
CHAPTER 1 

The Wide Scope 

The mixture model has long been a challenge to the statistician, whether be­
ginner, practitioner or theoretician. Recent times have seen great advances in 
our understanding of the some basic mathematical features of this model, and 
these notes are meant to be a unification ofthe work I have carried out, jointly 
with many wonderful collaborators, in this area. Based on lectures given in 
1993 at a regional conference of the Conference Board of the Mathematical 
Sciences, the notes are directed toward a mixed audience of advanced gradu­
ate students and research workers in this and related areas. For the sake of 
newcomers to the mixture model, I will attempt to be complete enough for the 
text to make sense in itself, but must at some points refer the reader to other 
more extensive treatments. 

Unfortunately, the goal of timeliness in the end also forced some truncation 
of the subject matter in the original lecture notes. On the other hand, some 
subjects have been given enhanced development because they are truly new, 
and the audience I have in mind will appreciate a deeper presentation of 
background and of the beautiful geometric structures of the model. 

The first chapter of these notes, corresponding to Lecture 1, lays out the 
mixture landscape as I see it, and the practical side of my motivation for 
interest in the area. There are two major points: 

5 There are many statistical topics, some quite extensive by themselves, that 
can rightly be called mixture model subtopics. They all share the mixture 
model structure, and have similar inferential goals. One of the themes of 
this chapter is, therefore, that the many names for the mixture model hide 
its universality. In these notes I am aiming for the universal aspects that 
lie beneath. 

• There is a nonparametric approach to maximum likelihood in the mixture 
model that gives us an extremely powerful set of tools to use, both in a 
nonparametric approach and in diagnosing the ailments of parametric ap­
proaches. I might add that, to my mind, it is mathematically elegant and 
fun. 
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The more sophisticated reader knows well that the sphere of mixture mod­
eling includes random and mixed effects models, empirical Bayes, latent class 
and trait models, clustering, deconvolution and many other key words and 
phrases, and for such a person this chapter could perhaps be shorter. Just 
the same, it was an adventure and an amazement to me just to construct an 
itemized list. 

My own understanding of this subject has been greatly enhanced by study­
ing the geometric structures of the model, and as such the emphasis in later 
chapters will many times be on fundamental geometric ideas whose truth 
can sometimes be transmitted more easily pictorially than through detailed 
mathematical arguments. In addition to giving those pictures, I will sometimes 
sacrifice the generality of an argument in order to make it more transparent, 
with the understanding that the reader pursuing the matter further should 
go to the cited sources. The reason for this is that the goal in these notes is 
not to repeat what has been done, but to try to provide a reader of modest 
background a clear understanding of a sometimes difficult topic. 

Although this is not a textbook, I am presuming that some readers will 
wish to confirm and enhance their understanding by the active process of 
doing calculations and drawing pictures rather than through the more passive 
activity of reading. For this purpose, I have marked various features of the 
text as exercises (denoted by Italic type and frequently, but not always, within 
brackets). None should take long to perform, given that the desired insight 
has been obtained. 

1.1. The finite mixture problem. The simplest and most natural 
derivation of the mixture model arises when one samples from a population 
that consists of several homogeneous subpopulations, which we will call the 
components of the population. The number of components will generally be 
denoted m, but if we wish to emphasize that it is not known, we will use v. 
The components will be indexed by j = 1, ... , m. Suppose we sample from 
such a population, recorded as data (Xi, JJ, for i = 1, ... , n, where Xi =Xi 

is a measurement on the ith sampled unit and Ji = ji indicates the index 
number of the component to which the unit belongs. 

Further, suppose that if we were sampling just from the jth component, it is 
known that there would be an appropriate probability model for the sampling 
distribution, say 

(1.1) Pr[X = xlJ = j] = f(x; 0, gJ). 

Please note that although the left side of the above expression formally refers 
to a discrete variable X, we will use this same symbol-and its like-in these 
notes to mean a density function, whether discrete or absolutely continuous. 
In (1.1), f represents a known density function, most naturally called the 
component density. 

The variable gJ in (1.1) is an unknown parameter, called the component 
parameter, that describes the specific attributes of the jth component popula­
tion, and 0 is a vector of parameters that describes unknown characteristics 
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common to the entire population. For the moment, the parameter 0 is of sec­
ondary interest and will be dropped from the notation, although we will return 
to it later. 

The proportion of the total population that is in the jth component will be 
denoted by 'TTJ and called the component weight. We therefore have LJ 'TTJ = 1. 
The component weights 'TT 1 are usually unknown parameters. Since we sup­
pose that the population has been sampled at random, the probability that 
an observation comes from the jth component is Pr(J = j) = 'TTJ· We can 
conclude that the variables (Xi, JJ, for i = 1, ... , n, are a random sample 
from the joint density described by 

Pr(X = x, J = j) = Pr(X = xiJ = j)Pr(J = j) 
= f(x; gJ). 'TTJ· 

The mixture model arises if the component label data J 1, ... , J n is missing, 
so that we observe only the sample X 1, ... , X n from the marginal density of 
X. Thus the observed data are a sample from the mixture density 

(1.2) g(x; Tr, <!>) = r: P(X = xiJ = j)P(J = j) = L 7rj{(x; {;j). 

If there are m components in the mixture, it will be called an m-component 
finite mixture model. In a general finite mixture model, there is a set of 2m 
parameters 

each column corresponding to a component. The weights satisfy the con­
straints that 

'TTJ::: 0 and L 'TTJ = 1. 
j 

A very important special case occurs when there is just one component; 
in this case the density f(x; g) will be the called the unicomponent mixture 
density. 

1.1.1. A simple example. To illustrate some of the fundamental character­
istics of the problem, it is useful to consider a simple example and examine the 
mixture densities that arise. Suppose that we have a population of animals 
consisting of two component types, say component 1 = male and component 2 
= female, and the characteristic, say X = length, is normally distributed in 
both components when considered alone. Suppose for simplicity that the two 
component groups have the same standard deviation u for X, but that they 
have different means, {;1 and 6, respectively. Further, assume that the males 
have the smaller mean 6. so {;1 < 6 (e.g., black widow spiders). Let 'TT be 
the population proportion of component 1 so that 7r := 1 - 'TT is the proportion 
from component 2. If we sample from the two components without gender la­
bel, then the resulting distribution for heights is a mixture of two normals, 
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FIG. 1.1. Mixed normal densities with means four standard deviations apart. 

which we write as 

7r N(6, u 2 ) + ir N(~2, u 2 ). 

6 

Here we use the symbol N(~, u 2 ) to represent the normal probability measure 
with mean ~ and variance u 2• 

If the components have equal component weights of 7r = ( 1 - 7r) = 1/2 
and the means are four standard deviations apart, then heights from the 
population are described by the solid curve in Figure 1.1. 

In this case the mixed nature of the density is revealed through its bimodal­
ity. Moreover, it is clear that we can obtain from the value of the variable 
X = height a great deal of information about whether the measurement was 
on a male or female. 

