
CHAPTER 6 

Computation: The NPMLE 

We now consider the computational issues involved in calculating the 
NPMLE. We will focus on the simplified version of the problem in which there 
are no auxiliary parameters. The standard strategy to incorporate auxiliary 
parameters is to alternate between an algorithm for the latent parameters 
and one for the auxiliary parameters; this section describes only the latent 
parameter phase of that operation. 

We will start with an overview of the algorithmic strategies available, de
ferring the details to the works of others. 

After the overview, we wish to address an important issue that has seen 
little attention. In most problems, one cannot hope to compute the NPMLE 
exactly because there is no finite time algorithm that will attain the solution. 
Thus one must devise strategies that ensure that the computations have gone 
far enough to give desired statistical accuracy, but have not gone needlessly 
far. We will offer one strategy for this. . '• · 

At this point, there is a limited supply of software available for the non
parametric analysis. See Bohning, Schlattman and Lindsay (1992) for a de
scription ofC.A.MAN, Ezzet and Davies (1988) for a description ofMIXTURE 
and DerSimonian (1986, 1990) for a published algorithm. 

6.1. The convergence issue. We recall that the test for whether a candi
date latent distribution Q is the non parametric maximum likelihood estimator 
Q is to check whether the gradient inequality holds: 

v cfJ En. 
Unfortunately, in a typical problem one has an iterative algorithm such that 
one cannot in a finite amount of time attain this inequality. There are two 
issues here. 

First, there are often infinitely many inequalities to check, corresponding 
to all cp in n. We will later consider the implications of a simple solution to 
this problem where we assume that there is a chosen finite subset, say 0 8 , 

of s grid points cp1, where the gradient will be checked. One of our points of 
interest becomes the appropriate choice for the elements of such a grid. 
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A more sophisticated approach, used by Lesperance and Kalbfleisch (1992), 
involves taking a basic grid and then doing further searches for gradient viola
tions in the neighborhood of each grid point. An appropriate analysis of such 
a method requires rather more sophistication than our approach here. The 
key to a proper basic grid would be that there could not be regions between 
grid points that were left unsearched. One of the key points of our discussion 
here is that there are many situations in which we do not need this extra 
sophistication in prograp1ming. We can simply choose a grid to work on and 
iterate to a solutl.on. 

We note that, provided that one restricts the support points of Q to be also 
from the chosen finite grid, then the distribution Q that solves 

is the nonparametric MLE among all latent distributions on the grid. 
Unfortunately, even with such a restricted grid, one must still use an iter

ative algorithm that does not converge in a finite number of steps. We note in 
passing that when we restrict the maximization to a finite grid, we are exactly 
in the setting of known component densities, Section 3.2.1, where there is no 
known finite step algorithm. 

One possible strategy at setting a stopping rule would therefore be to set a 
small positive tolerance on the values of the gradient function, such as'}', and 
set a stopping rule for the algorithmic process of the type 

We return to this rule later, after reviewing some of the main algorithms that 
have been employed for this problem. 

6.2. Using the EM. The simplest programming approach to finding the 
NPMLE is to follow the lead of Laird (1978), who suggested the use of the EM 
algorithm with a large number of support points. For example, one could use 
one support point for each data point, with locations suggested by the unicom
ponent maximum likelihood estimators. Provided one has the patience for a 
very slow algorithm and has a secondary strategy for monitoring the gradient 
function to ensure adequate convergence, this is a reasonable strategy. We 
note that even if there is not an explicit solution to the EM equations for the 
component parameters, one can always simply fix a grid of 4> values and use 
the EM to solve for the unknown weights because this algorithm is always 
simply calculated. 

See DerSimonian (1986, 1990) for details of an algorithm. 

