
CHAPTER 8 

The Semiparametric MLE 

Although there are certainly examples where interest in the mixture 
NPMLE method has focused on the estimated latent distribution itself or 
functionals of it, the largest class of investigations and applications has 
occurred in the arena of semiparametric estimation, in which the latent 
distribution is included in the model to allow extra heterogeneity, but the 
focus is on a set of auxiliary parameters, generally of the regression type. 

The earliest extensive applied investigation of semiparametric mixture 
maximum likelihood was by Heckman and Singer (1984), who were investi
gating the effects of latent distribution misspecification and were comparing, 
therefore, the nonparametric and parametric approaches to modeling the 
latent distributions. Among the many further investigations of this type we 
might count Follman and Lambert (1989), Brannas and Rosenqvist (1994), 
Butler and Louis (1992), and Davies (1993). See Lindsay and Lesperance 
(1995) for a survey of the results in this area. 

Since there exists a substantial literature on the implementation of this 
methodology, we will focus herein instead on special simplifying structures 
that can exist when we have a likelihood with both latent and auxiliary pa
rameters. We will consider three different semiparametric models. One is an 
exponential family random effects model, of which the Rasch model is an il
lustration. The second is a measurement error problem, with the additional 
complication of case-control sampling. The final problem is an outlier distri
bution model for contingency tables that leads to a new method for assessing 
the fit of a parametric model. 

We start with a general optimization result that is important because it 
leads to a simplification and clarification of what would otherwise be numer
ically more difficult problems. It will be used in the examples. 

8.1. An equivalence theorem. In this section, we will use the notation f3 
and G to designate two arbitrary "parameters" upon which our model depends, 
but in our applications, f3 will be real-valued parameters of interest and G 
will be the latent distribution. Our interest is in whether the f3 parameters 

146 



THE SEMIPARAMETRIC MLE 147 

we would obtain from maximizing a conditional likelihood will be the same as 
we would obtain from maximizing a simpler joint likelihood. 

The setting: We wish to maximize a target likelihood Lc with ratio 
structure: 

L ([3 G) = LJ(/3, G) 
c ' Lm(f3,G)" 

We let ('/3c, Gc) be maximizers of Lc and we wish to compare them with 
({3J,GJ), which will come from maximizing the simpler likelihood LJ. In the 
settings in which this is applied, the likelihood we wish to maximize, Lc, is 
a conditional likelihood. Then the numerator likelihood LJ is the joint likeli
hood, which is of the desired product form, while the denominator likelihood 
is the marginal likelihood Lm of the conditioning statistics. 

Our first key assumption is that the denominator likelihood has multi
nomial structure; that is, there are constants n1, ... , nK and nonnegative 
functions PJ(f3, G) satisfying 

L PJ(/3, G)= 1 

such that the likelihood can be written 

Let n = L, n J. This structure will clearly arise if we are conditioning on a set 
of discrete statistics. 

The next assumption specifies a form of nonidentifiability of the parameter 
Gin the conditional likelihood. That is, we assume that for every pair ({3, G) 
in the parameter space there exists G* such that 

(8.1) Lc(/3, G) = Lc(/3, G*) 

and 

(8.2) ( G*) nJ PJ {3, = --
n 

Vj. 

That is, no matter which f3 we start with, we can find G* that shifts the 
multinomial probabilities under the model to equal the observed sample pro
portions without altering the target likelihood. We note that this is where the 
nonparametric nature of G is important, so that there are "sufficient degrees 
of freedom" to solve these equations. 

With these assumptions, we are done, because as far as the parameter of 
interest f3 is concerned, we can equally well maximize either LJ or Lc; the 
solutions are the same. 

PROPOSITION 29. Under the preceding assumptions, if ('/3c, Gc) maximizes 
the target likelihood Lc, then ('/3c,G~) maximizes LJ. Conversely, if('/3J,GJ) 
maximizes L J, then ( {3J, G J) satisfies (8.2) and is in an equivalence class that 
maximizes Lc. 
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PROOF. We write the likelihoods in the product form 

LJ(f3, G)= Lc(f3, G)Lm(f3, G). 

