
LECTURE 3 

Global Measures of Deviation 

There is by now a large literature on lower bounds attainable in nonpara­
metric density or regression estimation. Discussion of these questions can be 
found in the works of Farrell (1972), Stone (1980, 1982) and Hall (1989). We 
shall follow an exposition given by Hall (1989) when one estimates an un­
known scalar. Consider models f from a family ./'. Lr will denote the 
likelihood under model f. Given / 0 , / 1 E ."f let 

Further let 

( 3.1) 

or 

( 3.2) 

d = { 0
1 

if L r,/ L h ~ 1, 
otherwise. 

c = ~- inf { Pr0( d = 1) + Pd d = 0)} 
n z.n 0 

The interest is in an estimate 8 of the unknown scalar () fJ( f). Set b, = 
~ 18( / 0 ) - 8( / 1)1. @ is the set of all nonparametric estimators of 8. 

Two models / 0 and / 1 are selected from .'/'-. It is usually the case that / 0 is 
fixed and ( 1 converges to {0 at an appropriate rate. A lower bound for the 
convergence rate of {j to 8 is given by b, in the sense given by (:3.3). In effect 
the basic issue centers on the ability to discriminate between { 1 and t;l. 

THEOREM. One can show that 

(:3.3) }nf supP1(1e --81 ~ b,) ~ c 
liE (1 f'E .'/' 

for all n ~ n 0 . 

It should he understood that we are interested in what happens as n ~ cc. 

The theorem has a minimax character typical of many results in this direction. 
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The proof of the theorem runs as follows: Set 

d = {o
1 

ifle- 8({0 )1 ~ 18- 8(f1)1, 
otherwise. 

It then follows that if d = 1, then 

IH - 8( fo)l :2> }{IH- 8( { 0 )1 + IO --- 8( { 1)1} 2 ~18( { 0 )- 8( { 1 )1 

and if d = 0, then lfJ- 8( { 1)1 2 ~18( {0 )- 8( { 1)1. Consequently 

. max P1{1e- 8( l)l 2 ~18( {0 )- O( { 1)1} 
fc{fo, ftl 

2 max{P10(d = 1), PttCd = 0)} 

I { - - } 2 2 Pfo( d = 1) + Pd d = 0) 

2 HPt0(d = 1) + P1,(d = 0)} =a, 
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where the last inequality follows by the Neyman-Pearson lemma. The theo­
rem follows if c is given by (3.1). If c is given by (3.2), let p = Pf'(d = 1), 

2 () 
q = P1-(d = 0) and {3 = E1-(L 1- j£ 1.) 2 1. Then 

1 0 I 0 

1 -- q = P11(Lf'jL 1, < 1) = E10{I(Lf'jL 11 < 1)L 1,!Ltu} 

~ ( p{3) 1/2 

by the Schwarz inequality. Then 

( 3.4) 
1 ~ 1- q + q ~ (p[3)1/2 + q ~ [311'2(pl/'2 + ql1'2) s: (2[3)1/2(p + q)l/2 

= (4[3s)l/2 

with s = (p + q )/2 and the result follows from (3.4). 
We now apply the theorem in two simple contexts. Let u > 0 and c > 1. [v] 

denotes the largest integer less than u. The function g on R 11 is said to be 
( u, C )-smooth if 

1. g is zero outside (0, 1)"; 
2. the derivatives 

3. 

g U>(x) = D.i 1 • • • D-hg(x) 
X1 X;., 

with j = () 1, ••• ,)1,) and IJI =) 1 + ··· +);., ~ [v] exist and are bounded 
by C in absolute value; 

lg(j>( X) - gU>(y)l S: Cllx - yll"- [u] 

for x,y E R" and IJI = [v]. 

APPLICATION 1. DB2NSI'l'Y ESTIMATION. Let /f be the class of ( U, C)-smooth 
densities l on R". Set 0( n = j'(xo) with Xo a fixed point in (0, 1/'. X!, ... ' X, 
are assumed to be independent with common density f. One wishes to show 
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that n- v I<Zv +" l is a lower bound for the rate of convergence of any estimator 
{j = /(x 0 ) of 6( f) = f(x 0 ). This will be established if (3.3) holds with b, = 
const. n- vf<:lv+kJ and c > 0. Choose {0 E .9-- with {0 taking on a constant 
value k 1 E (0, C) in a neighborhood of x 0 . The function w is assumed to be 
differentiable up to order ([v] + 2), nonzero at the origin, zero outside ( -1, 1)" 
and with integral zero. Let 8 = 8( n) ......,) 0 and set 

{ 1(x) = {0 (x) + k 2 8vw{8- 1(x- x 0 )}. 

