SECTION 13

Estimation from Censored Data

Let P be a a nonatomic probability distribution on $[0,\infty)$. The cumulative hazard function β is defined by

$$\beta(t) = \int \frac{\{0 \le x \le t\}}{P[x,\infty)} P(dx).$$

It uniquely determines P. Let T_2, T_2, \ldots be independent observations from P and $\{c_i\}$ be a deterministic sequence of nonnegative numbers representing censoring times. Suppose the data consist of the variables

$$T_i \wedge c_i$$
 and $\{T_i \leq c_i\}$ for $i = 1, \ldots, n$.

That is, we observe T_i if it is less than or equal to c_i ; otherwise we learn only that T_i was censored at time c_i . We always know whether T_i was censored or not.

If the $\{c_i\}$ behave reasonably, we can still estimate the true β despite the censoring. One possibility is to use the Nelson estimator:

$$\widehat{\beta}_n(t) = \frac{1}{n} \sum_{i \le n} \frac{\{T_i \le c_i \land t\}}{L_n(T_i)},$$

where

$$L_n(t) = \frac{1}{n} \sum_{i \le n} \{T_i \land c_i \ge t\}$$

It has become common practice to analyze $\widehat{\beta}_n$ by means of the theory of stochastic integration with respect to continuous-time martingales. This section will present an alternative analysis using the Functional Central Limit Theorem from Section 10. Stochastic integration will be reduced to a convenient, but avoidable, means for calculating limiting variances and covariances.

Heuristics. Write G(t) for $\mathbb{P}\{T_i \ge t\}$ and define

$$\Gamma_n(t) = \frac{1}{n} \sum_{i \le n} \{c_i \ge t\}$$

Essentially we need to justify replacement of L_n by its expected value,

$$\mathbb{P}L_n(t) = \frac{1}{n} \sum_{i \le n} \mathbb{P}\{T_i \ge t\}\{c_i \ge t\} = G(t)\Gamma_n(t).$$

That would approximate $\hat{\beta}_n$ by an average of independent processes, which should be close to its expected value:

$$\begin{split} \widehat{\beta}_n(t) &\approx \frac{1}{n} \sum_{i \leq n} \frac{\{T_i \leq c_i \wedge t\}}{G(T_i) \Gamma_n(T_i)} \\ &\approx \frac{1}{n} \sum_{i \leq n} \mathbb{P} \frac{\{T_i \leq t\} \{T_i \leq c_i\}}{G(T_i) \Gamma_n(T_i)} \\ &= \mathbb{P} \left(\frac{\{T_1 \leq t\}}{G(T_1) \Gamma_n(T_1)} \frac{1}{n} \sum_{i \leq n} \{T_1 \leq c_i\} \right) \\ &= \beta(t). \end{split}$$

A more precise analysis will lead to a functional central limit theorem for the standardized processes $\sqrt{n}(\hat{\beta}_n - \beta)$ over an interval $[0, \tau]$, if we assume that:

(i) the limit $\Gamma(t) = \lim_{n \to \infty} \Gamma_n(t)$ exists for each t;

(ii) the value τ is such that $G(\tau) > 0$ and $\Gamma(\tau) > 0$.

The argument will depend upon a limit theorem for a process indexed by pairs (t,m), where $0 \le t \le \tau$ and m belongs to the class \mathcal{M} of all nonnegative increasing functions on $[0,\tau]$. Treating β as a measure on $[0,\tau]$, define

$$\beta(t,m) = \int \{0 \le x \le t\} m(x) \beta(dx),$$

$$f_i(\omega,t,m) = \{T_i \le t \land c_i\} m(T_i) - \beta(t \land T_i \land c_i,m).$$

Such a centering for f_i is suggested by martingale theory, as will be explained soon. We will be able to establish a functional central limit theorem for

$$\begin{split} X_n(t,m) &= \frac{1}{\sqrt{n}} \sum_{i \le n} f_i(\omega,t,m) \\ &= \sqrt{n} \Biggl(\Biggl(\frac{1}{n} \sum_{i \le n} \{T_i \le t \land c_i\} m(T_i) \Biggr) - \beta(t,mL_n) \Biggr). \end{split}$$

Putting m equal to $1/L_n$ we get the standardized Nelson estimator:

$$X_n(t, 1/L_n) = \sqrt{n} \big(\widehat{\beta}_n(t) - \beta(t) \big).$$

The limit theorem for X_n will justify the approximation

$$X_n(t, 1/L_n) \approx X_n(t, 1/G\Gamma_n).$$

It will also give the limiting distribution for the approximating process.

EMPIRICAL PROCESSES

Some martingale theory. The machinery of stochastic integration with respect to martingales provides a very neat way of calculating variances and covariances for the f_i processes. We could avoid stochastic integration altogether by direct, brute force calculation; but then the happy cancellations arranged by the martingales would appear most mysterious and fortuitous.