We might contrast this favorable situation with one in which the means are 
just one-half as far apart, two standard deviations. One might not expect the 
dramatic change that going from four to two standard deviations makes. In 
Figure 1.2 we see that the population density is now unimodal. 
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FIG. 1.2. Mixed normal densities with means two standard deviations apart. 
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Suppose that we wished to construct a classification rule that took the 
variable X and made a determination of the sex. In this case, the best rule 
(fewest misclassifications) would be to assign those spiders smaller than the 
population mean to be males and those larger than this to be females. As 
an indication of the loss of information about the true number of males and 
females, we note that using this rule would cause many males and females to 
be misclassified. (We will learn more about the difficulties associated with the 
loss of information about the mixture due to the closeness of the components 
in a later section of this chapter.) 

1.1.2. More complicated applications. The most compelling examples of 
the mixture model occur when there are physically identifiable components 
in a true population. We would like to point out here just two of the many 
interesting such applications in the literature. 

MacDonald and Pitcher (1979) considered a situation in which the popu­
lation consists of the fish of a single species in a lake, and each component 
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consists of the fish of a single yearly spawning of that species. The compo­
nents are thus relatively homogeneous and fish in any one component j might, 
therefore, have X = length that would be adequately modeled with a normal 
distribution with unknown mean and variance. The parameters SJ are then 
the parameters in this normal distribution and the weights 1r J represent the 
relative abundance of the different age groups. The weights would often be the 
parameters of interest. Note that determining the values of these parameters 
over several years would be useful for determining the relative mortality of 
the yearly cohorts. 

We note that this example illustrates one of the useful features of mixture 
analysis. It enables one to use a surrogate measure, in this case X = length, 
in place of an ideal measurement, here J =age group, in experimental situ­
ations in which the ideal measurement is expensive or impossible to obtain. 
However, in MacDonald and Pitcher's case, this ideal measurement is actu­
ally available, so they can compare their mixture model analysis with that 
attained by knowing the ages of the fish. 

Another example of this type is given by Do and McLachlan (1984). In this 
case the scientific interest was in the population of rats being eaten by a 
particular species of owl. The components of the population were a number of 
distinct rat species. Although it would be very difficult to directly survey the 
owls for dietary preference, it was easy to collect owl feces, from which the rat 
skulls could be extracted. Various measurements X were taken on the skulls. 
A mixture model can be constructed as follows: Let 1T'J be the proportion of 
the jth species in the owls' diet and let f(x; /;j) be the intraspecies density 
of these characteristics within the jth species, where f is the multivariate 
normal density and /;j are the parameters for the jth species. 

For the reader who wishes to read more about the many direct applications 
of the finite mixture model, there are three good books available on the topic: 
Everitt and Hand (1981), Titterington, Smith and Makov (1985) and McLach­
lan and Basford (1988). We return to the basic mathematical structures of the 
model. 

1.2. The latent (or mixing) distribution. An extremely important as­
pect of the finite mixture problem that we have just described is that we can 
identifY the unknown parameters with a distribution. We next show how this 
is done. 

1.2.1. The discrete latent distribution. Define the latent random variables 
<P1. ... , <Pn to be the values of the parameter t; corresponding to the sampled 
components J 1, ... , J n; that is, if the ith observation came from the jth com­
ponent, then define <Pi = /;j. In symbols, 

{Ji = j} {=----=> {<Pi= gj}. 

It is conventional to let the realized value of a random variable, such 
as <Pi, be denoted by the lowercase version of the same letter, such as 
<Pi = c/Ji· Thus we will have two symbols, cp and t;, representing elements 



THE WIDE SCOPE 7 

of the component parameter space. It is useful to do so in order to avoid 
ambiguity about whether a symbol, such as 4JJ, refers to the component 
parameter of the jth component (here denoted gj) or the latent variable that 
was sampled in the jth observation (here denoted 4Jj). 

The cl>i are a random sample from the discrete probability measure Q that 
puts mass TTJ at the support point g1; that;is, 

We can in this way equate the set of unknown parameters 7T J and ~J uniquely 
with a discrete probability measure Q on the parameter space for g, with m 
points of support {6, ... , ~m} and corresponding masses {7rb ... , Trm}. Thus 
we have the extremely important concept that estimating the unknown pa­
rameters in the mixture model (1.2) is the same as determining an unknown 
distribution Q with support on the parameter space. 

The distribution Q is usually called the mixing distribution, but to avoid 
confusion with the expression "mixture distribution" and because it is asso­
ciated with the latent variable ci>, here we will call it the latent distribution, 
in line with terminology found in the social sciences literature. We will also 
replace the component and weight parameters in the notation with Q, so that 
when it is known that we are in a finite mixture situation, 

7Tm) 
~m . 

With this change in perspective, there is also a natural change in terminology, 
in which the component parameters ~J are now the support points of the latent 
distribution and the component weights TTJ are the probability masses of the 
latent distribution. 

We note that we can also view the hypothetical complete data set as be­
ing (Xi, <I>i), i = 1, ... , n, rather than (Xi, J;). Since we arrive at the same 
marginal distribution for the observable variables Xi, we can choose the rep­
resentation that is most useful. The latent variable representation (Xi, cl>;) 
links the mixture problem to the standard Bayesian paradigm: The mathe­
matical model for the pair (X, ci>) is identical to a Bayesian model in which 
the conditional distribution of X given the' realized parameter ci> = 4J is 
f(xl¢) = f(x;4J), and Q is the prior distribution on cl>. 

The distinction here is that we have more than one observation of the ran­
dom variable X, corresponding to multiple realizations of the latent variable 
<I>, so that we are able to do frequentist inference about the prior Q itself. 
We return to this point later in discussing empirical Bayes. We note that a 
Bayesian approach to the mixture problem we are considering here can be 
found in the literature under the key phrase hierarchical Bayes. 

We next note that if the component density f does not depend on the com­
ponent other than through the parameter g, then we can write the mixture 
density of an observation X as an expectation, or average, over the latent 
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distribution Q of <P : 

f(x; Q) := E[f(x; <P)] == J f(x; </J) dQ(¢). 

[Exercise.] This last representation of the mixture density as an integral of a 
known component density function f with respect to an unknown probability 
measure Q will be the basis of many of the results of this monograph. 

1.2.2. The continuous latent distribution. Although we have derived the 
mixture model in the context of a population model with finitely many distinct 
components because it provides a fundamental level of understanding, it is 
important that there is a natural extension of the model in which the latent 
variable <P has a continuous density, say d Q(¢) = q( ¢) d¢, so that the mixture 
density becomes 

f(x; Q) := J f(x; ¢) dQ(¢) = J f(x; ¢) q(¢) d¢. 

Sometimes the continuous latent variable has a direct physical interpreta­
tion, in the sense that one could, at least in theory, measure it exactly, but 
that it was not measured on the ith unit. An example could be a variable such 
as <I> = age in a population with year-round births. The density f(x; ¢) then 
represents the conditional distribution f(xl¢) of X given the missing variable 
<I> = ¢. In this situation, it is possible to have a subsample of data in which 
both <I> and X are measured, with joint density f(x;cp)q(¢). 

Many other times <P represents a more abstract quantity presumed to 
have a strong influence on the measurement X, and about which inference 
may be desired, but which cannot itself be directly determined by physical 
measurement. For example, we might suppose that there is a latent math­
ematical ability that largely determines the test score in mathematics on a 
certain exam, such as the SAT, but we realize that there is randomness in 
the outcome of an exam for any one subject arising from a variety of other 
factors. 

