (REML) estimation when 
~ is unstructured. Inference under more restrictive parametric models 
for ~ is briefly discussed at the end of this chapter. Estimation with 
unbalanced designs and/ or missing data will be taken up in Chapter 3. 

2.1 ML Estimation of f3 and~ 

Suppose that in the LMCD we additionally assume that given Xi, }i, 
i = 1, ... , N, are N copies from a multivariate normal random vector. 
Then, under this additional assumption, the likelihood of (/3, ~) is given 
by 

38 
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We now characterize the solutions to the score equations 

f) 

813 1n.C (/3, I:)= 0 and 
f) 

f)L; ln.C (/3, I:) = 0. (2.1) 

By convention, for any function f (M) of a p x q matrix M, we let 
of (M) jfJM denote the p X q matrix with (i,j)th element equal to 
of (M) jfJMij· The maximum likelihood estimators of /3 and I:, say 
/3ML and ~ML, are solutions of the score equations. The derivatives of 
ln.C (/3, I:) are obtained using the following matrix identities (Dwyer, 
1967; Harville, 1999). Let x and b ben x 1 vectors and Q be ann x n 
symmetric, positive definite matrix, then: 

1. gb (x- bf Q-1 (x- b)= -2Q-1 (x- b), 

2. 8J_1 ln jQ-1 j = Q, 

3. aJ-1 (x- bf Q-1 (x- b)= (x- b)(x- bf. 

From 

N 

ln.C(/3, I:)= (N/2)ln[I:-1[- :~::)Yi -Xi/3fi:-1(Yi -Xi/3)/2 (2.2) 
i=1 

we use the chain rule, fJln .C/ 8/3 = L:i ( Of.L[ / 8/3) ( fJ ln .C/ Of.Li) where f.Li = 
Xi/3 to obtain 

and identities 2 and 3 above to obtain 

Thus, any solution to the score equation (/3, ~) must satisfy 

;3 = (t xr~-1 xi) -1 (t xr~-1 Yi) (2.3) 
t=1 t=1 

and 
N 

,..._ 1""' "' '"'T I: = N ~ (Yi - Xi/3) (Yi - Xi/3) . 
i=1 

(2.4) 
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Except in the trivial case of n = 1, the solutions to the score equations 
(2.1) do not have closed form analytic expressions when Xi is arbitrary. 
There are closed form solutions when Xi and :E have special forms; es
timation for these special cases, and those discussed in the examples of 
Chapter 1, will be discussed at the end of this chapter. 

Equations (2.3) and (2.4) suggest the following iterative algorithm for 
computing solutions to the score equations. Set i:o equal to any positive 
definite matrix, for example i:o =I. Then for k ~ 0 set 

and 
N 

i:k+l = L (Yi-Xi,Bk) (Yi-XdJk)T /N. 
i=l 

This algorithm is sometimes referred to as Generalized Least Squares 
(GLS) (Carroll, Wu and Ruppert, 1988). It can be shown that each iter
ation of the algorithm increases the likelihood function, i.e., £ (jjk, i:k) < 
£(,8k+bi:k+I), because as we show in Section 3.4, this is also an in
stance of the EM algorithm. Thus, if the likelihood is bounded, then 
the sequence of likelihoods, £ (,Bk, i:k), k = 1, 2, ... , converges. The se
quence of estimates, (,Bkl f:k), k = 1, 2, ... , however, need not converge 
but if it does, it converges to a solution of the score equation. Unless the 
likelihood is concave, this solution need not be equal to the maximum 
likelihood estimator of ((3, :E). See, for example, Wu (1983) or McLachlan 
and Krishnan (1996, pp. 92-97). We show in the next chapter that this 
algorithm can also be derived as an EM algorithm. 