The basic fact, not altogether trivial (Dellacherie 1972, Section V.5), is that both

$$Z_i(t) = \{T_i \le t\} - \beta(t \land T_i) \quad \text{and} \quad Z_i(t)^2 - \beta(t \land T_i)$$

are continuous parameter martingales in t. That is, both the simple jump process $\{T_i \leq t\}$ and the submartingale Z_i^2 have compensator $\beta(t \wedge T_i)$. The f_i process is expressible as a stochastic integral with respect to Z_i :

$$f_i(\omega, t, m) = \int \{0 \le x \le t \land c_i\} m(x) Z_i(dx).$$

It follows that, for fixed m, the process f_i is also a martingale in t. In particular, $\mathbb{P}f_i(\omega, t, m) = \mathbb{P}f_i(\omega, 0, m) = 0$ for every t.

From now on let us omit the ω from the notation.

Stochastic integration theory tells us how to calculate compensators for new processes derived from the martingales $\{Z_i\}$. In particular, for fixed t_1 , t_2 , m_1 , and m_2 , the product $f_i(t \wedge t_1, m_1)f_i(t \wedge t_2, m_2)$ has compensator

$$A_i(t) = \int \{0 \le x \le t \land t_1 \land t_2 \land T_i \land c_i\} m_1(x) m_2(x) \beta(dx);$$

the difference $f_i(t \wedge t_1, m_1)f_i(t \wedge t_2, m_2) - A_i(t)$ is a martingale in t. This implies that

$$\mathbb{P}f_i(t \wedge t_1, m_1)f_i(t \wedge t_2, m_2) = \mathbb{P}A_i(t) \quad \text{for each } t.$$

Put $t = \max(t_1, t_2)$, then average over *i*. Because each T_i has the same distribution, we get

$$\mathbb{P}X_{n}(t_{1}, m_{1})X_{n}(t_{2}, m_{2}) = \frac{1}{n} \sum_{i \leq n} \mathbb{P}f_{i}(t_{1}, m_{1})f_{i}(t_{2}, m_{2})$$
$$= \mathbb{P}\int \{0 \leq x \leq t_{1} \wedge t_{2}\}L_{n}(x)m_{1}(x)m_{2}(x)\beta(dx)$$
$$= \beta(t_{1} \wedge t_{2}, G\Gamma_{n}m_{1}m_{2}).$$

The calculations needed to derive this result directly would be comparable to the calculations needed to establish the martingale property for Z_i .

Manageability. For each positive constant K let $\mathcal{M}(K)$ denote the class of all those m in \mathcal{M} for which $m(\tau) \leq K$. To establish manageability of the $\{f_i(t,m)\}$ processes, as t ranges over $[0, \tau]$ (or even over the whole of \mathbb{R}^+) and m ranges over $\mathcal{M}(K)$, it suffices to consider separately the three contributions to f_i .

Let us show that the indicator functions $\{T_i \leq t \wedge c_i\}$ define a set with pseudodimension one. Suppose the (i, j)-projection could surround some point in \mathbb{R}^2 . Suppose $T_i \leq T_j$. We would need to be able to find t_1 and t_2 such that both pairs of inequalities,

$$\begin{aligned} T_i &\leq t_1 \wedge c_i \quad \text{and} \quad T_j \leq t_1 \wedge c_j, \\ T_i &> t_2 \wedge c_i \quad \text{and} \quad T_j \leq t_2 \wedge c_j, \end{aligned}$$

were satisfied. The first pair would imply $T_i \leq c_i$ and $T_j \leq c_j$, and then the second pair would lead to a contradiction, $t_2 \geq T_j \geq T_i > t_2$, which would establish the assertion about pseudodimension.

For the factors $\{m(T_i)\}$ with m ranging over $\mathcal{M}(K)$, we can appeal to the result from Example 6.3 if we show that no 2-dimensional projection of the convex cone generated by $\mathcal{M}(K)$ can surround the point (K, K). This is trivial. For if $T_i \leq T_j$ then no $r \in \mathbb{R}^+$ and $m \in \mathcal{M}(K)$ can achieve the pair of inequalities $rm(T_i) > K$ and $rm(T_j) < K$.

The argument for the third contribution to f_i is similar. For each $t \leq \tau$ and $m \in \mathcal{M}(K)$, the process $\beta(t \wedge T_i \wedge c_i, m)$ is less than $K' = K\beta(\tau)$. If, for example, $T_i \wedge c_i \leq T_j \wedge c_j$ then it is impossible to find an $r \in \mathbb{R}^+$, an $m \in \mathcal{M}(K)$, and a $t \in [0, \tau]$ such that $r\beta(t \wedge T_i \wedge c_i, m) > K'$ and $r\beta(t \wedge T_j \wedge c_j, m) < K'$.