We can allow for this by constructing a model in which the latent variable 
<l>i is a subject-specific parameter that determines the probability that the-ith 
subject will get _a question right. Then each subject has a random number of 
correct answers, but his overall distribution is determined by that subject's 
latent ability parameter ¢i· Since the true value of this parameter can only 
be exactly determined through the taking of infinitely many test items of the 
same type, it has only abstract meaning. 

Much of our interest in these notes will be in the case where the distri­
bution Q is treated as completely unspecified as to whether it is discrete, 
continuous or in any particular family of distributions; this will be called the 
nonparametric mixture model. If the parameter () is present, it will be called 
the semiparametric mixture model. In addition, it should be noted that we will 
later consider further complications to these models, such as the presence of 
covariates. 
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We note that these models have many applications, but using the nonpara­
metric model is not appropriate when, for physical or other reasons, there is 
a discrete mixing distribution with a known number of components. However, 
the insights gained into the models by the nonparametric approach will be 
useful in this case as well, as we intend to demonstrate. 

1.3. Many more variations and names. In this section we wish to make 
a brief compendium of the many statistical problems that have mixture struc­
ture, in the sense that there is an unknown probability distribution Q that 
enters naturally into the model construction. The mixture structure goes by 
many names and the main objective here is simply to alert the reader to the 
large number of application areas for the methodology discussed here. Many 
of the subjects mentioned here have vast literatures of their own, which we 
will not try to summarize. However, they all share the following feature: The 
likelihood on a observation can be written in the form 

where some features of the distribution Q are unknown and to be inferred 
from the data. The term L;(O, cp) will be called the likelihood kernel and it 
represents the form of the density for the ith observation, conditional on 
ct> = ¢. 

1.3.1. Known component densities. There are many interesting and impor­
tant examples in which there are a finite set of component densities that are 
completely known and so there are no unknown component parameters ~J· In 
this case we can retain the formal structure defined above by equating the 
latent variable cJ> with the component variable J. The known density function 
for X conditional on J = j can then be written as 

Pr[X == xiJ = j] = f(x; }) 

and the only unknown parameters are the component weights 7T J. In this 
case, the latent distribution Q is the distribution of the variable J, and so 
knowing the component distributions is equivalent to specifying that the latent 
distribution Q has a known set of support points { 1, 2, ... , m}. This case, called 
hereafter the known component density model, is simpler than the general 
problem, but is worth studying in its own right both for its many applications 
and for the insight it gives into the general problem. We therefore offer several 
examples of its use. 

This author had his earliest exposure to the mixture problem in a consulting 
problem involving fish stock analysis. The components involved were salmon 
subpopulations, each identifiable as spawning in a single river system and 
possessing, therefore, a great amount of genetic homogeneity relative to the 
entire population. The measured variable X on each fish was a genetic typing 
determined by electrophoresis, a variable that had only a finite number of 
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outcomes. Correspondingly, the jth river system would have a discrete density 

f(t; j) = P(X ::= t/J = j) 
describing the distribution in that river of the finite set of genetic types t. 
The data of interest arose when salmon were caught in a particular region of 
open ocean by fishermen and it was desired to know the fractions 7T i of the 
region's salmon population that came from each river system. The research 
had political implications in that the river systems were in two countries, the 
United States and Canada. [For more on applications of this type, see Millar 
(1987).] 

A second example of the known component type comes from Roeder, Devlin 
and Lindsay (1989). The data consisted of the genetic types of seeds that had 
been collected from a mother plant and it was desired to know what fraction 
7T J of the seed generation could be ascribed to each of several competing father 
plants. In this case, knowing the jth father's genetic type and the mother's 
genetic type, it was possible to construction a probability density f(t; j) for 
the genetic types of the seed generation. 

A third example arises in the use of positron emission tomography. In this 
problem, a subject ingests a radioactive substance which is designed to con­
gregate in some bodily part of interest, say a tumor in the brain. An array of 
sensors is set up around the region of interest and the radioactive emissions 
are observed. The emissions have the following characterization: at the time 
of disintegration, two rays shoot off in opposite directions (180° apart). When 
they arrive at two opposing detectors, it can be deduced that the emission 
occurred at some unknown point on the line between the two detectors, but 
nothing more. Since the array has a finite number of detectors, there are a 
finite number of such opposing detector pairs. The index t will refer to the 
possible detector pairs and each emission generates an observed variable X 
taking on values in this set. 

We desire to find the hot spots in the brain that are generating the most 
emissions. To do so, we create a grid of possible emission regions. The variable 
j will index this grid of sites in the brain, and we define a latent variable 
by letting Ji = j mean that the ith emission came from site j. Thus we 
are interested in inference on 7TJ = Pr(J == j). The geometry of the array 
and the nature of the emissions determine exactly the component density 
P(X = t/J = j) = f(t; j), the probability that an emission from j will be 
observed in the detector pair t. 

Thus we have a simple mixture model for the observed process of emissions: 
P(X = t) = L7TJf(t;j). For more details, see Shepp and Vardi (1982) and 
Vardi, Shepp and Kaufman (1985). 

1.3.2. Linear inverse problems. We offer yet another perspective on the 
mixture problem. Our basic unknown is the latent distribution Q that satisfies 
the relationship 

(1.3) g(x) = J f(x; cp) dQ(cp). 



THE WIDE SCOPE 11 

Here f is known, but g is observed with some error- in our case because we 
see a sample from it. In the mathematics literature, solving for Q in (1.3) is 
called a Fredholm integral equation of the first kind [Wing and Zahrt (1991)]. 

If the density for X is discrete, with finite range 1, 2, ... , T, and Q is discrete 
on a known support set { 1, ... , m}, as in the examples of the preceding section, 
then we can write (1.3) as g(t) = Ls f(t; s)7r(s). This can be written as a 
matrix equation of the form 

g = Fn, 

in which we wish to solve for the vector n, where 'L 'lrJ = 1 and the 'lrJ are 
nonnegative. This, in the terminology of Vardi and Lee (1993), is a linear 
inverse problem with positivity constraints. 

A recurring theme of the mathematical literature is that the linear inverse 
problem is difficult and unstable to solve. In the matrix case, this is clearly 
related to the numerical instability of solving such linear equations when the 
column vectors are highly correlated. One of the key points of Vardi and Lee 
is that the Expectation-Maximization (EM) algorithm (Chapter 3) is a stable 
and reliable way to handle the numerical difficulties involved in solving linear 
inverse problems. 

1.3.3. Random effects models. Consider the classic one-way ANOVA 
model. We can visualize the data as being in a two-way array: 

)(11 )(12 )(1n1 

)(21 x22 )(2nz 

)( p1 Xp2 )( pnp 

In the fixed effects version of this model, row i consists of a sequence of i.i.d. 
observations from a N(c/Ji, (T 2 ) density, where the parameters c/lt, ... , c/Jp are 
the unknown means of the p rows. In the random effects version of this model, 
the parameters are viewed as having been sampled from a larger population 
and so have a latent distribution Q in that larger population. The resulting 
marginal oensity of the observations in a single row is the mixture model 

f(x; Q, u 2 ) .'=-' j f(xJ; ¢, u 2 ) · · · f(xn; ¢, u 2 ) dQ(</J ). 