6.3. Gradient-based algorithms. For completeness, we here offer a de
scription of some basic algorithmic issues and constructions. As more complete 
sources, we recommend Bohning, Schlattman and Lindsay (1992) and Bohning 
(1995). 
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6.3.1. Design algorithms. If we view the problem in the wide context as 
a convex optimization problem on a set defined by its convex hull represen
tation, then the mixture problem is, of course, identical in structure to other 
problems. Of particular relevance to statisticians is the problem of the opti
mal design of experiments, where the objective function is one of several scalar 
measures of the overall informativeness of an experiment based on the result
ing information matrix for the parameters. The feasible region is the space 
of information matrices that are allowed under the design constraints. The 
space of feasible design matrices can be shown to be the convex hull of a set of 
basic matrices determined by the selection of a single design point. See Silvey 
(1980) for an overview of this problem. 

Of consequence here is that many of the algorithms used in mixtures can be 
used in design problems as well, including EM type algorithms, and of course, 
the converse is true. Thus a detailed study of the literature is necessarily quite 
extensive, and we will here only point to some of the mixture sources. 

6.3.2. Keeping track of the support points. One technical issue that sepa
rates various algorithmic approaches concerns the kind of information that is 
stored and used at each iteration. The reason for this is that it is technically 
not necessary to keep track of the current latent distribution estimator Q c at 
each step. If one instead merely updates the current fitted likelihood vector 
Lc, uses this to construct the gradient function and therefrom an update ofLc, 
say Lc+l. then one may have everything one needs. Since there are a number 
of algorithms of this type, we need to say why. 

It is because Q itself can in theory be reconstructed after convergence from 
L. Its support points ~J can be found from the final gradient function because 
they are in the set of points where the gradient reaches a local maximum of 
zero. The weights 1TJ, at least in theory, can then be determined after conver
gence by the relationship 

Such an algorithm might be contrasted with an EM algorithm that uses 
many support points-an approach recommended by some-because we must 
save the current parameter values for it so that they can be updated at the 
next step. 

6.3.3. Vertex direction and exchange methods. In the following algorithmic 
methods, we will let Qc be the current estimate of the latent distribution and 
we describe the construction of the next step. 

The simplest algorithm for finding the NPMLE springs directly from the 
gradient function itsel£ Sometimes called the vertex direction method, it sim
ply consists of finding the point ¢* that maximizes DQ. ( cp ), forming the one 
parameter family 
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and doing a one-dimensional algorithm in this family (usually Newton
Raphson) to find the maximum along this line. From our earlier theory, we 
know that this must increase the likelihood. It can be shown that, in fact, it 
provides a sufficient increase at each step that the algorithm must converge 
to the NPMLE [Lindsay (1983a)]. (We should more precisely say it has been 
proven that the likelihood will increase to its maximum value.) 

Moreover, this is an algorithm that does not need to keep track of support 
points because the gradient, the new support point and the new likelihood 
vector can be constructed from the current likelihood vector. This is fortunate 
because this algorithm can add a new support point with each iteration. 

Intuitive as this may seem, it is generally a very bad idea to use this al
gorithm except as a supplement to another speedier algorithm. As Lindsay 
(1983a) indicated, it is sublinear in convergence and in fact becomes slower 
and slower as we approach convergence. 

For this reason, Bohning (1985) suggested a simple alternative that was 
considerably faster in terms of number of iterations. Called the vertex exchange 
method, it also requires only the solution of a one-dimensional optimization 
problem at each stage. Although it also has the disadvantage that we must 
keep track of the current latent distribution, in contrast with the vertex direc
tion method, it can eliminate one support point at each step, so the number 
of support points stays bounded, with new points replacing old points. 

6.3.4. Intrasimplex direction method. Neither of the preceding methods 
could be considered adequately speedy to do many calculations of the NPMLE, 
such as we might need to construct profile likelihoods or do simulation studies. 
The problem is that we need to somehow use the fact that unicomponent 
models are highly correlated when their parameter values are similar, and 
we cannot take advantage of this multicollinearity without using methods of 
higher dimension. 