Functional Central Limit Theorem. It is a simple matter to check the five conditions of the Functional Central Limit Theorem from Section 10 for the triangular array of processes

$$f_{ni}(t,m) = \frac{1}{\sqrt{n}} f_i(t,m) \quad \text{for } i = 1, \dots, n, \quad t \in [0,\tau], \quad m \in \mathcal{M}(K),$$

for some constant K to be specified. These processes have constant envelopes,

$$F_{ni} = K(1 + \beta(\tau)) / \sqrt{n},$$

which clearly satisfy conditions (iii) and (iv) of the theorem. The extra $1/\sqrt{n}$ factor does not affect the manageability. Taking the limit in (13.1) we get

$$H((t_1, m_1), t_2, m_2)) = \beta(t_1 \wedge t_2, G\Gamma m_1 m_2).$$

For simplicity suppose $t_1 \leq t_2$. Then, because f_{ni} has zero expected value, (13.1) also gives

$$\begin{split} \rho_n \big((t_1, m_1), (t_2, m_2) \big)^2 \\ &= \mathbb{P} |X_n(t_1, m_1) - X_n(t_2, m_2)|^2 \\ &= \beta(t_1, G\Gamma_n m_1^2) + \beta(t_2, G\Gamma_n m_2^2) - 2\beta(t_1, G\Gamma_n m_1 m_2) \\ &= \int \{ 0 \le x \le t_1 \} G\Gamma_n(m_1 - m_2)^2 \beta(dx) + \int \{ t_1 \le x \le t_2 \} G\Gamma_n m_2^2 \beta(dx) \\ &\le \int \{ 0 \le x \le t_1 \} (m_1 - m_2)^2 \beta(dx) + \int \{ t_1 \le x \le t_2 \} m_2^2 \beta(dx). \end{split}$$

A similar calculation with Γ_n replaced by Γ gives

$$\rho((t_1, m_1), (t_2, m_2))^2$$

= $\int \{0 \le x \le t_1\} G\Gamma(m_1 - m_2)^2 \beta(dx) + \int \{t_1 \le x \le t_2\} G\Gamma m_2^2 \beta(dx),$

EMPIRICAL PROCESSES

which is greater than the positive constant factor $G(\tau)\Gamma(\tau)$ times the upper bound just obtained for $\rho_n((t_1, m_1), (t_2, m_2))^2$. The second part of condition (v) of the Functional Central Limit Theorem follows.

The processes $\{X_n(t,m)\}$, for $0 \le t \le \tau$ and $m \in \mathcal{M}(K)$, converge in distribution to a Gaussian process X(t,m) with ρ -continuous paths, zero means, and covariance kernel H.

Asymptotics for $\hat{\beta}_n$. We now have all the results needed to make the heuristic argument precise. A straightforward application of Theorem 8.2 shows that

$$\sup_{t} |L_n(t) - G(t)\Gamma_n(t)| \to 0 \qquad \text{almost surely.}$$

If we choose the constant K so that $G(\tau)\Gamma(\tau) > 1/K$, then, with probability tending to one, both $1/L_n$ and $1/G\Gamma_n$ belong to $\mathcal{M}(K)$ and

$$\sup_{0 \le t \le \tau} \rho((t, 1/L_n), (t, 1/G\Gamma_n)) \to 0 \quad \text{in probability.}$$

From stochastic equicontinuity of $\{X_n\}$ we then deduce that

$$\begin{split} \sqrt{n}(\beta_n(t) - \beta(t)) &= X_n(t, 1/L_n) \\ &= X_n(t, 1/G\Gamma_n) + o_p(1) \qquad \text{uniformly in } 0 \le t \le \tau \\ &\rightsquigarrow X(t, 1/G\Gamma). \end{split}$$

The limit is a Gaussian process on $[0, \tau]$ with zero means and covariance kernel $\beta(t_1 \wedge t_2, 1/G\Gamma)$. It is a Brownian motion with a stretched out time scale.

REMARKS. As suggested by Meier (1975), deterministic censoring times $\{c_i\}$ allow more flexibility than the frequently made assumption that the $\{c_i\}$ are independent and identically distributed random variables. A conditioning argument would reduce the case of random $\{c_i\}$ to the deterministic case, anyway.

The method introduced in this section may seem like a throwback to the original proof by Breslow and Crowley (1974). However, the use of processes indexed by $\mathcal{M}(K)$ does eliminate much irksome calculation. More complicated forms of multivariate censoring might be handled by similar methods. For a comparison with the stochastic integral approach see Chapter 7 of Shorack and Wellner (1986).

I am grateful to Hani Doss for explanations that helped me understand the role of martingale methods.