'l'he usual assumption in the normal theory random effects model is that Q 
is a normal distribution. If we mako this assumption, then the observations 
X in a row have a multivariate normal distribution, with a positive and equal 

I . 

correlation between observations that is induced by the fact that the entire 
row has the latent variable qJ in common. In fact, the covariance matrix for the 
row vector X has the form a 2 I+ (T~E, where I is the identity matrix and E is 
a matrix of ones. lExercise: This is easiest to derive by writing X = Z + <I> · 1.] 

Although the assumption of the normality of the latent row parameters may 
be tenable in many examples and is the simplest path, it is possible to take a 
nonparametric approach to the problem. This latter approach seems especially 
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natural when the data are discrete so that normality of the observations is no 
longer a tenable assumption. We will consider some aspects of an example of 
this type in Chapter 8. 

1.3.4. Repeated measures models. Another statistical problem with nearly 
the same structure as the random effects model is the repeated measures 
model. If we think of the row vector X as being a sequence of repeated measure­
ments on a single individual and assume that Xt has a multivariate normal 
distribution with 

Var(Xta) = Var(Xib) = u 2 

and Corr(Xta. Xib) = p, then one has the exact same multivariate normal 
distribution for the observable vectors of X as in the normal random effects 
model above, with one exception: In the random effects model, p must be 
nonnegative. 

We note that these models start from different modeling points of view, but 
arrive at essentially the same model. The random effects model arises from as­
suming the existence of subject-specific latent means, conditional upon which 
the individual observations within a subject are independent. The marginal 
correlation of observations within a subject is a consequence of that structure. 
In the repeated measures model, we have directly modeled the whole vector 
of observations, including its correlation structure. As a bonus, modeling the 
covariance structure directly allows us to consider dependencies other than 
the equicorrelation of all pairs, which, for example, would not be most natural 
if the repeated observations had occurred in a time series. 

These different points of view are largely reconciled in the normal model, at 
least for equicorrelation, but when the normality assumption is not tenable, 
they have led to two different schools of modeling data. If we say that the 
observations in a row form a cluster because of their related nature, having 
all come from the same subject or school or other unit, then we expect them to 
have some correlation, most likely positive, when viewed from the perspective 
of the entire population. That is, the population covariance matrix of the X 
vector should show nonnegligible correlations. We can choose to model this 
directly, and do so in the so-called population average approach. The other 
model building approach is cluster specific. That is, we can model the effect of 
being in a cluster (row) by a cluster-specific latent parameter cp and assume 
that this parameter has been sampled from a population Q. This then induces 
a correlation structure. 

When the observations have a binary nature, these two approaches to mod­
eling result in rather different models. See, for example, Neuhaus, Kalbfleisch 
and Hauck (1991). 

1.3.5. Latent class and latent trait models. As noted earlier, we have bor­
rowed the terminology "latent variable" from the social sciences literature, 
where the expression is often used in the mixture model analysis of cate­
gorical data. In this literature, we have multinomial observations Xt whose 
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probabilistic behavior is determined by some unobserved variable <Pi. If the 
distribution of <l> is discrete, then the possible values of <l> (the support points) 
correspond to the latent classes of the population. If the variable is continuous, 
then its values correspond to some latent trait of the population. For a review 
of this literature, see Clogg (1995) and Heinen (1993). 

1.3.6. Missing covariates and data. Whenever variates are missing at ran­
dom from a data set, whether covariates or response variables, then the distri­
bution of the remaining values comes from integrating the missing values out 
of the joint density function. If we have a regression model, say f(yjx, z) = 
f(yjx' f3 + z'y), where the z's are entirely missing, then we can write the con­
ditional model for the observable data as f(yjx) = J f(yjx'b + <{J)dQ(<Plx), 
where Q is the conditional distribution of z'y. If the measured covariates are 
independent of the missing ones, so that dQ(<Plx) = dQ(</J), then the resulting 
model is of mixture form, with a random intercept in the regression. That is, 
using a random intercept in a regression model is a method that allows for 
the additional uncertainty in the inference due to missing covariates. 

1.3.7. Random coefficient regression models. Another area which has seen 
much work of a non parametric kind is the random coefficient regression model. 
The previous examples in this section have largely been of a kind where a 
regression model for a particular cluster might include a random intercept 
term, as in fJ' z + ¢. There exist a number of studies in the pharmacokinetics 
literature of models in which one or more of the f3 's are random as well. See, 
for example, Mallet (1986), Mallet, Mentre, Steimer and Lokiec (1988) and 
Davidian and Gallant (1992). We also note the extensive study of this model 
by Beran and Hall (1992). 

1.3.8. Empirical and hierarchical Bayes. Yet another application of the 
mixture methodology arises in the subject known as empirical Bayes. The 
basic conceptual framework is as we have described, but now the emphasis 
is on making inferences on the set of realized values of the latent variable 
c:]Jl = c/>1, ... , <Pn = cPn· If the distribution Q had been known in advance, then 
we are in a Bayesian setting and so the best mean-squared error estimator of 
an individual q> is the Bayes estimator 

E[<l>JX = ] ~:: f <{Jf(x; </J) dQ(</J) 
· x. J f(x;cp)dQ(cp) · 

Since Q is unknown in our case, one natural tactic is to replace the Q in the 
above formula with an estimate, either parametric or nonparametric. However, 
there are many other strategies; see the book by Maritz and Lwin (1989). 

One important aspect of empirical Bayes methods is that it has been 
learned that these methods have advantages in estimating a set of parame­
ters ¢ 1, ... , <Pn even if they did not arise as a sample from a distribution Q. 
To be more precise, the comparison we wish to make is between the fixed 
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effects model, in which the ¢J parameters are treated as unknown parameters 
and so the likelihood has the form 

LFE(c/>l. ... ,c/>n) = flf(x;;¢;), 
i 

and the random effects model, which has a likelihood of the form 

nj f(xi;c/J)dQ(c/>) = J .. ·J LFE(c/>l. ... ,c/Jn)dQ(c/>1)"· dQ(«fJn). 
~ 

The claim is that there are advantages to using the random effects model, 
even if conceptually the fixed effects model is more applicable, when one is 
estimating the values of the realized sequence of parameter values. For a 
readable introduction to this subject, the Scientific American article of Efron 
and Morris (1977) is highly recommended. 

The rough idea is that if one estimates the parameters individually, say by 
~i, then the set of estimates {~1, ... , ~n} tends to be more dispersed than the 
set of parameters being estimated. To take an extreme case, if the true cp's are 
all equal, then the actual parameters have no dispersion, but the estimates 
have a dispersion corresponding to the variance of their distribution. 

Bayesian formulations of this problem fall under the keyword hierarchical 
Bayes. In its simplest form, we say Q has some simple parametric form, say 
normal, and put priors on the parameters of this density. 

1.3.9. Nuisance parameter models. The "empirical Bayes effect" just de­
scribed also arises when estimating a nonlatent parameter of interest () in the 
presence of many nuisance parameters c/>1. ... , c/>n, the famous Neyman-Scott 
problem (1948). This is a topic which has ended up being truncated from the 
notes, but not due to lack of importance. 

The contrast is between the fixed effects approach, which treats the cp values 
as unknown parameters, and random effects approach, which treats them 
as an aggregate by assuming they come from an unknown distribution. We 
have already noted that there are efficiency advantages to the empirical Bayes 
approach when making inferences about the parameters c/>i. It turns out that 
there also are advantages in estimating the structural parameters e. 