2.2 Properties 

Even though ,8 is a function of B, it has been shown (Kackar and Harville, 
1981) that in the setting where E(Yi) = Xif3, ,6(B)is unbiased for (3, 
even in small samples, when the ML (or REML) estimate of e is used. 
The basic idea of the proof relies on symmetry of the error distribution 
(not normality necessarily), and the fact that the variance-covariance 
estimates are translation invariant, even valued functions of the data. 
In l~ge samples (see, e.g., Newey and McFadden, 1994, Section 2.4,), 
vec(:EML) is a consistent estimator of vec(:E) for any error distribution. 
Here, for any symmetric q x q matrix A, vec(A) denotes the q (q + 1) /2 x 
1 vector obtained by stacking the columns of the lower diagonal part 
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of A. Furthermore, under additional regularity conditions (Newey and 
McFadden, 1994, Section 3.2), 

where 

{ 8 }-1 r = - E f)~f)~T ln .C (/3, L;) 

and ~ = (f3T, vec(L;f)T. Interchanging integration and differentation, 
the expectation of the mixed derivative matrix 

is equal to zero, so that r is a block diagonal matrix with upper and lower 
squared blocks of dimensions equal to the number of elements of /3 and 
vec(L;) respectively. Thus, ,BML and ~ML are asymptotically independent. 

The asymptotic variance of f3ML can be easily derived by noticing 
that PML = P(~ML). Since ~ML is a consistent estimator of L;, then the 
asymptotic distributions of PML and ,6(L;) are the same (see Section 4.3). 
Thus the asymptotic variance of PML is equal toE { X[L;- 1 Xi} - 1. This 
variance can be consistently estimated by 

2.3 (REML) Restricted Maximum Likelihood Es
timation 

The use of REML as an alternative to maximum likelihood arises in the 
context of mixed linear models with multiple variance components and 
was originally proposed by Patterson and Thompson (1971) for analyzing 
unbalanced block designs. 

The motivating factor of REML is to obtain an inferential procedure 
for ~ that results in estimators and confidence regions that are approx
imately centered even when the dimension of the mean parameter /3 is 
large. The need for such a procedure is justified because inference based 
on the profile likelihood for ~ (i.e., the maximum likelihood estimator) is 
misleading when the dimension of /3 is large relative to the sample size. 
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As a simple example of this situation and following Barndorff-Nielsen 
and Cox (1994, Section 3.5) consider inference about the error variance 
0"2 in the univariate linear model with normal errors. This corresponds 
to the case n = 1 with ~ = 0"2 . The unbiased estimator of 0"2 is given 
by ti2 = SSDI (N- p) where SSD is the residual sum of squares and 
p is the dimension of j3. The MLE of 0"2 , &2 , is equal to S S DIN so that 
&2 = ti2 (N- p) IN. Suppose now that the dimension of j3 grows at the 
same rate as the sample size, that is pIN converges to a positive constant 
ry as N goes to oo (this is, of course, an idealized scenario that neverthe
less helps conceptualize the difficulties that arise when the dimension of 
j3 is large). Then, with large N, &2 is approximately equal to (1- ry) fi2 

so that the profile likelihood for 0"2 is sharply peaked at a value distant 
from the true value of 0"2 . 

The key idea of REML is to factorize the likelihood for (/3, ~) into 
two components, one of which is free of the parameter j3 and which is 
maximally informative about ~- To do this, it is convenient to use the 
following notation: let Y = (Yt, ... , Y.J) T, X = (X'[, ... , X'fv) T, and ,E 
denote an N n x N n block diagonal matrix with blocks equal to ~- Then 
Y is MVN(X/3, ,E). The analysis proceeds by restricting attention to the 
likelihood based on a vector comprised of the maximum number of linear 
combinations of the outcomes, say C'[Y, ... , C~Y, such that the N n x 1 
vectors C1 , .•. , Cq are linearly independent and the distribution of HrY 
does not depend on /3, where HT = (Cl, c2, ... 'Cq)· Harville (1977) 
has called the components of HTY "error contrasts." The name arises 
because if cry has a distribution independent of /3, then in particular 
E(CrY) = cr Xj3 does not depend on j3. But this occurs for j3 o:F 0 if 
and only if 

CTX=O (2.5) 

and so cry has mean zero and can be interpreted as an "error." 

If, as we shall assume, X is of full rank p, then the subspace of N n x 1 
vectors satisfying (2.5) is of dimension q = Nn-p. Thus, HTY is a vector 
of dimension q X 1 with elements CJY, j = 1, ... 'q, where cl, ... 'Cq are 
any subset of linearly independent Nn x 1 vectors satisfying (2.5). Com
putation of the likelihood based on HTY is simplified if we consider the 
specific error contrast vector determined by H satisfying HT H = I and 
HHT =A where A= I-X (XTX)- 1 xr, (such H always exists because 
A is symmetric and idempotent). That H determines an error contrast 
vector can be readily seen from HT X = ( HT H) HT X = HT AX .= 0, 
where the last identity follows because AX= 0. There is no loss of gen
erality in this choice, since any other full rank set of error contrasts may 
be obtained from HT as pT = pr HT, where pr is an (Nn- p) dimen-
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sional square, orthogonal matrix, and it is easily verified that pT F = I 
and FFT =A. 