We note that by the assumption (8.1), if (/3c, Gc) maximizes Lc, then so must 
(/3c, G~). Further, (/3c, G~) also maximizes Lm because of its multinomial 
form and (8.2). The sample proportions give, in fact, the maximum possible 
marginal likelihood over all possible models. As to the converse, if (8.2) was 
not satisfied at the maximum, we could increase the likelihood component 
Lm without changing that of Lc by choosing G* to make it so, a contradiction. 
If ('/3J, G J) did not maximize the other component Lc, then we could increase 
Lc without decreasing Lm by the same device. o 

8.2. Exponential response models. We now consider a simple class of 
exponential response models. A sample is taken from a population, with the 
measurement being a vector x = (xt, ... , Xr)', with Xi, being the "response" to 
the ith out of r "items." There will be item parameters () = (01, ... , Or) that 
determine the distribution of responses and a parameter cf>i that reflects the 
latent propensities of the sampled unit. The density for the ith sampling unit, 
conditional upon latent variable <I> = cf>i, will have the exponential form 

{(xi; 0, cf>t) = exp[ O' x -1- cf>is(x) - k( 0, rpt) ], 

where s(x) is the sufficient statistic for the variable cf>i· 
For the ensuing discussion, it will be essential that s(x) has a finite discrete 

distribution, say with sample space {0, ... , K}. [A subject for investigation 
would be its approximate validity when s(x) is continuously distributed.] 

Two other features of the exponential form that are important in the theory 
are: 

1. The statistic s( x) is complete and sufficient for c/J when {} is fixed; 
2. The marginal distribution of s(x) is an exponential family when() is fixed. 

8.2.1. Example: Rasch model. A model of the type we are interested in 
that has received a great deal of attention is the Rasch model, in which the 
responses Xtj are binary variables. We start with a logistic model for the ith 
subject's response to the jth item, conditional on the subject's latent variable 
<I>= c/>i : 

Pr[Xij = 11 <Pi= c/>J = · exp((Jj + c/>i) . 
1 + exp (ej + cf>i) 

We further assume that conditional on the latent variable, all the responses 
of an individual are independent, so that conditional on the latent variable 
the density has the exponential response form 

Pr[Xt =Xi I <I>=¢;]= exp ( ~ OjXij + cf>tXi· - K({}, rpt)), 



THE SEMIPARAME'l'RIC MLE 149 

where the sufficient statistic for <Pi is the response total Xi- of the ith subject. 
'l'he model is overparameterized, so to make things identifiable a constraint 
must be used. We will here specify that the last item parameter, 0 K, is zero. 

8.2.2. Type I conditional models. A reason for particular interest in the 
exponential response model is that if the focal parameters are the O's, then 
there exists a natural competitor to using semiparametric mixture likelihood 
methods. Because of the structure of the model, one can form a conditional 
likelihood for each subject that depends strictly on the parameters of interest, 
namely, 

Li,cond(O) = Pr[Xi =Xi I s(Xd = s;]. 

We can now estimate the focal parameters without regard to the structure 
of the latent variables, whether they are treated as nuisance parameters or 
as a sample from an unknown distribution. The resulting conditional max
imum likelihood estimators (or maximum conditional likelihood estimators) 
are very generally consistent and highly efficient relative to maximum likeli
hood [e.g., Liang (1984)]. Important early work on this method was done by 
Anderson (1973). 

8.2.3. The two-item example. A simple example that illustrates our situa
tion is the paired Bernoulli problem, which can also be described as the Rasch 
model with two items. We have from each unit (subject or paired subjects) 
two binary variates (Xil, Xi 2 ). We might think of the first as corresponding 
to a response under treatment and the second as the response under control. 
We apply the Rasch model, where we have one item parameter () = fh (since 
Oz = 0), which corresponds to the log odds ratio for the success parameters for 
the pair, and so represents a common treatment effect. There are only four 
possible responses for each pair, namely, (0, 0), (1, 0), (1, 0) and (1, 1). We let 
N(a, b) denote the number of pairs of responses with pattern (a, b ).We can 
therefore easily write the conditional densities for the data given the sufficient 
statistic Xil + Xiz = Si: 

Pr[X = (0, 0) IS= O] = 1, 

exp(O) 
Pr[X=(1,0)18=1]= 1 ( )' +exp 0 

1 
Pr[ X= (0, 1) I S = 1] = ( ) , · 1 + exp () 

Pr[X = (1, 1) I S =:= 2] = 1. 