1.3.10. Measurement error models. Suppose that our goal is to make sci-· 
entific inferences about the relationship between two population variables, say 
Y := blood cholesterol level and <I> := dietary cholesterol level. For example, 
we may wish to fit some sort of regression model, with parameter {3, to the 
conditional density f(yl<l>; {3). However, we have available only a surrogate 
measure X that is highly correlated with <P, such as 

X := estimate of <I> from dietary questionnaire. 

It is well known that if we use X in place of <P, then the resulting regression 
will. show a diminished effect of the covariate X as compared with the use 
of latent variable <1>. Indeed, in a worst case scenario, where one covariate is 
measured with error and a second one is not, the relative importance of the 
two variables can be reversed. 
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One easy way to illustrate this point is to assume that (Y, 4>) have zero 
means and covariance matrix 

[p;:~lT<I> pcr:{4? l 
In such a setting, the correct (latent) regression slope is {3 = pcry/CT4J. 

Assume the surrogate satisfies X = 4> + e, where the measurement error 
e is independent of the other variables. Since Cov(X, Y) = Cov(4>, Y), the 
covariance matrix for (Y, X) differs from the above only in the lower right 
corner, where we obtain Var(X) = cr~ + cr~, and so the surrogate (Y, X) 
regression coefficient is 

b = Cov(X, Y)_ = {3 cr~ 
Var(X) cr~ + cr~' 

so that 0 :::; b I f3 :::; 1. 
There are two approaches to the measurement error problem, correspond­

ing closely to whether we treat the unobserved 4>1,. _., 4>n as unknown pa­
rameters (by conditioning on their realized values ¢1,. _., c/Jn) or as latent ran­
dom variables from some unknown population distribution Q with its own set 
of unknown latent parameters. The former approach runs into the problem 
of infinitely many nuisance parameters mentioned earlier. Taking the latent 
variable or mixture approach, we write the density of the observed variables 
as 

f(y,x) = J f(y,xlcfJ)dQ(cp) = j f(ylcfJ,x)f(xlcfJ)dQ(cfJ)­

Assuming that in the knowledge of ¢, the variable X contributes no further 
information about Y, we replace f(yl¢, x) with f(yl¢), the regression distri­
bution of interest. The density 

f(xl¢) = Pr(X = xl4> = ¢) 

is determined by the measurement error process and, typically, as in the above 
example, X would be modeled as having a normal distribution with mean 
cp = ¢. The important feature to us is that the mixture model structure holds 
in this case, with likelihood kernel 

In Chapter 8 we will return to this model to analyze some properties of the 
nonparametric approach to estimating the distribution Q. 

1.3.11. Deconvolution problems. Deconvolution problems are mixture 
problems with a special additional piece of structure. If the data X can be 
written as <I>+ Z, where <I> is a latent variable and Z has a known density f, 
then the resulting density for X has the mixture form 

g(x; Q) =:..: J f(x- cp) dQ(cp ). 
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This structure, as we have just seen, arises as a natural model for measure­
ment error processes. Because of this structure, one can employ special tech­
niques to attempt the inversion problem. In particular, because of the identity 
of characteristic functions, 'I' x (t) = 'I' <I> ( t) 'I' z ( t), one can develop methods to 
solve for the characteristic function of latent variable cJ> from the known char­
acteristic function of Z and an estimated characteristic function of X. 

Since the cumulant generating functions in a convolution are additive, one 
also has the cumulant identity K,.(X) = l<,.(ct>) + K,.(Z). If Z is normal, then 
this implies that the cumulants of X and ct> are identical for r =:: 3, since 
K,.(Z) = 0 on this range. This simple structure has led to substantial use 
of moment methods in the signal processing literature, yet another statistics 
topic closely related to the mixture topic. 

1.3.12. Robustness and contamination models. It is a common statistical 
practice to study the robustness of a statistical procedure by constructing a 
simple class of alternative mixture models. One can construct a simple sym­
metric model alternative to the normal model via the normal scale mixture, 

(1- a.)N(O, cr2 ) + a.N(O, kCT2 ), 

where k is large and a. is small, representing the proportion of observations 
being measured with larger errors. In fact, many families of symmetric dis­
tributions that are commonly used as heavy tailed alternatives to the normal 
have normal scale mixture structure. For example, the family oft distributions 
are scale mixtures of normals. (Hint: Write t = <J>Z, where Z is normal and <I> 
is independently distributed as the inverse of the square root of a chi-square 
divided by its degrees of freedom.) 

Another approach to constructing robust procedures through mixtures are 
contamination models, such as (1- a.)N(O, 0"2 ) + a.N(cp, r 2). If a. is small, cp 
quite different from (} and r small, then this model generates outliers near the 
value¢. 

Aitkin and Wilson (1980) explicitly used maximum likelihood with the above 
mixture models in order to obtain robust procedures, with apparent success. 
There appears to be little theoretical work on this approach to robustness. 

1.3.13. Overdispersion and heterogeneity. The last section suggests that 
we might find additional advantages for the mixture type model in cases where 
there is no physical meaning to the latent variable cJ>. It is just a simple means 
of extending our class of models to allow for any lack of fit of a basic model. 
As we will study in Chapter 2, the construction of a mixture model from a 
basic model will always give us not only flexibility, but a class of models that 
allows for more dispersion than the original model. This approach has long 
been used to construct models that allow for extra dispersion. For example, 
the beta binomial model, used as an extension of the binomial model, or the 
negative binomial model, used as an extension of the Poisson, both have natu­
ral derivations as mixtures of the basic models. These points will be discussed 
briefly in Section 3.1.1, which deals with conjugate families of distributions. 
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1.3.14. Hidden mixture structures. There are a variety of nonparametric 
statistical models with hidden mixture structure. By this we mean, first of 
all, that the class of distribution functions in the model is convex. That is, 
ifF and G are in the model, then so is (1- a)F + aG. Second, there is a 
representation of all elements of the model as convex combinations of some 
basic class of distributions, say { F cf>: <P E n}. If so, we can write an arbitrary 
element of the model as f F cf> dQ(</J ). (This basic class should be in the set of 
extreme points of the convex class if we seek identifiability for Q .) 

The simplest example is the class of all distribution functions. If we let F cf> 

be the degenerate distribution at <P and let Q be the latent distribution, then 
Q is also the mixture distribution. We here have the equality of the latent 
variable <P with the observed variable X. 

A more sophisticated example concerns the class of distribution functions 
with nonincreasing density functions on [0, oo). This class is clearly convex 
and we seek a class of basic distributions F cf>· The solution is to let F cf> be the 
uniform distribution on [0, <P ]. [Exercise.] Here the latent distribution appears 
to have no intrinsic statistical meaning. 

