
SECTION 12 

Random Convex Sets 

Donoho (1982) and Donoho and Gasko (1987) studied an operation proposed by 
Tukey for extending the idea of trimming to multidimensional data. Nolan (1989a) 
gave a rigorous treatment of the asymptotic theory. Essentially the arguments 
express the various statistics of interest as differentiable functionals of an empirical 
measure. The treatment in this section will show how to do this without the formal 
machinery of compact differentiability for functionals, by working directly with 
almost sure representations. [Same amount of work, different packaging.] 

To keep the discussion simple, let us consider the case of an independent sample 
e1, {2, ... of random vectors from the symmetric bivariate normal distribution p 
on JR2 , and consider only the analogue of 25% trimming. 

The notation will be cleanest when expressed (using traditional empirical process 
terminology) in terms of the empirical measure Pn, which puts mass 1/n at each of 
the points 6 (w), ... 'en(w). 

Let 1-C denote the class of all closed halfspaces in JR2 • Define a random compact, 
convex set Kn = Kn(w) by intersecting all those halfspaces that contain at least 
3/4 of the observations: 

Kn(w) = n{H E 1-C: PnH 2: n. 
It is reasonable to hope that Kn should settle down to the set 

B(ro) = n{H E 1-C: PH 2: n, 
which is a closed ball centered at the origin with radius r 0 equal to the 75% point of 
the one-dimensional standard normal distribution. That is, if !P denotes the N(O, 1) 
distribution function, then r0 = q,-1(3/4) ~ .675. Indeed, a simple continuity 
argument based on a uniform strong law of large numbers, 

(12.1) sup IPnH- PHI-+ 0 almost surely, 
X 

would show that, for each f > 0, there is probability one that 

B(ro- f) ~ Kn(w) ~ B(ro +f) 
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eventually. 
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In a natural sense, Kn is a strongly consistent estimator. Let us not dwell on the 
details here, because the next argument, which gives the finer asymptotics for Kn, 
is much more interesting. (The almost sure representation that will appear soon 
would imply the "in probability" version of (12.1). This would give consistency in 
probability, which is all that we really need before embarking upon the asymptotic 
distribution theory for Kn.] 

Once Kn contains the origin as an interior point it makes sense to describe its 
boundary in polar coordinates. Let Rn(B) = Rn(w, B) denote the distance from 
the origin to the boundary in the direction B. The consistency result then has the 
reformulation: 

sup IRn(w, B)- rol --+ 0 almost surely. 
9 

With the help of the functional central limit theorems from Section 10, we can 
improve this to get convergence in distribution of a random process, 

y'n(Rn(w, ()) - ro) for -Tr :5 e :5 Tr, 

to a Gaussian process indexed by (). (It would be more elegant to take the unit 
circle as the index set, identifying the points e = 1r and e = -1r.] Such a result 
would imply central limit theorems for a variety of statistics that could be defined 
in terms of Kn. 

Heuristics. We need to establish a functional central limit theorem for the 
standardized empirical process, 

Vn(w,H) = vn(PnH- PH), 

as a stochastic process indexed by JC. We must show that {vn} converges in distri­
bution to a Gaussian process v indexed by JC. 

Let H(r, B) denote the closed halfspace containing the origin with boundary line 
perpendicular to the B direction at a distance r from the origin. That is, H(r, B) 
consists of all points whose projections onto a unit vector in the() direction are :5 r. 
For a given point with polar coordinates (r, ()), the halfspace H(r, ())maximizes PH 
over all H that have (r, B) as a boundary point. The boundary point of B(r0 ) in 
the direction B is determined by solving the equation PH(r, ()) = 3/4 for r, giving 
r = ro. Similarly, the boundary point of Kn in the direction e is almost determined 
by solving the equation PnH(r, B) = 3/4, as we will soon see. (Discreteness of Pn 
might prevent us from getting exact equality; and the halfspace that determines the 
boundary point will be rotated slightly from the H(r, ()) position.) That is, Rn(B) 
is approximately determined by solving the following equation for r: 

~ ~ PnH(r, B)= PH(r, B)+ )nvnH(r, e). 

Asymptotically the right-hand side is distributed as 

<P(r) + )nvH(r, B)~ <P(ro) + (r- ro)<P'(ro) + )nvH(r0 , e) .. 

Thus fo(Rn(())- ro) should behave asymptotically like -vH(r0 , B)/<P'(r0 ), which 
is a Gaussian process indexed by (). 
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The functional limit theorem for Vn. Define a triangular array of processes, 

1 
fni(w, H)= y'n{~;(w) E H} for HE 1{ and i::; n. 

They have constant envelopes Fni = 1/ y'n. We will apply the Functional Central 
Limit Theorem of Section 10 to the processes 

VnH = L(fni(w,H)- 'Pfn;(·,H)). 
i~n 

It is easy to show, by an appeal to Lemma 4.4, that the processes define random 
subsets of !Rn with pseudodimension 3. Every closed halfspace has the form 

H = {x E IR2 : a· x + ,8 2: 0} 

for some unit vector a in IR2 and some real number ,8. Notice that fni(w, H)= 1/fo 
if and only if a · ~i + ,8 2: 0. The points in !Rn with coordinates a · ~i + ,8 trace out 
a subset of a 3-dimensional subspace as a and ,8 vary. 