Formally, the REML likelihood is defined as the likelihood of HTY. 
We will now show that the REML likelihood can also be written as 

where LML(73, ~) is the profile likelihood for ~ or alternatively, 

LREML(~) ex f(Y; /3, ~)j J(73; /3, ~), 

where for simplicity, we write 73(,£) = 73. Since HTY is just a linear 
tranformation on Y, it follows that HTY has mean zero, and variance 
covariance matrix HT ~H. Hence using the definition of REML, 

(2.6) 

We will use the following identities: 

(see Searle, Casella and McCulloch, 1992, Appendix M4.f), and 

IHT ~HI1/2 ex 1~11/21XT ~XI1/2. (2.8) 

This last identity is proved at the end of this section. 

From (2. 7) it follows that 

yT~-1y _ yT~-1X(XT~-1X)-1XT~-1y 

(Y- x73l ~-1 (Y- x73) 

~i(Yi- Xif3l~-1 (Yi- Xi/3). 

where 
73(~-1) = (XT ~-lx)-1XT ~-1y_ 

Thus from (2.6, 2.7, 2.8) and using the block diagonal structure of~ we 
have 

LREML = e-tr($~-l)/2/l~i 112 l~iXi~-1Xil 112 

for S = ~i (Yi- Xi73) (Yi- Xi73) T. It follows immediately that the previous 
two characterizations of the REML likelihood are also true: 

1. The REML likelihood is the profile likelihood, L(f3 = lJML, L:), 
multiplied by lvar73(~) 11/2. 
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2. The REML likelihood is the likelihood of the full sample Y, condi
tional on $("'£). 

These characterizations point to a drawback of REML inference. 
While the profile likelihood is invariant under reparameterizations, the 
term ln IXT ~-l XI, being a function of the design matrix, is not in
variant under reparameterizations of the parameter (3. This has the con
sequence that inference about "'£using REML will change with different, 
but equivalent, formulations of the linear model. This drawback, how
ever, is asymptotically negligible provided the dimension of f3 is not too 
large. For further discussion see Bardnorff-Nielsen and Cox (1994, Sec
tion 4.4). 

The use of the REML likelihood can also be based on marginal suf
ficiency arguments given in Sprott (1975). That is, HTY is marginally 
sufficient because: 

1. the distribution of HTY depends only on :E, 

2. the distribution of$ contains no information about"'£ in the absence 
of knowledge about (3, and 

3. together HTY and$ are a full rank transformation of the data Y. 

See also Kalbfieish and Sprott (1970, 1973, 1976). 

It is straightforward to show that the REML score equations for "'£ 
are 

NE-t, X, (t, XTE-1 X;) -
1 XT- S(E) = 0. 

so that ~REML satisfies 

where 

-gREML =: 3 ( ~REML) 

The iterative computational algorithm given for ML in Section 2.1 can 
be readily adapted in this setting. Specifically, at stage k, $k = $(~-,; 1 ) 
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where f:o is an arbitrary positive definite matrix but now 

ijk+l ~ t, [ (l'j - X; ,Bk) (Y; - X; ,Bk)T 

+X, (t,xrE;;' x,) _, xr] j N. 

As with ML estimation, the sequence ($k, f:k) need not converge, but 
when it does, the limit of f:k, k = 1, 2, ... , is a solution of the REML 
score equations. 

The question naturally arises as to which of the ML or REML esti
mators is to be preferred. As indicated in the introduction, the REML 
analysis is motivated by the desire to adjust the ML estimator of :E for 
lost degrees of freedom. More precisely, the hope is to find an estimator 
that, like the MLE of :E, is asymptotically efficient, but in contrast to 
the MLE, is an unbiased estimator of :E. The REML estimator of :E is 
asymptotically efficient (see, e.g., Cressie and Lahiri, 1993). However, 
quite generally, the REML estimator need not be unbiased. In Section 
3.6 we discuss special cases where the REML estimate is unbiased (and 
ML is not). In addition, we present examples where the REML estimator 
has a closed analytical expression. 