1.3.15. Clustering: A second kind. We have already pointed out one of the 
mixture-related uses of the word cluster. However, mixture methods are also 
prominently used in another area that is, technically, nonstatistical. Suppose 
we have a set of vectors X1, ... ,Xn, not obtained by sampling. They might rep­
resent a vector of numerical characteristics for a set of n species. We desire 
to find those species which are most similar to each other in these charac­
teristics, forming thereby clusters of species. One of the approaches to such 
problems is to treat the data as if it were a sample from a mixture distribu­
tion. For example, if we desire two clusters, we might construct a reasonable 
two component mixture model, such as a mixture of two multivariate normal 
densities with mean vectors </11 and </12 and common covariance matrix I. Mter 
fitting the mixture, say by maximum likelihood, one can assign a data point 
to cluster 1 or cluster 2 depending on its posterior probability of being from 
that component. That is, we calculate 

TTd1(x) 
Pr( J = 11 x == x) = r-r C ) f ( ) J 

L 7Tl 1 X + 7T2 2 X 

and assign the observation to cluster 1 if and only if this conditional probability 
is greater than 0.5. This approach to cluster analysis is extensively discussed 
in the book by McLachlan and Basford (1988). 

1.4. Be aware of limitations. We hope that the reader is now convinced 
that there are a multitude of interesting statistical applications that involve 
the estimation of an unknown distribution function Q and whose likelihoods 
have the formal structure of mixture problem. However, we must also confess 
that inference is a very difficult task, as we take observations from Q only 
indirectly. This section contains some warnings about the limitations of our 
procedures and our knowledge. 
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1.4.1. Robustness characteristics. It is natural and desirable to ask the 
question: What are the consequences of slight errors in the specification of the 
model? When a mixture model is being specified, and I specify a mixture of 
two normals with different means, what are the consequences if the mixture is 
actually of two t distributions or is actually a mixture of three normals, two of 
which are very close together? How stable are my parameter estimates under 
contamination? At present we would seem to know very little about this side of 
the subject. Most of the robustness literature is not relevant, as it deals with 
location-scale regression type modeling. See McLachlan and Basford (1988) 
for an attempt to adapt these methods to the multivariate normal mixture 
problem. 

There seem to be two other feasible approaches. One is to exploit spe­
cial structures of the densities involved to create diagnostic procedures and 
goodness-of-fit tests, thereby constructing, in stages, a model suitable to the 
data at hand. Another approach is to use, in conjunction with maximum like­
lihood, a more robust procedure based on minimum distance ideas. Both areas 
have seen relatively little development in the mixture model. 

1.4.2. Extracting signal from noise. Another important warning relates to 
understanding that we cannot possibly discern very much of the fine detail 
about the distribution Q. In particular, estimating its density dQ(cp) with a 
realistic sample size is virtually impossible. Moreover, it is not uncommon 
that the goodness-of-fit of a mixture model to a data set does not change very 
much if we switch from a continuous latent distribution to a discrete one, or 
whether the discrete distribution has two components or four components. 

To make this point more clearly, we consider the very simplest of mixture 
scenarios. Suppose we have a mixture of two normals, say 

g(x) = 'li"N(-a, 1) + irN(+a, 1). 

Assume for the moment that a is .fixed and known, so that the only unknown 
parameter. is 'll". If the variance of the normals were very small, the resulting 
data would appear much like a Bernoulli distribution, in which nearly all the 
observations would be quite close to ±a. If the data were exactly Bernoulli, 
the Fisher information about 'll" in a single observation would be 1/'ll"ir. Thus 
we know that for reasonable accuracy in estimating 'll" when it is near 0.5, one 
would need a sample of roughly Gallup poll size, say 1000, yielding a standard 
error of 1/v'4000 R=~ 0.02. 

How much information is in the mixture distribution? As an exercise, check 
the following calculations. The information in 'll" at 'll" = 0.5 has the form, 
writing the normal density as n, 

ia=E[ n(X;a,1)-n(X;-a,1) ] 2• 

0.5n(X; a, 1) + 0.5n(X; -a, 1) 

The information relative to the ideal information 1/'ll"ir = 4 is then ia/4. This 
relative information has been plotted as a function of2a, the separation ofthe 
means, in Figure 1.3. 
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FIG. 1.3. The information about 7T as a function of the separation of the means. 

We can see that the relative information is very nearly 1 when the means 
are four or more standard deviations apart. We can interpret this as showing 
that we can infer the group label J from the observation X quite accurately 
and that the mixture maximum likelihood estimator of 7T is very nearly equal 
to n -l :L J i. However, as we move the difference in means from four to two 
standard deviations, the information falls off dramatically, until at two sta:n" 
dard deviations separation we see that in order to attain the same accuracy of 
estimation as in the Bernoulli trials situation, it would take a sample size 10 
times as large. Recall that, as shown in Figure 1.2, this is exactly where the 
density is on the unimodal--bimodal boundary. When the separation of means 
is between 0 and 2, there is virtually no information about 7T. 

This analysis is clearly relevant to the problem of estimating a latent den­
sity function dQ(cp), as indicated by our difficulty in separating out the rela­
tive contributions 7T of two nearby values of cp. Indeed, by setting a = hand 
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letting h go to zero, we have 

ih = 4h4E ---'- -1- o(h1 ). [ n"(x·O)J 2 

n(x;O) 

The absence of terms of lower order than h4 is another indicator of the small 
amount of information in this model when the components are close together. 
The term inside the expectation will show up again when we consider the 
C(a) test in Chapter 4. 

(If we modified this problem so that the two normal location parameters 
were unknown, then clearly the information about 7r is smaller. However, the 
order of magnitude is not changed from the above calculation.) 

This low level of information is also an indication that algorithmic methods 
will have difficulty. In particular, the EM algorithm will be very slow in this 
situation. 

1.5. The likelihoods. In the examples above and in many typical exam­
ples, we will be concerned with independent samples for which the likelihoods 
have the form 

n 

L(Q) = [ILi(Q), 
i=l 

where L i ( Q) has the integral form J L i ( ¢) d Q ( ¢). The corresponding log like­
lihood will be denoted 

(1.4) l(Q) = ln(L(Q)) = )=ln(Li(Q)). 

The standard analyses of a model with mixture structure involves making 
one of two assumptions: 

• There are a fixed and known number of components, so that the unknown 
parameters are the 1r's and ¢'s. 

• The distribution Q is from some known parametric family of distributions, 
say q( ¢; y ), typically chosen to be either the normal density with unknown 
mean and variance or the conjugate family of distributions to the density f. 
As a basis for statistical likelihood procedures, both standard modeling 

methods have their drawbacks. For the fixed component models, there is the 
problem that the likelihood is high dimensional and known to be multimodal. 
(A further awkwardness, which we will study in depth in Chapter 4, is the 
aberrant behavior of the limiting distribution of the likelihood ratio statistic 
when we test for the number of components.) In the continuous case, numeri­
cal integrations are usually needed to carry out the procedure and, regardless 
of this, one can end up again with a multimodallikelihood. 