If k 2 is small enough, {1 E Y for all n ~ n 0 . If the true density is {, the 
likelihood of the X;'s is L r = II J( X). Then 

Ero(Lr/Lr(l = (! {1(x) 2 { 0(x)- 1 dx r 
= { 1 + f ( f1( X) - fo( X) )2 fo( X) -l dx r 
= {1 + 0(82v+k)}". 

If one takes 8 = n -l!<Zv+k>, the c of the theorem is strictly positive. With this 
choice of 8, it is clear that bn = ~k 2 lw(O)ln -v!<Zv+kl and the lower bound is 
demonstrated. 

One can show that this convergence rate is realized by kernel estimators 
which we shall write 

n 

{(x) = (nAk) - 1 L w((x- X;)A - 1). 

i -1 

Here A is the bandwidth, w(x) = T1 JL(xJ) with L a bounded function of a real 
variable of finite support satisfying 

if j = 0, 

for 1 5, j 5, [ v] . 

If A= A(n) = n-l!<Zv+k), the variance and squared bias of /(x) are each of 
order n-ZvJ<Zv+k) for all {E .91'-and x E (0, 1)1'. 

APPLICATION 2. REGRESSION. As before .91'- is the set of (v, C)-smooth 
functions on Rk. The observations are pairs (X,, Y), i = 1, ... , n, that are 
independent with 

(3.5) Y; ={(X;)+ 77;· 

The X;'s are assumed to be independent of the 77;'s. The X;'s are distributed 
on (0, 1)" with a common density p and are independent. Let the 77 distribu­
tion be N(O, 1) with density ¢. Consider e( f) = f(x 0 ) at a point x 0 E (0, 1)" 
with f E y-. It is claimed that the convergence rate of an estimator 8 of f(x 0 ) 
is n vj(Zv+k). 
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To prove this, one takes fo and {1 as in the previous application. The 
likelihood is 

L l = TI (p( X;) cf>{¥; -- f( X;)} l 
i 

and so 

E.(I.} jL2 ) = {1 + O(o'2v+k)}n. 
/o /'1 lo 

Thus setting o = n- l/( 2 v + k > yields the result. If the density p is bounded away 
from zero in the vicinity of x 0 , one can obtain the convergence rate with a 
kernel estimator. 

It is clear that the argument just given can be adapted to any open 
neighborhood rather than just (0, 1)k. Stone (1980) has also considered the 
estimation of a linear functional 

Lf(x0 ) = L c1D<.i>f(x0 ) 

l)i,;m 

for some integer 0 ~ m :<;;; [u] with ci =f. 0 for some j with IJI = m in the 
applications noted above. Under appropriate conditions he has shown that the 
lower bound for the rate of convergence of any estimator is 

n -(u-m)/(2v+k) 

if u > m. Further this rate can be attained. 
The remarks above relate to optimal rates of convergence locally. Stone 

(1980) also considered optimal rates of convergence globally relative to regres­
sion. Above, the case of a regression model in which the independent variable 
X was random was considered. However, one can obtain essentially the same 
type of result in terms of order of magnitude whether X is random or 
deterministic under appropriate conditions. The set S on which convergence is 
considered is assumed to be compact with a nonempty interior. U is taken to 
be an open subset of R k containing S. The conditional distribution of Y given 
X is assumed to be given by g(ylx, t)cf>(dy) with cf> a measure on R, t 
belonging to an open interval I and such that 

jyg(ylx,t)cf>(dy) =t forxERk,tEI. 

As before it will be assumed that the possible regression t = e(x) is (u, C)­
smooth. For x E U, e(x) E I, g is assumed to be strictly positive and continu­
ously differentiable in t. Further it is assumed that interchange of integration 
and differentiation is feasible so that 

jg(ylx,t)cf>(dy) = 1 

leads to 

Jg'(ylx,t)cf>(dy) = 0 
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and 

j g"(ylx, t)¢( dy) = 0. 

Set l(yix, t) = log g(yix, t). There are given constants t-: 0 , K > 0 and a func­
tion M(ylx, t) so that 

ll " ( y lx, t + E) I :;; M ( y lx, t) for IE I :;; E 0 

and 

jM(ylx,t)g(ylx,t)¢(dy) :<::; K. 

