
CHAPTER 7 

Random Orthogonal Matrices 

Orthogonal matrices, both fixed and random, play an important role in much 
of statistics, especially in multivariate analysis. Connections between the orthog­
onal group On and the multivariate normal distribution are explored in James 
(1954) and in Wijsman (1957), as well as in many texts on multivariate analysis. 
In this chapter, invariance arguments are used to derive the density of a 
subblock of a uniformly distributed element of On. This result is used to describe 
an upper bound on the rate at which one has convergence (as n ~ oo) to the 
multivariate normal distribution. 

7 .1. Generating a random orthogonal. Throughout this chapter, On de­
notes the group of n X n real orthogonal matrices. By the uniform distribution 
on the compact group On, we mean the unique left- (and right- ) invariant 
probability measure. It is possible to represent this distribution using differential 
forms, but the approach taken here is to represent things in terms of random 
matrices. 

Consider a random matrix X: n X q with q s: n and assume 

Thus, the elements of X are iid N(O, 1) random variables. It is well known that 
X has rank q with probability 1 [for example, see Eaton (1983), Chapter 7]. 
Thustherandommatrix 

is well defined. Since f{f1 ::::: Iq, f 1 is a random element of Fq, n introduced in 
Example 2.3. Since On acts transitively on Fq, n• there exists a unique invariant 
probability measure on Fq, n• say P. The following result shows that f 1 has 
distribution P. 

PROPOSITION 7.1. The random matrix f 1 has the uniform distribution on 
Fq,n' 
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7.2. THE DENSITY OF A BLOCK 

PROOF. From the uniqueness of v, it suffices to show that 

But, it is clear that 

Thus, 

..z:'(fl) = ..z:'(gf1), g E 0,.. 

..z:'(X) =..z:'(gX), 

..z:'(gf1) = ..z:'(gX(X'X)- 112) 

= ..z:'(gX((gX)'gX) -1!2) 

=..z:'(X(X'X)- 112) =£7(f1). 
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When q = 1, f 1 has the uniform distribution on the unit sphere in R" and 
when q = n, f 1 has the uniform distribution on 0,. = F,., ,.. The two properties of 
X which lead to Proposition 7.1 are: 

(i) X has rank q a.s. 
(ii) ..z:'(X) = ..z:'(gX), g E 0,.. 

Any random matrix X satisfying (i) and (ii) yields a f 1 which is uniform on Fq, ,.. 
Now, partition X as 

X=(~) 
withY: p X q. Then 

so that 

(7.1) ~ = Y(Y'Y + Z'Zr 112 

is the p X q upper block of f 1• When p + q .:::;; n, Khatri (1970) derived the 
density of~ using the invariant differential on 0,.. Here we derive the density of 
~using an invariance argument. 

The following should be noted. If f is uniform on 0,. and f is partitioned as 

r = (f1f 2 ) 

with f 1: n X q and f 2: n X (n- q), then f 1 has the uniform distribution on 
Fq, n· This follows from the observation that forgE 0,., 

..z:'(r) = ..z:'(gr) = ..z:'(g(rlr2)) = ..z:'((grlgr2)) 

so that marginally 

..z:'(fl) = ..z:'(gfl). 

This invariance characterizes ..z:'(f1). Therefore, the matrix ~: p X q can be 
thought of as the p X q upper left block of the random orthogonal matrix f. 

7.2. The density of a block. Before turning to the density of~. we review 
a few basic facts about the multivariate beta distribution. Consider two 
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independent Wishart matrices S;, i = 1, 2, with 

.P(S;) = w(Iq, q, n;), i = 1, 2. 

That is, 8;: q X q has a Wishart distribution with n; degrees of freedom and 
scale matrix Iq. When n 1 + n 2 ~ q, then 81 + 82 is positive definite with 
probability 1 and the random matrix 

B = (8 + S )- 1128 (8 + S )- 112 1 2 1 1 2 

is well defined. The matrix B has, by definition, a multivariate beta distribution 
which is written 

.P(B) = B(n1 , n 2 ; Iq). 

This notation is from Dawid (1981). Since 

Iq- B = (81 + 82) -1/282(81 + 82) -1/2, 

it follows that B can have a density with respect to Lebesgue measure [on the 
set of symmetric B 's with all eigenvalues in (0, 1)] iff n; ~ q, i = 1, 2. In this 
case, the density of B is 

(7 .2) w( n1, q )w( n2, q) IBI(n, -q-1)/21/q - Bl(n2-q-1)/2' 
w(n1 +n2 ,q) 

where w( ·, ·) is the Wishart constant [Eaton (1983), page 175]. This and related 
results can be found in Olkin and Rubin (1964), Mitra (1970) and Khatri (1970). 