Proof of identity in (2.8). 

To show that 
~IIXT,E-1XI ex IHT,EHI 

where ,E, X, HandY were defined in Section 2.3, we will define a full 
rank transformation on Y as TY, where 

T = (~) so that TY = (~:) 
and we choose G = (XT ,E-1 x)-1 XT:E-1, so that GY =$(,E)=$. 

It is easily checked that HT JE,G = 0, so T JE,T'l is block diagonal, and 
hence 

IT,ETrl = 1Hr,E-1HII(Xr,E-lx)-11· 

However we also have that IT ,ETT I = I ,E II TTT I , and using formulas 
for determinants of a partitioned matrix (Harville, 1997, pp. 188-189), 
we have 

det ( ~:: ~g:) = IHTHIIGGT- GH(HTH)-1HTGTI· 
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Now recall that HTH =I and HHT =I- X(xrx)- 1XT, hence 

ITTrl = IG(I- HHr)crl = IGX(xrx)-1xrcrl 

= IXTXI-1' 

whence it follows that 

IHr,EHIIxr~-1xl-1 = I,EIIXrxl-1, 

and IHT,EHI ex: J,EJIXT~-1XI. 

2.4 REML Estimation: A Bayes Approach 

The REML estimator of ~ can also be given a Bayesian interpretation 
(Searle, 1987, Section 9.2) as follows. Suppose we assign both {3 and 
~ uniform (improper) prior distributions over their respective sample 
spaces. The joint posterior distribution of (/3, ~) is proportional to the 
likelihood for (/3, ~), where the constant of proportionality depends on 
the data but not on (/3, ~). Letting Ps(/3, ~) denote the joint posterior 
distribution of ({3, ~), we thus have p8 ({3, ~) a: £(/3, ~). To eliminate 
the nuisance parameter {3, we base inference about ~ on the marginal 
posterior distribution of~' Ps(~), obtained by integrating Ps ({3, ~) over 
{3: 

Ps (~) <X J £({3, ~) d/3. (2.9) 

To show Ps (~) is proportional to the REML likelihood, first write 

where ?J = (J(~- 1 ). Then use the identity 

j exp { -~tTn- 1t} db= (27rt12 JOI1/2, 

where 0 is any n x n positive definite matrix, to obtain that 

N -1/2 

Ps(~) a: I~I-N12 exp{tr~-1 S(~)/2} L:xr~-1Xi 
i=1 



N. M. LAIRD 47 

so that right hand side is precisely the REML likelihood. Thus, infer
ences based on the REML likelihood and inferences based on Ps (:E) are 
identical. In particular, the REML estimate of~ is the posterior mode. 
Note that we can alternatively view the REML likelihood as an inte
grated likelihood where we have integrated out the nuisance parameter 
(3. 

2.5 Patterned L: 

When~ is a patterned matrix, that is~= ~(e) is a function of a vector 
of parameters e of dimension less than n(n + 1)/2, both the ML and 
REML score equations fore can be obtained using the chain rule to take 
derivatives with respect to e. See, for example, Jennrick and Schluchter 
(1986). There are several computing packages which provide subroutines 
for computing ML and REML estimators of e under a variety of model 
choices for ~(e). 

....... 
2.6 91osed Form Solutions for fJML' L:ML and 

L:REML• 

For certain design matrices, one can obtain closed form solutions for 
lJML and ~ML or ~REML in the setting where ~ is unstructured and 
all subjects are measured at all n occasions. Studying these cases is 
instructive since the resulting estimators show when lJML does not depend 
on~ and enables us to quantify the bias of ~ML and ~REML· 

Case 1. The simplest case in which closed form solutions exist cor
responds to the classical MANOVA or multivariate regression setting 
discussed in Section 1.2.3. Furthermore, in this setting the REML esti
mator of~ is unbiased. Under the MAN OVA model of Section 1.2.3, each 
Xi = af ®In, where ai is a k x 1 vector of subject specific covariates, In 
is ann x n identity matrix, and® is Kroneker matrix product (Harville, 
1999). Effectively each of then variables has a separate regression model 
with the same k predictors for each outcome. Let A denote the N x k 
matrix with rows given by the af, i.e., A is the usual design matrix for 
a single response variable. 