The conditional likelihood for the problem is therefore 

_ [-exp(O) -JN(l,O) [ 1 JN(O,l) 
Lcond(O) - 1 + exp(O) 1 + exp(O) 

This is easily maximized for 0 and provides a method of consistent estimation 
even though the fixed effects MLE is inconsistent. However, it offers a curiosity 
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in that it only uses the information from the discordant pairs; that is, those in 
which the binary variates were not equal. The 'estimator does not use N ( 1, 1) 
or N(O, 0), the numbers of concordant pairs. 

8.2.4. Efficiency theorem. My early interest in the mixture problem arose 
around the statistical question of the efficiency of the conditional approach to 
eliminating nuisance parameters. Addressing the question of efficiency in the 
case of the number of nuisance parameters going to infinity is quite difficult. 
My approach was to consider the efficiency of the conditional approach within 
the semiparametric mixture model, where the nuisance parameters ¢i were 
assumed to come from a latent distribution Q. The problem is still difficult, 
but there is sufficiently more structure so that one can, in a natural way, 
extend the efficiency ideas from the parametric model to the nonparametric, 
and answer this question. 

The answer [Lindsay (1983c)] is that the conditional method is generally 
fully efficient within the mixture setting. This last paper was written when the 
appropriate semiparametric theory was nascent; for an up-to-date description 
of the necessary optimality theory, we refer the reader to the book by Bickel, 
Klaassen, Ritov and Wellner (1993). 

We note that there are some technical issues concerning the boundaries of 
the parameter space. If the true latent distribution is, for example, degenerate, 
then the conditional MLE is still best asymptotically normal, but there may 
be estimators, such as the mixture MLE, that will gain superior performance 
at the sacrifice of asymptotic normality. 

8.2.5. Equivalence theorem for mixture MLE. If the conditional MLE is 
fully efficient in the mixture setting, then one must ask "what about the semi
parametric mixture MLE?" 

Since logic suggests that the MLE for the specified model should be efficient 
therein, this suggests that perhaps the mixture MLE for the parameters of 
interest will be asymptotically equivalent to the conditional MLEs. 

We are now in a position to address this question using our equivalence 
theorem. We return to that setting with fJ = {3, Q = G, and LJ, Lc and Lm are 
the mixture likelihood, the conditional likelihood and the marginal likelihood 
of S, respectively. We check our conditions for equivalence of estimation. Recall 
that for each ({3, G) we need to find G* with certain properties. The first, 

Lc(f3, G) = Lc(f3, G*), 

is trivial here because the conditional likelihood does not depend on G. Thus 
all we need to do is to find G* satisfying 

(8.3) Pi(/3, G*) = !!..L v j, 
n 

where Pi(/3, G) = Pr[S = j], the marginal distribution of the sufficient statis
ticS. 

We now summarize the extensive treatment of this problem in Lindsay, 
Clogg and Grego (1991). 
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We have already developed the tools in Chapter 2 to study questions of 
existence such as posed by (8.3). The subject at hand is the mixture density 
under fixed f3 of the statistic S, and so we can plot the unicomponent models 
as a curve {p(/3, cp ): cp E !1} in the simplex, form the convex hull of mixture 
densities and then ask the question: Does the vector of observed proportions 
d, with coordinates ni/n, lie inside this mixture set? If it does, then there 
exists a solution G* to (8.3); otherwise, there does not. 

Thus, in fact, the answer depends on the observed empirical distribution 
of the variable S. If it is equal to a mixture density vector, then the condi
tional and mixture maximum likelihood estimators of the item parameters 
are identical, and otherwise not necessarily. It is important from a conceptual 
point of view, however, that when the model is correct, then the estimators 
are identical, with probability 1, for a large enough sample size. 

For completeness we add that this asymptotic result relies on the distri
bution G having enough support points that the vector of true probabilities 
Pr[S=}] does not lie on the boundary of the mixture set. If this occurs, the 
semiparametric MLE of () is not asymptotically equivalent to the conditional 
MLE, nor even normally distributed. This question can be addressed quite 
explicitly in the two-item model. The only boundary situation here is when 
the true latent distribution has a single point of support. In this case the 
asymptotic distribution of the maximum likelihood estimator of () is that of 
a preliminary test estimator in which one chooses between the conditional 
estimator and the unicomponent estimator based on a preliminary test of 
heterogeneity. 