Also let there be an s > 0 so that 

f esly-tlg(ylx' t )¢( dy) 

is bounded for x E U and t E J. 
Last of all, one assumes that for each A E (0, 1/k) and c > 0, there is a 

c' > 0 so that 

lim P ( # { i : 1 :;; i ~ n and IX; - xI ~ en- A} 2 c' n 1- A" for all x E U) = 1. 
n 

Stone considers as before the estimation of a linear functional 

LfJ(x) = I: c D(j)fJ(x) 
.I 

l.il~;m 

for some integer 0 ~ m ~ [v] with c1 =F 0 for some j with Iii = m overS. He 
studies the L'1 norm 

( ) 
1/q 

llgll = J.lg( x )I'' dx , 0 < q < cc, 

and the L"' norm 

llglloo = SUp lg( X )I. 
xEC 

The following result is obtained by a discrimination argument like that in the 
case of local convergence, except that it is now necessary to discriminate 
between a large number of alternative models instead of just two and the 
number of these models increases with the sample size. Here r = ( v m) 1 
(2v+k). 

THEOREM. Under the assumptions noted above, if 0 < q < cc, {n ,.} is the 
optimal rate of' convergence. If' q = oo, {n 1 log nY is the optimal rate of' 
convergence. 

There are two limited aspects to the interesting global results of Stone on 
regression estimation as noted by Nussbaum (1986) in his paper. First of all, 
the global convergence is not attained in, say U, but rather in the compact 
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subset S of U. The modifications that may have to be made in, say kernel 
estimation, to obtain the same rate of convergence at a boundary point have 
already been noted earlier in Lecture 2. The second remark is that the 
estimators that Stone employs to show that the optimal rate can be obtained 
have a piecewise polynomial character. Thus they may not be as smooth as the 
function being estimated. Nussbaum wishes to approximate by estimators that 
are at least as smooth as the function estimated. Nussbaum's objective is to 
remedy these two deficiencies he sees in Stone's result. In other ways his 
results are more special than Stone's are. His basic model is that given in (3.5). 
The regression function f is assumed given on a simply-connected domain U 
in R" whose closure is compact [say contained in ( - ~, ~ )" ]. The Sobolev space 

w;;'(n) = {g E U'(n); Du>g E L''(fl), J E z~, Iii= 13} 

with the norm 

where 

lgl 13 ,p(n) = I: IIDu>gllp(n). 
l.iH> 

A condition referred to as a Lipschitz boundary condition is imposed on the 
domain n. A cone is defined as a set of the form 

{x E R"; llxll < llall, x'a > rllxllllall} 
for some a E R" - {0} and 7 E (0, 1). One says that the domain n has a 
Lipschitz boundary if for some positive integer m, there are open subsets lf; 

and cones A;, i = 1, ... , m, such that 
m 

0: c U U;, (U; n D)+ A; c n, i'~1, ... ,m. 
; - 1 

The information on the regression function is of the form 

(E w;;;(n,L) ={fEw;~;(!!); l(lp,p(n) sL}. 

The argument is given under the strong assumption that the points X;, 

i = 1, ... , n are nonrandom and on a rectangular grid. However, it is claimed 
that a modification of the argument will still yield the same result if the 
maximal distance between any point x E n and the design set X; is 0( n- 11 k ). 

The errors in Nussbaum's argument are also taken to be N(O, 1) though it is 
claimed this can be relaxed. 

The approximation to the regression function is carried out in terms of 
multidimensional splines of order d. These splines are represented in terms of 
a basis of multidimensional B-splines of order d. The multidimensional 
B-splines of order d are simply products of one-dimensional B-splines of order 
d. These, of course, have the pleasant property that their one-dimensional 
projections arc nonzero only on d successive one-dimensional intervals. The 
basic grid mesh for the splines is ll = Mn), where Ll-k;n ~ 0 as n -~ oc. The 
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argument is carried out in part by patching together local least squares fits. 
The smoothness is retained by carrying this out in terms of the splines. The 
boundary condition on the domain n is used to insure that a cube straddling 
the boundary can be replaced by a closed cube totally within n. The following 
result is obtained. 