For this reason Lesperance and Kalbfleisch (1992) suggested an algorithm of 
a multivariate type, in which one found the set of optimal weights for a convex 
combination of the current likelihood vector and the unicomponent likelihood 
vectors corresponding to the current local maxima of the gradient function. 
As we have remarked earlier, the log likelihood will be strictly concave in 
these weight parameters, so a reasonable quasi-Newton procedure to solve 
for optimal weights, subject to nonnegativity constraints, could be expected 
to be fast and reliable. In addition, this algorithm does not require storage 
of the current latent distribution (the number of support points could grow 
explosively), but just the fitted likelihood vector. 

6.3.5. Monotonicity. An important piece of practical advice to students 
starting work in this area is that no matter what method is used, one should 
be monitoring the likelihood function. If one is working with a method guar
anteed to increase the likelihood, such as the EM, then this is a check on 
the program; if not, it is a preventative for oscillatory behavior. Since there is 
just a single unique maximum, there is no advantage to having the algorithm 
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search the space more thoroughly. Bohning, Schlattman and Lindsay (1992) 
have some suggestions, and the corresponding C.A.MAN program provides 
various step length options. 

6.3.6. Using the dual problem. Yet another approach to finding the 
NPMLE is to switch to solving the dual problem, which is a straightforward 
optimization problem with linear constraints defining the feasible region. Les
perance and Kalbfleisch (1992) use a canned program for this optimization 
problem (SIP = semiinfinite programming) and found that it was quite com
petitive with their intrasimplex direction method. It is the author's intuition 
that this will often be the best approach to the problem. Table 6.1 reproduces 
a comparison made by Lesperance and Kalbleish. The "Sup Grad" column 
indicates the final calculation of the convergence criterion and the column 
"11l" indicates the difference between the global maximum log likelihood and 
the likelihood at the last iteration of the algorithm. These columns will be 
discussed further when we discuss stopping rules. 

6.4. Ideal stopping rules. One could obviously take the tack that one 
should iterate on an algorithm until the accuracy of the result approaches the 
limit of machine accuracy. However, this is not practical if one wants to do 
simulation studies or apply bootstrap methods. We therefore attempt now to 
describe how to develop statistically meaningful stopping rules. 

6.4.1. The ideal rule. We postulate that the ideal stopping rule for the 
iterations of an algorithm is to stop when we have a log likelihood that is 
sufficiently close to the final log likelihood. That is, we quit when we have 
found Qstop satisfying 

(6.1) ln(L( Q)) -- ln(L( Qstop)) :S tol. 

Here the criterion tol should be related to desired inferential goals. We here 
suggest what we think are reasonable values based on certain heuristics. 

First, we note that setting such a goal will ensure that Qstop will be a 
consistent estimator of Q, as was shown by Kiefer and Wolfowitz (1956). 

Owen (1988) showed that one can construct valid nonparametric confi
dence sets for the smooth functionals of an unknown distribution function F 
by examining a form of nonparametric profile likelihood called the empirical 

Algorithm 

VDM 
VEM 
ModVDM 
SIP 
ISDM 

TABLE 6.1 
A comparison of algorithms 

#Iterations Sup Grad a..z 

2,177 2.64x10 3 1.07x 10-3 

143 3.18x10· 2 0.85x10-2 

60 4.96x10 1 4.98x10··4 

11 1.60x J.o-8 0 
11 1.14xlo- 8 0 

APLTime 

12:28 
1:04 
5:49 

[0:14] 
0:03 
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likelihood. Moreover, the empirical likelihood can be calibrated by the usual 
chi-squared distribution with degrees of freedom equal to the number of func
tionals under consideration. 