The other conditions of the Theorem are just as easy to check. For every pair of 
halfspaces H 1 and H2 , and every n, 

and 

p(H1, H2) 2 = Pn(Hl, H2)2 = PIH1- H2l· 

[Typically, manageability is the only condition that requires any work when the 
Functional Central Limit Theorem is applied to the standardized sums of indepen­
dent, identically distributed processes.] 

The Theorem asserts that Vn converges in distribution, as a random element of 
the function space B(1{), to a Gaussian process concentrated on U(1{), the set of 
all bounded, p-uniformly continuous functions. The Representation Theorem from 
Section 9 provides perfect maps ¢n and a Gaussian process il with sample paths 
in U(1{) such that the random processes iln = Vn o ¢n satisfy 

sup li/n(H)- ii(H)I ~ 0 almost surely. 
!){ 

We need not worry about measurability difficulties here, because the supremum 
over 1{ is equal to the supremum over an appropriate countable subclass of 1{. The 
representation also gives a new version of the empirical measure, 

(12.2) 

where the o(l) represents a function of H that converges to zero uniformly over 1{. 

Asymptotics. With (12.2) we have enough to establish an almost sure limit 
result for Rn(w,B) = Rn(¢n(w),B), which will imply the corresponding distribu­
tional result for Rn(w, B). Let { 8n} be a sequence of random variables on 0 that 
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converges almost surely to zero at a rate to be specified soon. Define 

Z(B) = ii(H(ro, B))/~'(ro), 
1 

ln(B)=ro- Vn(Z(B)+8n), 

1 
Un(B) = ro- vn(Z(B)- Dn)· 

If we can find Dn uniformly of order o(1) such that, eventually, 

for all B, 

then it will follow that 

yn(Rn(B)- ro) _, -Z(B) uniformly in B, 

as desired. 
Consider first the upper bound on Rn(B). Temporarily write Hn(B) for the half­

space H( un(B), B). Then 

- 1 
PnHn(B) = PHn(B) + Vn(iiHn(B) + o(1)) uniformly in B. 

Apply the Mean Value Theorem to approximate the contribution from P: 

PHn(B) = ~(un(B)) 

= ~(ro) + (un(B)- ro)(~'(ro) + o(1)) 

= ~ - )n (vH(ro, B) - o(1) - ( ~~ (ro) + o(1))8n), 

where the o(1) represent functions of B that converge to zero uniformly in B. For 
the contribution from ii consider first the difference IHn(B) - H(ro, B) I. It is the 
indicator function of a strip of width IZ(B)- Dnl/vn; its P measure converges to 
zero uniformly in B. Thus 

p(Hn(B),H(ro,B))-> 0 uniformly in B. 

By the uniform continuity of the ii sample paths it follows that 

ii(Hn(B)) = iiH(ro, B)+ o(1) uniformly in B. 

Adding the two contributions to PnHn(B) we get 

PnHn(B) = ~ + )n( (~'(ro) + o(1))8n- o(1)). 

We can choose 8n converging to zero while ensuring that the coefficient of 1/ yn is 
always positive. With that_choice, the set Hn(B) becomes one of the half spaces 
whose intersection defines Kn; the boundary point in the B direction must lie on 
the ray from the origin to the boundary of Hn(B); the distance Rn((J) must be less 
than Un (B). 

Now consider the lower bound on Rn(B). Let tn(B) denote the point a distance 
in (B) from the origin in the B direction. It is enough if we show that Kn contains 
every tn(B). 
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If, for a particular (), the point tn(()) were outside Kn, there would exist a 
halfspace H with PnH 2:: 3/4 and tn(()) ¢.H. By sliding H towards tn(()) we would 
get an H' with PnH' 2:: 3/4 and tn(O) on the boundary of H'. The right choice for 
6n will ensure that such an H' cannot exist. 

For each fJ let Hn(fJ) denote the halfspace with tn(()) on its boundary and the 
largest Pn measure. (Of course this is not the same Hn(O) as before.) The maximum 
of PH over all halfspaces with tn ( ()) on the boundary is achieved at H ( fn ( 0), 0). 
So, uniformly in 0, 

~ :::; PnHn(O) = PHn(()) + 0(1/vn):::; PH(fn(O), 0) + 0(1/vn)--+ ~· 

It follows that PHn(O) also converges uniformly to 3/4. This forces the boundary 
of Hn(O) to orient itself more and more nearly perpendicular to the 0 direction. 
Consequently, 

p(Hn(()),H(ro,O))--+ 0 uniformly in 0. 

Uniform continuity of the v sample paths now lets us assert 

uniformly in 0. 

Again using the fact that the maximum of PH over all halfspaces with tn ( 0) on 
the boundary is achieved at H(fn(()),B), we deduce that, uniformly in 0, 

PHn(B):::; PH(£n(O), 0) 

= <P(fn(B)) 

= <I>(ro) + (£n(O)- ro) ( <I>'(ro) + o(1)) 

= ~- )n (vH(ro, fJ)- o(l) + (<I>'(ro) + o(1))8n). 

With 8n converging to zero slowly enough to cancel out all the o(1) terms, plus a 
little bit more, we get a contradiction, PnHn(O) < 3/4 for all B. There can therefore 
be no halfspace with PnH' ;::: 3/4 and tn(fJ) on its boundary. The point tn(O) must 
lie inside Kn. The argument for the lower bound on Rn(O) is complete. 

REMARKS. Nolan (1989b) has studied an estimator related to Kn, following 
Donoho (1982). Its analysis is similar to the arguments given in this section, but 
more delicate. 
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