THEOREM. lf f E .9"-= ~f( 0, L) and .l is chosen so that 

n "".l-l/(2,B+k) 

(it = n if 1 ::; p < oo and n = njlog n ifp = oo), then there is a 8 > 0 such that 

sup sup Eexp(ollf- fllp(D)ft.B1< 2.B+kl) < oo. 
n (c./' 

An interesting discussion of some results on optimal rates of convergence 
can be found in the paper of Kiefer (1982). 

We give a sketch of an argument presented in Bickel and Rosenblatt (1973). 
Let X 1, ... , Xn be independent identically distributed random variables with 
distribution function F(x) and positive continuous probability density f(x) = 
F '(x ). Let Fn(x) be the sample distribution function 

1 n 

Fn(x) =- L lx(Yf) 
n J=l 

of Y1, ... , Y,,, independent random variables uniformly distributed on [0, 1], 
where 

if U .$ X, 

otherwise. 

Then the kernel probability density estimate of f(x) with kernel w( ·) can be 
written as 

fn(x) = b(~~) ju>( :(-n;) dFn(F(u)) 

with Yj = F(X). We already know that under appropriate conditions 

[nb(n)] 112 f(x)- 112{fn(x)- Efn(x)} 

(n ~co, b(n)LO, nb(n) ~co) will be asymptotically normally distributed as 
n ~ co. But this last expression is 

Yn(x) = b(n)- 112 f(x)- 112 Jw( :(-n;) dZ,?(F(u)) 

with 

Z~(u) = n 112{Fn(u)- F(u)}. 

We shall show that the process Y,,(x) can be approximated under appropriate 
conditions in a natural way by a Gaussian process when n is large. Let Z 0(u) 
be the Brownian bridge process, that is, the Gaussian process with mean zero 

EZ 0 (u) = 0 
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and covariance function 

EZ 0 (u)Z 0 (v) = min(u,v)- uv, O~u,v~l. 

We shall make use of a remarkable result of Koml6s, Major and Tusnady 
(1975) that states the following. Given independent uniformly distributed 
random variables (on [0, 1]) Y1, Y2 , ... on a sufficiently rich probability space, 
one can construct a sequence of Brownian bridge processes (n)Z 0(u) on the 
space such that 

PC=~~ 1 1Z~(u) -(n)Z 0 (u)l > n- 112(clogn +x)} ~Le-Ax 

for appropriate positive constants c, L, A. Thus the difference between Z,~( u) 
and the approximating Gaussian process (n)Z 0(u) is uniformly (in u) 

O(log njn112 ). 

Let us now make the following assumptions on w and f. 

AssuMPTION Al. (a) w vanishes outside [ -L, L] (L finite) and is absolutely 
continuous with the derivative cu' inside or (b) w is absolutely continuous on 
(-oo,oo) with Jlw'(u)lk du finite, k = 1,2. 

AssuMPTION A2. f 112 is absolutely continuous with bounded derivative 
t f 'If 112. Also assume that 

lui' lloglog(u)l lw'(u)l + lw(u)l du < oo f 3j2 1/2[ ] 

and that f(x) is not zero. 

Let 

We shall carry through the argument under Assumptions A1 and A2, but with 
alternative Al(b). The derivation under the other alternative Al(a) is quite 
similar. The result of Koml6s, Major and Tusnady tells us that by an integra­
tion by parts 

Yn(x) - 0 Y,,(x) = b(n)- 112 f(x)- 112 

X f [ Z 0 ( F( u)) - Z,?( F( u))] w' ( ~(-n ~)dub( n) - 1 

= 0 ( (b(~~:) 1/2.) 
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and so the difference tends to zero uniformly in x if log n j( b( n )n )112 ---> 0 as 
n ---> oo. Now 

Z 0 (u) = Z(u)- uZ(1), Osus1, 

where Z( u) is the Wiener process, the normal process with mean zero 

EZ(u) = 0 

and covariance function 

EZ ( u) Z ( u) =' min( u, u). 

If 

112 112/ (x-u) 
1Y,,(x) = b(n)- f(x)- w b(;;")- dZ(F(u)), 

then 

1/2 
0 Y,,(x) - 1Y,,(x) = O(b(n) ). 

Notice that 

is just another way of writing the process 1 Y,,(x ). The final approximation is 
that given by 

The difference 

2 Y,,(x) -:JY,,(x) 

1/2 f (X - ll) 
3 Y,,(x) = b(n) w b(-~)- dZ(u). 