If, on the other hand, we make no restrictions on the number of components, 
but view the above likelihood as a function of a completely unknown distri­
bution function Q, then the solution .has some. extremely nice properties, as 
will be discussed shortly. Before proceeding on this point, we introduce some 
special likelihood structures.-
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1.5.1. The multinomial likelihood. First, a number of simplifications in 
the study of mixture models occur when the component densities are dis­
crete, so that if the sampling is i.i.d., we have a multinomial likelihood. Sup­
pose that we have an i.i.d. sample from a discrete mixture density function 
f(t; Q) = Pr(X = t; Q) with range t = 0, ... , T. Then the likelihood of a 
sample X 1, ... , X n can be written as 

n T 
L(Q) = fi f(xi; Q) = fi f(t; Q)nCtl. 

i=l t=O 

Here n(t) is the count of the number of the X's that took on value t and it is 
clear from the representation of the likelihood that the values n(O), ... , n(T) 
are sufficient statistics for the parameter Q. The log likelihood (1.4) can there­
fore also be written as 

'1' 
(1.5) l(Q) = L:n(t)ln(f(t; Q)). 

t=O 

1.5.2. Partly classified data. Another likelihood structure that occurs in 
many examples of interest arises when, in a sampling situation with physically 
identifiable components, the data are partly classified. That is, a portion of 
the sample, the unclassified part, has the variable J i missing and so has 
the mixture model structure. In the remainder of the sample the Ji are not 
missing and so this group could be identified as being fully classified. 

In this case the likelihood will be a product of two terms: the first, say 
L1 ( Q), being the usual mixture likelihood for the first sample, whereas the 
second will have the form 

L2( Q) = TI P(Xi = xiiJi '-"' j;)P(Ji = }i) = n fi(Xi; gj)7Tj,· 

We next show that one can write this likelihood in the mixture form (1.4) 
and so this complication of the data structure does not require any additional 
theory. 

We start by defining the likelihood kernel 

(1.6) 

Here the symbol "[ ·] represents the indicator function, a function of all the 
arguments included in its brackets, which takes on the value 1 when the 
bracketed statement is correct and 0 when it is false. Note that although Li is 
a function of the data, we can and do express this only through the subscript 
i. (We can do so because in a likelihood, the data are fixed.) Moreover, the 
corresponding term in the likelihood can be written as an integral over the 
mixing distribution Q: As an exercise, check that for Q discrete we can write 

L2(Q) = fifi(xi;~J;)7Tj, = TI/ Li(cf>)dQ(cf>). 

For the theory of maximum likelihood we will present, it is not mandatory that 
L be a density function-only that it is nonnegative, a prescription satisfied 
by L i in this case. 
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A similar likelihood situation arises when the latent variable <l>i = c/Ji, 
possibly continuous, has been directly measured in a subsample. In this case 
the appropriate likelihood kernel analogue of (1.6) is 

The distinction between (1.6) and this case is that in the former the exact 
value of the latent variable <l>i is not observed; all that is known is that it is 
the value of the parameter g associated with the j i component. Thus (1.6) has 
less information about the latent distribution than when the latent variable 
is itself observed. 

1.6. The mixture NPMLE theorem. 'rhe idea of finding a non paramet­
ric maximum likelihood estimator (NPMLE) of a latent distribution is an old 
one. The idea was suggested in an abstract by Robbins (1950), and later re­
ceived substantial theoretical development by Kiefer and Wolfowitz (1956). 
Although the latter showed that the method had great theoretical promise as 
a method of providing consistent estimators in problems with many nuisance 
parameters, there was no development of numerical methods for the compu­
tation of such an estimator. The development of such methods, together with 
further properties of the estimator Q, arose in papers that came 20 years and 
more later, particularly Simar (1976), Laird (1978), Jewell (1982) and Lindsay 
(1981, 1983a, b). In ~his chapter we will summarize the most important devel­
opments by informally describing the "fundamental theorem of non parametric 
mixture maximum likelihood estimation." We will return to the details and 
proofs in Chapter 5. 

1.6.1. The fundamental theorem. We consider the problem of maximizing 
the objective function 

D 

l(Q) = 'L:n(s)ln(L5 (Q)) 
s=l 

over all distribution functions Q, where 

and we have written the likelihood allowing for multiple observations n(s) of 
a single L 8 • We assume that the L 8 are all distinct, in that no two arise from 
identical likelihood kernels. We assume all n(s) > 0, but they need not be 
integers. 

These assumptions give D a precise meaning as the number of distinct 
summands in the log likelihood. The only substantial further assumption is 
that the individual kernels of the likelihood, namely, Li(4>) := fi(xi; 4>), are 
both nonnegative and bounded as functions of 4>. There do exist models with 
unbounded likelihoods for which the theory is therefore inapplicable without 
some modification. 
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Technically, assuring existence does require another two assumptions that 
will be discussed in Chapter 5, but we know of no cases where they present a 
genuine difficulty. 

PART 1. Existence and discreteness. The first part of the theorem states 
that, under the assumptions above, there exists a maximum likelihood esti­
mator (MLE) Q that is a discrete distribution with no more than D distinct 
points of support gr. This bound guarantees, of course, that the number of 
support points is no more than n, the sample size. 

The implication of this part of the result is that we can carry out the cal­
culation of this estimator using known techniques from the theory of finite 
mixture models and that there is an upper bound on the complexity of this 
distribution. 

PART 2. Gradient characterization. The second part of the theorem gives 
us a way of testing whether a given latent distribution, say Q0 , is the MLE. 
The idea is relatively simple. Suppose we have a distribution Q0 that is a 
candidate to be the MLE. We cannot determine if it is the MLE by a direct 
search process because the space of distributions is infinite dimensional. 

However, there is a simple function we can calculate to determine if the solu­
tion has been found. We first form a path in the space of distribution functions 
from Qo to any other distribution, say Q1, by letting Qa = (1- a)Qo + aQ1. 
For every a, this generates an intermediate distribution, with a = 0 and 1 
corresponding to the original two distributions of interest. 

Next, we compute the likelihood along this path, obtaining a one parameter 
likelihood function L*(a) = L(Qa). The derivative ofln(L*(a)) at a= 0 is the 
directional derivative corresponding to this path from Qo to Q1 and [exercise] 
it has the simple form 

( ) ~ ( ')(Li(Ql) ) 
DQo Ql = f:ln L Li(Qo) -1 . 

A special case of this derivative occurs when we look along paths where Ql 
is degenerate; that is, a point mass at a single point ¢, which we will denote 
11q,. We define the gradient function to be 

(1. 7) 

Note that 

DQ0 (Ql) = J DQ0 (c/J)dQl(¢). 

[Exercise.] This has the important implication that once the gradient func­
tion has been determined, we can also determine the value of the directional 
derivative toward any distribution Q1 by integrating the gradient function. 

Next, it is clear that if the gradient function DQ( ¢)takes on positive values 
at any ¢, then the likelihood along the path from Q in the direction of !1q, 
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is increasing at Q, so that Q cannot be the maximum likelihood estimator. 
However, we will show later that a much stronger result holds: that Q is a 
maximum likelihood estimator if and only if 

(1.8) Vcp. 

That is to say, all the information we need to find & maximum likelihood 
estimator is contained in the gradient function. 

Moreover, if the gradient inequality (1.8) fails for candidate Q at some c/Jo, 
not only do we learn that we are not at the maximum, but we also know one 
way to increase the likelihood-simply move some mass to c/Jo. Algorithms 
based on this idea will be discussed in Chapter 6. 

PART 3. Support point properties. The third part of the theorem regards 
the location of the support points gi of Q. The result is that if g is a support 
point for any Q that maximizes the likelihood, then 

Together with the gradient inequality (1.8) this implies that the support points 
will be local maxima of the gradient function D Q ( cp). One of the consequences 
of this result is that a gradient-based algorithm need not keep track of the 
support points in Q because they can be recovered from the gradient function 
at the end of the algorithm. This result is also very useful in proofs of the 
uniqueness of the MLE Q. 