In all the data sets examined by Lindsay, Clogg and Grego (1991), the con
ditional and mixture approaches resulted in the same estimator. Among the 
other issues addressed therein were algorithms and the identifiability of pa
rameters in the mixture model. The authors note that a key advantage of the 
mixture approach is that it leads quite naturally to empirical Bayes assess
ment of a subject's latent parameter value. 

8.3. Errors-in-variables and case-control studies. As a second exam
ple of the use of,the equivalency theorem, we consider the problem of estimat
ing logistic regression parameters in a case-control sampling framework. The 
presentation here represents the pertinent part of a study by Roeder, Carroll 
and Lindsay (1993). We will first replicate a famous result of Prentice and 
Pyke by putting it into the framewbrk of the equivalency theorem, and then 
we extend it into the case of a measurement error model. 

8.3.1. The joint sampling model. We start with a sample of data (Di, Xi) 
in which Di is a binary response variable, such as diseased (1) and nondiseased 
(0), and Xi is a vector of potential explanatory variables. We model the sample 
with a prospective logistic regression that specifies a parametric conditional 
distribution of Y given X: 

Pr[Y=11X=x]= exp(a+x'f3) 
1 + exp(a + x' {3) 
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The second part of the model, the marginal distribution of X, denoted G, is 
left completely unspecified. We will assume it is discrete, with density g(x). 
If we do this, the joint likelihood splits apart into two terms, one depending 
on a and {3 alone and the other on G alone: 

n n 

LJ(a, {3, G)= n Pr[D = di I X= Xi; a, {3] n g(xi). 
i=l i=l 

Thus joint maximum likelihood is easy. 'l'he nonparametric MLE of G is the 
empirical CDF of the x data, and a and {3 are estimated from the prospective 
logistic regression model. 

8.3.2. The retrospective model. We next suppose that the sampling was 
not carried out randomly, but rather we took a sample from each of the two 
populations: the cases (D = 1) and the controls (D = 0). Let n1 and no be 
the size of the samples from the two populations and let n = n1 + n0 . Then, 
in truth we are sampling from the conditional densities Pr[X = x I D = d] 
under two different values of d, and the likelihood we should maximize is the 
conditional likelihood: 

Lc(a,{3,G) = UPr[X ==Xi I D = di]. 

The corresponding marginal likelihood for the data is 

Lm(a, {3, G)= Pr[D = l]n' PriD = O]no. 

8.3.3. Prentice and Pyke's equivalency. Prentice and Pyke (1979) estab
lished that one could obtain the parameters '/3c that maximized the retrospec
tive likelihood Lc by maximizing the joint likelihood LJ, which amounts to 
maximizing the prospective logistic regression over f3 and a. Moreover, the 
solutions obtained this way satisfied 

~ ~ ~- nl 
Pr[D = 1; a, {3, G] o= --. 

n 
This last result is a clue that this result is an application of the equivalency 
theorem in Section 8.2. 

To apply the theorem, we must establish that for each set of parameters 
(a, {3, G), there exists another set (a*, {3, G*) such that the retrospective dis
tributions are the same, 

Pr[X =xI D = d; a, {3, G] =PriX= xI D = d; a*, {3, G*], 

but the marginal disease distribution equals the observed proportions exactly: 

(SA) Pr[D = 1; a*, {3, G*] ·= ~1 • 
n 

Let Pr[D = 1; a, {3, G] = p. For the proof of this claim the reader should check 
that 

a*= a+log[n1(1.- p)jpno] 
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and 

dG*(x) ex [l+exp(a* + ,Bx)]dG(x) 
[1 + exp(a + ,Bx)] 

do the trick. One key point here is that unlike our earlier application, we can 
satisfy (8.4) for every case-control sampling fraction nl!n that is not zero. The 
Prentice-Pyke result follows directly. 