It has not been shown that this theory carries over to our situation, but it 
seems likely to be true. Even if not, it gives us some guidance as to orders of 
magnitude that might be relevant. In our setting this would work as follows. 
Let()= 0( Q) be a functional of Q of interest, such as the mean or the distri
bution function evaluated at a particular point. Let 0 = 0( Cl). Let Q0 be the 
maximum likelihood estimator of Q among all Q that satisfy e( Q) = 0. (We 
will discuss the solution of this optimization problem in the next chapter.) If 
Owen's result were to hold here, we could say, approximately, that 

(6.2) 2[ln(L(Q)) -ln(L(Q0))] ~ (O ·- e)[Varo]-1(0- e) 

in the neighborhood of the maximum. 
Now, suppose we set as a target of accuracy that our estimator of() be within 

0.1 standard error of 0. This is just 1/40 of the width of a standard confidence 
interval and so we believe it would be pointless to pursue numerical accuracy 
further than this, given the statistical inaccuracy. If we set 

(6.3) tol = 0.005, 

stop at Qstop and let Ostop be the value of 0( Qstop), then 

2[ln(L( Q)) -ln(L( Qo.,.P))] ~ 2[ln(L( Q)) ·-ln(L( Qstop))] _::: 0.01. 

It follows, given our approximation (6.2), that Ostop deviates from 0 by at most 
0.1 standard units. 

Thus we believe tol = 0.005 is a meaningful statistical goal and going be
yond it pursues statistically meaningless accuracy. 

6.4.2. A gradient-based rule. Now, we obviously cannot at any stage in an 
algorithm know exactly whether we have met the ideal stopping rule (6.1). 
However, we remind the reader that we can use the gradient to bound such a 
difference. That is, we know from Section 5.3.2 that 

(6.4) [ln(L( Q)) -ln(L( Q))] _::: sup DQ( 4> ). 

Thus if we can ensure that 

</>e!l 

supDQ(o/) _::: tol, 
</>E!l 

we would have our targeted statistical accuracy. 
One important question here regards whether the inequality (6.4) is close 

to an equality, at least in order of magnitude; otherwise we may be pushing 
our accuracy goals substantially beyond that actually needed. One piece of 
evidence for this is in Lesperance and Kalbfleisch (1992), in a table reproduced 
as Table 6.1 above. Our interest is in comparing columns 3 and 4, where 
we find the sup gradient and remaining likelihood to be gained at the final 
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steps of each of the algorithms. We note that the sup gradient upper bound 
result shows that the last two algorithms have converged to a high degree of 
accuracy, so their likelihoods were set to be the true maximum. The numbers 
for the oth~r estimators suggest that the order of magnitude of the remaining 
likelihood increase can be predicted fairly well from the sup gradient. In the 
worst case, the sup gradient was four times the remaining likelihood increase. 

6.4.3. Combining grid and gradient. We now return to the supposition 
that we will evaluate the gradient at a finite grid of points. The next question 
we ask is: can we select a grid 0 8 and a modified tolerance level tol* in such 
a way that 

(6.5) sup DQ(c/J) :<:: tol* ==> 
c/>Efl, 

sup D Q ( 4;) :<:: tol? 
c/>Efl 

Such a bound cannot be created unless the gradient has boundable variation, 
so that knowledge of its values on the grid points determines how high it can 
go between grid points. 

This is not true in some cases, such as the empirical CDF problem, where 
one must include all the data points in the grid or else have zero likelihood 
for the data. In fact, as we will see, the larger the second derivatives of the 
unicomponent density are, the more refined must the grid be to attain desired 
statistical accuracy. 

To analyze this question, we restrict attention to real-valued ¢. Suppose 
that Q satisfies 

sup DQ(c/J) :<:: tol* 
c/>Efls 

and suppose that g1 and g2 are two adjoining grid points. Suppose that we 
can construct a bound of the type 

(6.6) 

'l'his ensures that the gradient cannot go upward and then curve downward 
too fast, and so bounds the maximum via 

(6.7) 

(The reader is invited to check this out: The bound arises by setting the gradi
ent equal to tol* at the two endpoints and then making the steepest possible 
quadratic in between.) 