For this design, it straightforward to show (see, e.g., Johnson and 
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Wichern, 1992) that 

and hence 

Since E(Y;) = Xi/3, it follows that /3ML is unbiased. To compute the 
bias of ~ML, we will use the following matrix identities: 

(i) (af ® Inf = ai ®In, 

(ii) for conformable matrices A, B, C, D, (A®B)(C ®D)= AC®BD, 

and 

(iii) for nonsingular matrices A and B (A® B)-1 = A-1 ® B-1. 

Also from Johnson and Wichern (1990) we have 

thus, 

I;ML = 

i=l 

Taking expectations and setting Xi= af ®I, we find 
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Using the matrix identities given above, one can show that 

and thus 

But 

so that 
E (~ML) = 'L,(1- kjN). 

Thus ~ML is biased, with bias going to zero as k j N --+ zero. 

Since J3ML does not depend upon ~ML, /3REML = /3ML = /3oLs and 

and hence from (2.10) it follows that E(~REML) = L,, 

Case 2. The balanced and complete growth curve model discussed 
in Example 1.2.4 provides another example where the ML and REML 
estimators have closed form analytical expressions. In this case, 

where ai is as before and Z is some suitably defined n x q design matrix 
specifying a "design on time" as discussed in Example 1.2.4. Recall that 
in this setting we may write: 

with ~ defined as in Section 1.2.4. Grizzle and Allen (1969) (see also 
Khatri, 1966) have obtained a closed form solution for ~ in this case as 

(2.11) 

where Y is now an n x N data matrix whose columns are Yi, and 
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where I denotes the identity matrix with dimension n. Notice that we 
may also write 

The Grizzle and Allen (1969) derivation is instructive and leads to 
a proof that ,BML is unbiased even though ,BML depends upon S. The 
approach is to make a linear transformation from Yi to Bi of the form 

where Z1 and Z2 are full rank matrices of dimension n X r and n X n, 
with n = r + q, selected so that 

Z[Z=I 

and 

ZfZ=O. 

Notice that a natural choice for Z1 is Z(ZT z)-1, and for Z2 is a matrix, 
{I -Z(ZT z)-1 zT}, with columns where Vj,j = 1, ... , r, are nx 1 vectors 
linearly independent with the columns of Z. Since E(Z2Yi) = 0, the 
marginal distribution of Z2Yi does not depend upon (3, hence we can 
write 

II f(Yi [(3, L:) ex II f(Bi [(3, L:) 

=II f(Bli[/3, L:, B2i)f(B2i[L:) 

and the MLE of f3 is obtained by maximizing the first component only. 
Because B1i and B2i are jointly multivariate normally distributed, the 
conditional mean of B1i given B2i is linear in B2i· Thus, letting 

we have 

fJ = cov(Bli, B2i)(var B2i)-1 

= Z[~Z2(ZJ~Z2)- 1 . 
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where ~ is defined as in Section 1.2.4, T is a q x (k + r) matrix of 
parameters, and Wi is a (k + r) x 1 vector of covariates. But this is 
identical to our model in Case 1 where we write 

E(Bii) = (W{ ® I)O 

and 0 =vec(T). Hence the ML estimate ofT is OLS, and can be written 
as 

where B1 is the q x N data matrix whose columns are B1i and W is the 
N X (k + r) design matrix whose rows are wr By partitioning 7 and 
using standard matrix identities, the result for .3. in (2.11) is obtained. 
It also follows that E(.3.1B2; ~' ~) = ~ where B2 is the vector with 
components B2i, i = 1, ... , N, and therefore .3. is also unconditionally 
unbiased for~-

Case 3. These results concerning closed form solutions have been 
extended by Szatrowski (1980), Szatrowski and Miller (1980) and Lange 
and Laird (1989) for the setting where~ takes a random effects structure, 
I.e., 

:E = ZcDZc + o-2 I, 

where Zc is a subset of the columns of Z of dimension n x c, D is a 
positive definite matrix and I is the n x n identity matrix. Here it can be 
shown that ,BML = ,BREML = ,BoLs, and simple closed form expressions 
can be derived for the ML and REML estimates of D and a-2 . Lange and 
Laird (1989) showed also that the REML estimates of :E are unbiased 
and the ML estimates have bias which goes to zero as k/N ......-+ 0, for fixed 
q. 
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