112 / ( f(x- b(n)u)) ( 
1/2 ) 

= b ( n f- w ( ll ) f ( x ) - 1 dZ ( X - b ( n ) ll ) 

1 2 [ (( f(x -- b(n)u) ) 112 
)]' 

= -b(n)- 1 jz(x- b(n)u) w(u) f(x) -1 du. 

The law of the iterated logarithm for the Wiener process tells us that 

1/2 lim supiZ( u )1{2lullogloglul} = 1. 
lul->oo 

If we use the law of the iterated logarithm for the Wiener process and the 
conditions of A2, it is seen that 
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as n ~ oo. Therefore 

( log n 112 ) 
Y,,(x)-- 3 Y,,(x)=O 112 +b(n) 

( nb( n)) 

under Assumptions Al and A2. 
This last approximation allows one to get limit theorems for the maximal 

weighted deviation of a probability density estimate from the probability 
densi~y as well as the integrated squared weighted deviation of a kernel 
probability density estimate from the probability density. The first example of 
a maximal deviation is of theoretical interest but the rate of convergence and 
the normalization are so slowly varying that there is no practical application. 
It is worthwhile looking at the quadratic statistic 

( 3.6) 

with a( x) a bounded piecewise smooth integrable function. Before looking at 
this expression let us first consider 

Tn = nb(n) j[ fn(x)- E{,(x)] 2a(x) dx = jL7,(x)a(x) dx, 

where 

(3.7) - fl12y Ln(x) -- n· 

Let aL,(x) be the expression obtained by replacing Y,, by 3 Yn in (3. 7). It is 
clear that 

if 

b(n) ~ 0, logn = O(n112b(n)). 

By directly looking at the characteristic function of 

one can show that its mean is 

J {( x) a ( x) dx J w ( z) 2 dz + 0 ( b ( n)) , 

its variance to the first order is 

(3.8) 2b(n) j[w * w( u )] 2 du f a 2(x) rex) dx, w( u) = w( -- u)' 

and the Hh order cumulants (k > 2) are 0(b"- 1(n)) as n ~ oo. Thus 

b(n)- 112 [T, -- jf(x)a(x)dxjw(z) 2 dz] 
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is asymptotically normally distributed with mean zero and vanance (3.8) 
divided by b(n). Now Tn can be expanded as 

Tn + 2nb(n) j[ fn(x)- Efn(x)][Efn(x)- f(x)]a(x) dx 

(3.9) 

Suppose that w is symmetric about zero with 

Let us also assume that f has a continuous bounded second derivative. The 
second term of (3.9) can directly be shown to be asymptotically normal with 
mean zero and variance 

nb( n ) 4 c 2 [ j f "( x ) 2 a ( x ) 2 f( x) dx - { j {"( x) f( x )a( x) dx} 
2

] 

to the first order. The last term of (3.9) is 

nb ( n) 5 c 2 j f " ( x) 2 a ( x) dx to the first order. 

One should note that the first and second terms of (3.9) are asymptotically 
independent as n ~ oo. We have the following result. 

THEOREM. Let b(n) ~ 0, nb(n) ~ oo, log n = O(n112b(n)) and set 

Further let 

\

n-112b(n)-2 

a( n) = nb( n) 112 

n9!10 

ifnb(n) 5 -·~ oo, 

ifnb( n ) 5 ~ 0, 

ifnb(n) 5 ~A, 0 <A< oo. 

f3(n) = E j[ fn(x)- f(x)] 2 a(x) dx. 

Then, under the conditions on{, w, and a mentioned above 

ifnb(n) 5 ~ oo, 

ifnb(n) 5 ~ 0, 

ifnb(n) 5 ~A, 0 <A< oo, 
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in distribution with Z a standard normal variable and 

Also 

f3 ( n ) = ( nb ( n ) ) - f ( x) a ( x) dx w ( z) dz 1 f f 2 

The previous result does not directly deal with the case in which the density 
is only given on a finite interval and a(x) = 1 on that interval. If the weight 
function w is zero outside [ -1, 1] we shall have to modify the weight function 
as indicated in Chapter 2 whenever we get within a bandwidth b( n) of the left 
or right boundary of the interval. If this is not done and f is positive in the 
neighborhood of the boundary, the mean f3(n) of f[ (,(x) - f(x )]2 dx will be 
perturbed by a term of the magnitude of b( n ). In many circumstances [if 
n- 1 = o(b(n)?] this will dominate f3(n). On the other hand, if the boundary 
adjustment is made, the asymptotic result cited in the previous theorem will 
still be valid. 