8.3.4. The measurement error extension. The extension we desire to make 
incorporates one further level of difficulty. Suppose that the desired regressor 
variable is measured with error. That is, instead of measuring X directly, we 
observe the surrogate variable S i = Xi + error. More precisely, we suppose 
knowledge of a density 

f(slx) = Pr[S =sIX= x], 

possibly with unknown parameters, for the distribution of S; given X; = x. 
In our terms, the variable X; is the latent variable, and what we desire is the 
latent logistic regression of y on x. The mechanism generating the errors is 
assumed to be independent of the regression of interest, so that 

Pr[D =dIS= s, X= x] = Pr[D = d I X= x]. 

The joint distribution of the observables therefore has the mixture form 

(8.5) Pr[D = d, S = s] = j Pr[D =~ d I X= xlPr[S =sIX= x] dG(x). 

8.3.5. The extended equivalency result. The question now arises: Can we 
simply maximize the joint likelihood 

L.1(a, ,8, G)= Il Pr[D = d;, S = s;], 

which from (8.5) has a standard mixture form, when we want to find the 
regression parameters ,8 that maximize the retrospective likelihood: 

Lc(a, ,8, G)= IlPr[S = si I D = d;]? 

'l'o maximize the latter, we would have to maximize over a nonstandard like
lihood containing ratios of mixture probabilities. 

The answer follows directly from the identifiability result we used in the 
no-measurement-error example. If (a, ,8, G) are the original parameters, then 
let (a*, ,8, G*) be as in the previous result. These parameters still give a dis
tribution for D that fits the proportions of cases and controls, because the 
marginal distribution of D does not depend on the measurement of S. More
over, if these parameters give identical distributions for X I D, then they must 
give identical distributions for SiD. 

Furthermore, when we maximize L.1 we achieve a perfect fit of the marginal 
proportions of cases and controls, as in the Prentice-Pyke result. We note that 
it is critical to this result that G be modeled nonparametrically, so that the 
equivalency equations (8.1) and (8.2) have a solution. 
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Roeder, Carroll and Lindsay (1993) have an extended version ofthis problem 
in which both X and S are measured on a subsample, as well as considerably 
more on the practical problem and the efficiency of the maximum likelihood 
procedure. 

8.4. A mixture index of fit. As a last semi parametric example, we will 
introduce a very different kind of model that arises from a mixture point of 
view. It provides an interesting extension of some of the techniques we have 
discussed. The original source for this analysis is Rudas, Clogg and Lindsay 
(1994). 

8.4.1. The problem. We suppose that there exists a simple baseline proba
bility model f(x; f3) for the data X that we wish to use to make inferences for 
a population. It might, for example, be the model of independence for a multi
way contingency table. However, we know that it cannot be a perfectly correct 
description, of the population. We would like a simple interpretable measure of 
how close the baseline model is to being correct-one that we could easily use 
to evaluate the predictive capabilities of the baseline model. As an illustration, 
consider the data in Table 8.1, taken from Diaconis and Efron (1985). 

We have a simple cross-classification of variables. The chi-squared 
goodness-of-fit for the independence model gives us a test statistic of 138.29 
on 9 degrees of freedom, so we certainly reject that model. However, from this 
information we cannot tell if it is a reasonably close description of the data 
anyway, and our rejection arose because we have a relatively large sample 
size. 

8.4.2. The concept. We let g(x) be the true distribution of the data. We 
suppose that it can be written as a mixture of a baseline model density and a 
second completely arbitrary density q(x): 

(8.6) g(x) = (1- 7T)f(x;f3) + 7Tq(x). 

Note that the density q(x) represents a lack-of-fit or outlier distribution. [In
stead ofletting q( x) be arbitrary, we could here specify that q( x) is an element 
of some large class of densities that includes all the model densities and that 
is also sure to include the true density.] 

TABLE 8.1 
Cross-classification of eye color and hair color 

Hair color 

Eye color Black Brunette Red Blonde 

Brown 68 119 26 7 
Blue 20 84 17 94 
Hazel 15 54 14 10 
Green 5 29 14 16 
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The variables 1r and q(x) in the mixture representation (8.6) are not unique, 
because once a representation is given using 1r and q, one can construct others 
by the action of"moving some of the baseline model into the lack-of-fit density" 
as follows: 

(8.7) g(x) = (1- 1r- s)f(x; ,B)+ ( 1r + s) [-1r-q(x) + - 8 -f(x; ,B)], 
71'-t-8 71'-t-8 

provided that 8 is sufficiently small that the new mixture weight 1r + 8 is in 
[0, 11. However, one can turn the parameter 1r into something well defined 
and interpretable by letting 7r*, the lack-of-fit index for the density g, be the 
smallest 1r one could use in such a representation: 

1r*(g) = inf{1r:g(x) = (1-7r)f(x;,B) + 1rq(x)}. 