PART 4. Uniqueness. The final main result is that the fitted values of the 
likelihood, namely, 

are uniquely determined. That is, even if there were two distributions maxi­
mizing the likelihood, they would generate the same vector of likelihood fitted 
values. This elementary geometric result, together with Part 3, can be ex­
tended by a much more sophisticated analysis to prove the uniqueness of Q 
within various families of component distributions. See Chapter 5. 

AN IMPORTANT REMARK. One the most striking features of the above theory 
is the complete lack of regularity conditions on the models and the complete 
generality with regard to the parameter space of cp. 

1.7. Related nonparametric problems. We earlier introduced some 
classical nonparametric models with hidden mixture structure. We will use 
them here to illustrate the workings of the NPMLE of a latent distribution. 
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1. 7 .1. The MLE of an unknown distribution. We start with the simplest, 
but still profound, result. Suppose we have a sample x1, ... , Xn from a com­
pletely unknown distribution F. Suppose further that we can restrict atten­
tion to distributions that are discrete. That we can do so is not obvious, but 
a number of authors have developed approaches to nonparametric maximum 
likelihood that lead to this conclusion in this problem. See, for example, Scholz 
(1980). 

With this step taken, the likelihood can be meaningfully written as L(F) = 
11 F( {xd ), where we use the convention of using the symbol F for both dis­
tribution function and measure. If we let 7Ti = F( {xd ), then the problem is to 
maximize ll 7T i while maintaining the obvious constraints on the 7T i. This can 
be carried out by using a Lagrange multiplier for the inequality constraint 
L, 7Tj ::::; 1, which results in irj = 1/n. [Exercise.] The resulting distribution is 
called the empirical distribution function and is denoted F. 

1'he mixture version arises as follows. First, replace F by Q in the notation 
and let the likelihood kernel function be defined by 

Li(<p) =,.¢[</>=Xi]. 

If this is done, then L i ( Q) = Q ( { x;}) and the mixture likelihood corresponds 
exactly to the above likelihood. [Exercise.] 

The latent distribution NPMLE theorem can then be used to prove that the 
empirical distribution function gives the maximum likelihood estimator. We 
need only to check the gradient inequality and it is easily verified [exercise] 
that 

D~ (</>) = { 0, 
F --n, 

if</>= Xi for some i, 
else. 

Not<~ that, in accordance with Part a, the estimated support points are local 
maxima of the gradient. 

1. 7 .2. Accurate and error-prone measurements. The preceding example 
leads naturally to the appropriate technique to use when some of the cf>'s 
are seen directly, say </>1> ... , cf>a, and others are observed indirectly, through 
Xi 1 <P = <Pi. This occurs, for example, in some measurement error problems, 
where in order to ascertain the level of the measurement error, on a small 
subsample one takes much more accurate measurements (presumably also 
more expensive and/or time-consuming). The observed cf>'s are then assumed 
to be the gold standard whose relationship to response variable Y is desired. 
In such a case, as we have earlier indicated, we can write the likelihood in 
two parts, one part being from the gold standard measurements and so it has 
indicator functions for the likelihood kernel, as in the preceding example, and 
the second part has the mixture form corresponding to the density of X given 
cl>. See Roeder, Carroll and Lindsay (1993). 
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1. 7 .3. Monotone density problems. We have already indicated that the 
class of nonincreasing density functions on [0, oo) is a model with hidden 
mixture structure. 

It is well known that the non parametric MLE of such a nondecreasing den­
sity function can be characterized as having a compound distribution function 
(CDF) G that is the "least concave majorant" of the empirical distribution 
function [e.g., Groeneboom and Wellner (1992)]. That is, G is that concave 
function whose graph lies above that ofF, but is closest to it. The graph is 
piecewise linear; its points of contact with F are the points where it bends 
and these points are some subset of the observations. 

It can be checked that this description implies that the nonparametric MLE 
of the latent distribution Q has its mass at some subset of the observations 
and so the mixture solution has the representation I: 7TiU(O, Xi), where U 
indicates a uniform distribution on the specified range. 

The gradient characterization of this problem can be used to obtain this 
solution. The reader may find it a helpful exercise to do so, following this line of 
argument. First, by examining the gradient it can be determined that it must 
have all its local maxima at the observations Xi, so, by Part 3 of the theorem, 
the support points must be among this set. Next, it can be shown that if cP! 
is the smallest support point of the latent distribution, then f(x; Q) must be 
constant on the interval (0, c/11), and the gradient inequality on the interval 
[0, c/Jd implies that F(t) s F(t; Q), fort< c/11, with equality at t = c/11 (since it 
is a support point). Since F(t; Q) is linear on this interval and must be concave 
overall, it is clear that this defines the first support point as corresponding to 
that point (xi, F(xd) first intersected by a ray from the origin that is rotated 
from the y axis toward the x axis. Thus we have shown that the solution 
"majorizes" the empirical distribution function on this first interval. We can 
then continue to the next support point c/12 and slightly modify this argument 
to show majorization over the interval [ c/11, c/12], with equality at the endpoints. 

1.7.4. Censoring problems. Another important class of nonparametric 
problems that have hidden mixture structure arise in censoring problems. 
For example, consider the problem of finding the distribution function F that 
maximizes the likelihood L(F) = DF({xd)DF([cj,oo)). This is the like­
lihood that arises under so-called noninformative right censoring, in which 
the XiS correspond to observed lifetimes, but all that is known about the 
observations in the second set is that they fell to the right of the censoring 
values Cj. 

We can turn this into a mixture problem, as before by using indicator func­
tions, where we now use ..Y'[c/1 =Xi] for the observed data and ..Y'[cp ~ Cj] for 
the censored data. Once again we can show that the gradient function has all 
its local maxima for cp in the observed data set, so the support points can be 
restricted to this set. The solution is the product limit estimator, also known 
as the Kaplan-Meier estimator. [Exercise: Use the gradient characterization 
to derive this result.] 
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Jewell, Malani and Vittinghoff(1994) have shown that the mixture NPMLE 
theorem can be used in much more complicated interval censoring problems 
that arises in various AIDS studies. 

1.8. Similar statistical problems. As a final note to this discussion of 
the vast range of the mixture problem, it should also be pointed out that there 
are still more statistical areas that are closely related mathematically and so 
they carry techniques and theory that are relevant to the study of mixture 
models. 

The mixture NPMLE theorem is, in a mathematical sense, simply a restate­
ment, with statistical interpretation, of a basic result in the maximization of 
a concave objective function over a convex set. The theory of optimal design 
[Silvey (1980)] hinges on exactly such an optimization and it has a theorem of 
exactly the same form, but with other interpretations. The algorithmic liter­
ature from optimal design theory can be carried directly over to the mixture 
problem with slight modification. 

The theory of order-restricted inference [Robertson, Wright and Dykstra 
(1986)] also has large areas of overlap. For example, the monotone density 
problem of the previous section is an example of an estimation problem carried 
out under a order restriction. Those restrictions often can be expressed in a 
way involving convexity, and the estimation problem again relates to finding 
the minimum or maximum of a functional over a convex set. Some of the 
relationships between the two will be made clearer when we deal with the 
likelihood ratio problem in depth in Chapter 4. 
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