A more effective way of obtaining the asymptotic distribution of (3.6), 
particularly in the multidimensional case, has been given by Hall (1984). We 
shall try to outline basic aspects of the procedure without going into too much 
detail. For convenience the case a(x) = 1 is considered. Now 

I"= j[ f,(x)- f(x)] 2 dx = j[{f,(x) - Ef,(x)} + {Ef,(x) -- f(x)}] 2 dx 

= 1,1 + 1,2 + Jn3 + Jn4• 

where 

k - 2 
H,(Xi, XJ2(nb(n) ) 

l:o;i<j :o;n 

with 

Hn(x,y) = jA"(u,x)A,(u,y)du 
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and 

An(u,x) =w((u -x)/b(n)) -E{uJ((u -X)/b(n))}, 

k -2 n 2 
In 2 = ( nb( n) ) L J A 11 ( u, X;) du, 

i ~ 1 

ln:3 = 2 j{f~(x)- E{11 (x)}{Efn(x)- f(x)} dx, 

ln 4 = [Ef,(x)- f(x)] dx. f 2 

Here k is the dimension of the space. The terms 1112 , l 11 a are sums of 
independent random variables and so can be handled in standard ways. The 
term 

-1( k ) 2 U, = 2 nb(n) 1111 

is a U-statistic with H, symmetric and the X;'s independent identically 
distributed random variables (which are k-vectors). Further E{H11(X1, Xz)} = 0 
and U, is degenerate in the sense that 

( 3.10) 

with probability 1. A central limit theorem is obtained for such degenerate U 
statistics by basing it on a martingale central limit theorem. If one introduces 

i -- 1 

Y; = L Hn(X;, XJ, 
j-1 

it can be seen that ECY;IX1, ... , X;_ 1 ) = 0 because of the degeneracy (3.10) 
and so {S; = I:)~ 2 1J, 2 ::s;; i ::s;; n} is a martingale with S, = U11 • The central 
limit theorem for degenerate U statistics is now stated. 

THEOREM. Let H, be symmetric with finite second moment and 
E{H,<Xv X 2 )IX1} = 0 with probability 1 for each n. Then if 

G,(x,y) = E{H,(X1 , x)H"(X1,y)} 

and 

as n ~ oo, U" is asymptotically normal with mean zero and variance 
I 2 {H2 )} 2n E ,(X1, X2 . 

The result just stated is obtained by applying the following martingale 
central limit theorem [see Hall and Heyde (1980)]. 

THEOREM. Let { S, i, .'Y-~ i, 1 ::s;; i ::s;; m n, n ;?: 1} be a triangular martingale 
array with u-fields .;;-;,,; satisfying .'Y~,; c .cr;,,; + 1 . Further let differences Y,, i 
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have mean zero and finite second moment. Sztp']JOse s 2 = ES 2 
n n 111 n' 

( 3.11) 

for every r > 0 and that 

( 3.12) -2y2 . 2" E(Y2I r- ) 2 
Sn n,mn=sn L.., ni//~z,l~I ~pYJ 

with ry 2 a random variable finite with probability 1. Then s,-, 1S"''' = s 1L X . n n l n1 

converges in distribution to a random variable Z with characteristic function 
E exp(- h 2 t 2 ). 

In the situation dealt with here, ry 2 is the constant 1 and the limiting 
distribution is a standard normal distribution. One can show that 

n 

L E(Y,;;) .:;; c<mst. n:3E{ H;( X 1 , X2 )} 

i-2 

and this implies that 
n 

s '~ 4 L E ( Y,;;) ~ 0. 
i-2 

This last relation implies that (3.11) is satisfied. It can also be shown that 
n 

E(V,;) = 2 L (i- 1)(i- 2)(2n- 2i + 1)E{G,7(X1 , X:J} 
i-2 

II 

+ L ( i - 1)(2n - 2i + 1)var{Gn( X 1 , X 1)} 

i-2 

and that 

2 1 { 2 X } sn=2n(n-1)EHn( 1,X2 ). 