We will assume that the class of baseline models is closed, so that there exists 
a representation of the form 

g(x) = (1- 1r*){(x; {3*) + 1r*q*(x). 

The parameter 1r* has a simple interpretation: It is the smallest fraction 
of the population that must be removed before the baseline model would fit 
perfectly. Additionally, we can interpret (1- 1r*) as the maximal fraction of 
the population that can be described exactly by the baseline model, and so the 
population fraction to which the model-based inference applies. 

8.4.3. Application to the multinomial. This modeling scheme leads directly 
to a method of estimation if we are in a contingency table setting. We continue 
as before, but substitute the variable t for x to remind us that it is an index 
for the cells of a multinomial contingency table. We also recall that in this 
case, we have the nonparametric multinomial MLE, which is just d(t), the 
observed cell proportions. Hence we can use 1r*(d) to estimate 1r*(g). 

To better understand how this works, we first consider all multinomial 
densities p(t) such that their lack-of-fit 1r*(p) is less than some fixed value 
7ro: 

7t'7T0 (model) = {p(t): 1r*(p):::: 7ro}. 

We can think of 7t'7To (model) as representing the set of all multinomial densities 
whose lack-of-fit is acceptably small. We note that because of the shuffling 
property (8. 7) we can also describe 7t'7To (model) as being the set of multinomial 
probability vectors for which there exists some 1ro representation: 

7t'7To (model) = {p(t) = (1- 1ro) f(t; ,B)+ 7roq(t), for some ,8 and q( ·)}. 

In the simplest case, where the baseline model is just a single known dis
tribution f(t), this is just a simplex of the form 

7t'7T0 (f) = conv{(1- 7ro)f + 1roet: t = 1, ... , T}. 

We invite the reader to verify this statement. [The key here is that an arbitrary 
multinomial distribution q(t) can be written as q =I: q(t)et-J 
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The next step is to note that we can find fft'7T0(model) simply by taking the 
union of the simplices generated by individual baseline model elements: 

7t' 1ro (model) = U fft'1ro ( f.s). 
{3 

It follows that 7t'7T0 (model) is itself not necessarily a convex set. However, it is 
true that as we increase 1T, say from 7To to 71'1, we increase the set of acceptable 
models: 

(8.8) 7t'7T0 (model) c fft'1r 1 (model). 

We also note that fft0(model) is just the family of baseline models and that 
fft'1(model) is the full set of multinomial models. 

8.4.4. Maximum likelihood estimation. This said, we can find the max
imum likelihood estimator of the true multinomial density g(t) under the 
constraint that 7t'w0(model) is our class of acceptable models. We can think of 
this as estimating the baseline model f(t; {3), but allowing for a contamination 
fraction of up to 1To from some other distribution. Maximum likelihood on this 
set is fairly easy, since we can hold 7TO fixed and maximize over {3 and q( ·) 
from the class of all models of the form (1- 1To)f(t; (3) + 1Toq(t). 

Rudas, Clogg and Lindsay (1994) describe an EM algorithm approach that 
works, but is quite slow. Xi and Lindsay (1995) give a more efficient sequential 
quadratic programming method. 

If we let the profile log likelihood L * ( 1T) be the value of the log likelihood 
after we maximize over 7t'7T0, then it is clear from the nesting of the models (8.8) 
that L * ( 1T) is increasing in 1T. Let L be the likelihood of d, the non parametric 
multinomial MLE. We can visualize our acceptable model sets !!tw growing in 
1T until just as 11-* = 7r*(d), we find that dis in the boundary of fftfr·· From 
that value of Tr on, d is the maximum likelihood estimator from the model set 
.n'w, and so L*(1r) = L. We can construct a natural measure of the adequacy 
of a value of Tro by the likelihood ratio statistic 

Irs( 7To) = 2 [In L--In L*( 1TO) J. 
This statistic becomes zero when Tro is sufficiently large. 