Thus, it is clear that if we can find c to satisfy (6.6), then by application of 
(6. 7), together with a fine enough grid, one can attain the goal (6.5). 
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6.4.4. Bounding ·the second order score. One of the problems with estab
lishing a bound of the type (6.6) is the presence of the arbitrary distribution 
Q as an argument. Thus we will modify the above strategy somewhat to make 
the problem easier to solve. We remind the reader that if Li(cP) = {(xi; c/J ), 
then the dispersion score 

{"(xi;¢) Lj(¢) 
v2 (c/J, xd = {(xi; c/Jf = Li(c/J) 

played an important role in evaluating overdispersion. 
The following lemma suggests that this score is an important quantity in 

determining the properties of the gradient as well. 

LEMMA 26. 

(6.8) 

then 

(6.9) 

If for all i and for all c/J E [gi. g2], 

Lj(¢) 
-- > --k 
L;(c/J) -·- ' 

PROOF. Straightforward algebra, using the fact that 

D ( ) "\""' L;(c/J) 
n+ Q c/J =.L.niLi(Q)' 0 

Before proceeding, we note that it is easy to establish a bound such as (6.8) 
in the exponential family. For example, if c/J is the natural parameter, we have 

Lj(c/J) ( ) [ ( )]2 2( Li(c/J) = V2 c/J, Xi o-=: Xi- j.t cP -- (J' c/J), 

which is clearly bounded below by -u2 (c/J) on the chosen interval. If we are 
using instead the mean value parameterization, then 

Lj(c/J) (xi- p.,(c/J))2 ·- u 2(¢) 1 
--= >---
Li( cP) u 4 ( cP) ·- u 2 ( c/J) 

is a simple bound on an interval in which the unicomponent variance of X 
does not go to zero. 

6.4.5. A conservative method. Now if we insert (6.9) into (6.5), we get 

sup DQ(c/J) ::S tol* + k ((g2 -- g1 )
2

) [n + sup DQ(¢)]. 
¢e[gt.g2] 8 c,l>e[ g 1,g2] 

We let 
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be the critical factor for the grid. For example, if we use the mean value 
parameter of the exponential family, we get 

w2 
C=-2, 

u* 

where w is the half-width of the grid separation and u*2 is a lower bound for 
u 2 ( c/J) on that interval. Algebraic manipulation then gives the upper bound 

D (A.) tol* + Cn/2 
sup Q ..,., < . 

¢E[gl,g2] -- 1 + c /2 

Clearly for C sufficiently small, one can make this bound as close to tol* as 
one likes. Moreover, for C small, the bound is approximately tol* + Cn/2. 

We note that the choice of an acceptable critical factor C for the grid will 
therefore depend very much on the sample size n. This derives from the fact 
that as the sample size increases, the greater the precision of our statisti
cal knowledge and so the greater the need for numerical accuracy. Thus we 
run into the unfortunate side effect that the larger the sample size, the more 
difficult the numerical problem. 

Returning to the exponential family in the mean value parameterization, 
we see that the critical factor for the grid is the grid separation expressed in 
standard deviation units. Thus, for example, if we were to separate the grid 
points by 0.02 standard deviations, we would get an upper bound of the form 

tol* + (0.00005)n 
:~E DQ(c/J) s 1 + (0.00005) . 

In this case, the standardized grid widths must shrink at the rate n-112 to 
maintain the desired accuracy. For example, if our target tolerance is 0.005, 
as suggested earlier, and we set tol* for the grid at 0.0025, then we must set 

~ = Jo.oo5n- 112 . 
(]"* 

Thus for n = 100, we need a standardized half-grid-width of about 0.007. For 
n = 10,000, the grid half-width shrinks to 0.0007 standardized units. 

6.4.6. Remarks. We remark that this analysis indicates that if we were 
to change to an exponential family parameterization in which the variance is 
constant, then we could use an equally spaced grid without losing accuracy in 
any region, but otherwise there will be a potential loss of information in the 
use of an equally spaced grid. 

These design considerations have been based on the idea of conservatism 
and least favorable situations. Empirical evidence is not available on whether 
these recommendations are overly conservative. 

We also note that if one is doing a gradient search based on a grid of starting 
points, that these considerations suggest that the grid should be evenly spaced 
on the standardized scale, and that the spacing should shrink with sample 
si:r.e. 
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