Thus 

'( 2 2)2 4 4 [ 4 { 2 } aE{ 2 )}] E V,, - s" = EV,, - s".:;; const. n E G"(X1 , X2 ) + n H"(X1 , X2 

and so s,~ 4E(V,,2 - s~)2 ~ 0, implying (3.12). 
Hall assumes that w is bounded and nonnegative and satisfies 

J w( z) dz = 1, 

f z.z -w(z) dz = 2c8 . < oo l .J I.J • 

The density f and its second order derivatives are assumed bounded and 
uniformly continuous. 
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One can show that 

STOCHASTIC CURVE ESTIMATION 

E{H~(X1 , X2 )} = O(b(n) 5k), 

E{G,;(X1 , X2 )} = O(b(n) 7k), 

where 

By the central limit theorem for U-statistics, one can see that In 1 is asymptoti­
cally normal with mean 0 and variance 2n - 2 b(n)-ka-f. Also In 2 has a variance 
0(n3b(n)2k) 1 and a mean 

k -1{! 2 ''ff Ein 2 = (nb(n) ) lu(u) du- b(n) w(u)w(u + u) dudu 

X f {(X) {(X + b( n) U) dx}. 

A direction application of the Lindeberg central limit theorem implies that In 2 

is asymptotically normal with mean zero and variance n - 1b( n )4c 2aff, where 

If nb( n )k + 4 ~ oo, In 1 will be asymptotically negligible compared to I" a while if 
nb(n)k+ 4 ~ 0, the converse will hold. If nb(n)k+4 ~A, 0 <A < oo, In 1 and Ina 
can be shown to be asymptotically independent. We then have the following 
result. 

THEOREM. Let b(n) ~ 0, nb(n)k ~ oo as n ~ oo. Set 

and 

{

n -1!2b( n) -2 

a(n) = nb(n)<1!2lk 

n<k+8l/2<k+4l 

ifnb(n)k+ 4 ~ oo, 

ifnb(n)k+ 4 ~ 0, 

if"nb(n)k+ 4 ~A, 0 <A< oo, 

(3(n) = {Efn(x) -{(x)} dx-Einz· f 2 



GLOBAL MEASURES OF DEVIATION 

Then under the assumptions on w and f, 

a(n)ff{f,(x)- f(x)} 2 dx- {3(n)] 

i 
2 112o-1Z 

~ C<r3Z 

( C2o-ff A4/(h +4) + 2o-12 A -k /(/H-4)) 1/2 z 

ifnb(n)"+4 ~ 0, 

ifnb(n)"+ 4 ~ oc, 

if nb ( n) k+ 4 -~ A, 0 < A < oo, 

in distribution with Z a standard normal variable. 
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Without discussing the assumptions, we note that Csorg6 and Horvath 
(1988) have obtained the asymptotic distribution of 

I,(p) = jlf,(t) -f(tWa(t)dt, 1:S::p<oo, 

in the one-dimensional case in certain circumstances. A crucial assumption is 
that the weight function is bounded, continuous, of finite support and with 
mean zero. Z represents a standard normal random variable. Let 

and 

with 

m = EIZI"(f w( u ) 2 du r12 f fP1 2 (t)a(t) dt, 

r(t) = jw(u)w(t+u)du/Jw(u) 2 du, 

<r;2 = (2rr) - 1 J {J Jixyl"(l- r 2(u)f 112 

Xexp(- ---1-2--) (x 2 - 2r(u)xy + y 2 )) dxdy- EIZI"} du. 
2(1-r(u) 

It is then claimed that if b(n) ~ 0, nb(n) ~ oc, nb(n)4 ~ 0 among other 
assumptions that 

(b(n)o- 2 f 112{(nb(n))"I,(p)- m} 

will converge in distribution to a standard normal variable. It is clear that one 
must require that 

f f ( t) p dt < 00. 
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Heuristically the object is to replace n112[F,/t)- F(t)] in the representation 

fn(t) -f(t) = nb~n)Jw(~~n~)d[F,(t) -F(t)] 

by the Brownian bridge process Z 0(F(t)) with error given by the result of 
Koml6s, Major and Tusnady (1975). Then in turn one replaces the Brownian 
bridge by the Wiener process Z(F(t)) with a small error. In turn one can 
replace dZ(F(t)) by f(t) 112 dZ(t) in distribution. Because of the bandlimited 
character of the weight function w, the resulting process obtained after all 
these replacements in l,(p) is seen to be 2b( n) dependent [if the support of w 
is ( -1, 1)]. One then makes use of a central limit theorem to establish 
asymptotic normality. We note that one of the earliest papers on uniform 
convergence of a kernel probability density estimate is that of Parzen (1962). 
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