An analysis of the data in the Table 8.1 can be carried out in this manner, 
and we arrive at the information in Table 8.2. We can see that about 30% of 
the data would have to be discarded for the independence model to fit the data 
exactly. The column labeled X 2 gives the corresponding Pearson chi-squared 
values. The statistic 11-£ in the table is our next topic. 

8.4.5. Inference on the lack-of-fit index. One inferential problem that we 
face is that the parameter estimator 11-* is biased upward. This is most evident 
when the baseline model is correct, because the true value of 1r* is zero, but 
the sampled values are necessarily positive. Fortunately, when the true value 
of Tro is not zero, we can use asymptotics to construct a lower confidence limit 
for it, and so rescue some assurance that a large value of 11-* is truly atypical. 
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TABL~~ 8.2 
Fit statistics for the semiparametric mixture 

model applied to the data in Table 8.1 

----------------------------
0.00 
0.10 
0.15 
0.20 
0.236 (=-IT-~) 
0.25 
0.26 
0.27 
0.28 
0.29 
0.298 (= -fi-*) 
7T::: 0.298 

138.29 
47.35 
23.74 

8.55 
2.57 
1.38 
0.83 
0.42 
0.16 
0.02 
0.00 
0.00 

146.44 
48.67 
24.36 

8.75 
2.66 
1.44 
0.87 
0.43 
0.16 
0.02 
0.00 
0.00 
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We therefore consider using the likelihood ratio test statistic Irs( 7To) to test 
the hypothesis 1r*(g) :::= 7To against 1r*(g) > 1r0 • 

The asymptotics of the situation can be handled by the techniques described 
in Chapter 4. When 7TO is correct, the null density vector g sits on the boundary 
of the set :Jt7To· This set, from its earlier description, is full dimensional within 
the simplex. 

To aid the geometric imagination, we first consider the simple case where 
the baseline model is a single density f and :Jt'7T0(model) is just the simplex 
:Jt''ll"o(f) containing f. After transforming to the dagger space, the simplex is 
still a simplex, and as long as g is on one of the fiat full-dimensional faces 
of this simplex, then the model cone generated by the models in Jll'7T0(f) are 
an entire half space. All directions that one can move while staying in the 
simplex face correspond to "nuisance score" directions, and any vector which 
is E 0 orthogonal to the face corresponds to the corrected score for 1T. Since if 
we go in one direction we go into the model and the other way we leave it, 
we are in a setting where the asymptotic distribution of likelihood ratio test 
statistic for 1r*(g) :::= 7To versus > has the limiting distribution 0.5x~ + 0.5x~. 

Of course, when the true distribution is not on a face of the simplex %71"0 (f), 
but on an edge or corner or other lower dimensional surface, the analysis 
becomes considerably more difficult. The geometry shows that the test statis
tic will have a chi-bar-squared distribution that is stochastically larger than 
0.5x6 + 0.5x~. Unfortunately, since this makes us more likely to reject if the 
true distribution is such a boundary point and therefore if one uses the dis
tribution 0.5x~ + 0.5xi, then the test procedure is anticonservative. How
ever, we do note that the region of parameter values where the test based on 
0.5x~ + 0.5x~ is anticonservative has Leb.esgue measure zero and might be 
presumed to have prior probability of zero. 

These arguments extend beyond the single distribution model Jll'7T0(f) to 
the general case :Jt'7T0(model) by using the fact that for a general baseline 
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model, the ?T-model set is a union of simplices and so has an open interior 
in the neighborhood of each boundary point. If the surface is smooth at the 
null hypothesis density, then the half-space conal geometry described above 
still holds true. However, the problem with "edges" is now more difficult to 
analyze, and one could lose the convex cone structure that guaranteed that 
using 0.5 x~ + 0.5 x~ would be anticonservative. 

Despite these technical difficulties, we think a reasonable procedure is the 
use of the distribution 0.5x~ + 0.5x~ as a guide for constructing tests and 
confidence intervals. Inverting this test gives an upper confidence interval of 
the form 

{ 7T: Irs( 7T) ::; x~(2a)} = [ 7r£, 1]. 

If we examine Table 8.2, we see that the 95% lower limit for 7r* in this data 
is about 24%, still a rather large lack-of-fit fraction. 
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