In what follows, we treat the case q ::;:; p in the discussion of 

.:l = Y(Y'Y + Z'Z) - 112, 

where 

The case p ::;:; q is treated by taking transposes. 

PROPOSITION 7 .2. When q ::;:; p and p + q ::;:; n, the random matrix ll' .:l has a 
B(p, n- p; Iq) distribution. Thus ll'll has a density (with respect to Lebesgue 
measure) given by 

(7.3) fo(x) = Colxl<p-q-1)/21Jq- xl<n-p-q-1)/2Jo(x), 

where 10 is the indicator function of the q X q symmetric matrices all of whose 
eigenvalues are in (0, 1) and the constant C0 is 

C0 = «;(p, q)w(n- p, q)jw(n, q). 

PROOF. Using the normal representation for .:l, we have 

2( ll'.:l) = 2( (Y'Y + Z'Zf- 112Y'Y(Y'Y + Z'Z) - 112) 

=2((81 + 82)-1/281(81 + 82)-112). 
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Since 81 is W(Iq, q, p) and 82 is W(Iq, q, n- p), the first assertion follows. The 
expression for the density of A' A follows immediately from (7 .2). o 

PROPOSITION 7 .3. For q ~ p and p + q ~ n, the density of A is given by 

(7.4) fl(y) = ClJ!q- y'yJ(n--p-q-l)/2Io(Y'y), 

where 10 is given in Proposition 5.2 and the constant C1 is 

(7 .5) cl = (ff.;) -pq w(n- p, q )/w(n, q ). 

PROOF. Let 1/;: p X q have f1 as a density. Since figy) = fiy) forgE OP, 
it is clear that 

2(1/;) =2(gl/;), 

Because 1/;'1/; is a maximal invariant under the group action 

1f; ~ glf;, g E op, 
the results of Example 5.2 show that 1/;'1/; has the density f0 given in (7.3). 
Therefore, 

2( 1/;'1/;) = 2(A'A). 

However, we know that 

2(gA) =.?(A), g E op. 
The results of Proposition 7.4 below imply that £'( 1/;) = 2( A) so that A has 
density (7 .3). o 

Essentially, the argument used above to conclude that 2(1/;) =£'(A) consists 
of two parts: 

(i) Both 1/; and A have 0P-invariant distributions. 
(ii) The distribution of the maximal invariant under the group action is the 

same for both 1/; and A. 

The result below shows that the argument is, in fact, a general argument and not 
specific to the case at hand. To describe the general situation, suppose that the 
compact group G act.<; measurably on measurable spaceY and suppose that P1 

and P2 are two G-invariant probability measures on Y. Let r: Y ~ X be a 
maximal invariant function. 

PROPOSITION 7.4. Let Y; E Y have distribution P;_, i = 1, 2. lf £'( r(Y1)) = 

£'( r(Y2)), then P1 = P2 • 

PROOF. Let Q be the common distribution of£'( r(Y;)), i = 1, 2 and let p, be 
the invariant probability measure on G. Given a bounded measurable function f 
defined on Y, the function 

y ~ laf(gy)p,(dg) 
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is invariant and is assumed to be measurable. Thus, this function can be written 
as fo( T(y)) with fo defined on X. 

Now, using the invariance of P; and the definition of Q, we have 

j f(y)Pi( dy) = j f(gy)Pi(dy) 

= j jf(gy)p.(dg)P;(dy) = jfo(T(y))P;(dy) = jf0(x)Q(dx) 

for i = 1, 2. Thus, for any bounded measurable function f, 

Further properties of the matrix ~ and its distribution can be found in Eaton 
(1985). 

7.3. Some asymptotics. Again consider ~ defined by (5.1) with p and q 
fixed, but n tending to infinity. The rows of X: n X q, say X{, ... , X~, are iid 
N(O, Iq). Thus, by the strong law of large numbers, 

Therefore, 

n 

n-- 1 LXiX/ ~ EX1X{ = Iq. 
l 

Vn~ = VnY(Y'Y + Z'Z)- 112 

( 
n ) -1/2 ( n ) -1/2 

= .fnY ~XiX/ = Y n- 1 ~XiX/ 

converges almost surely to Y which is N(O, IP ® Iq). Thus we have: 

PROPOSITION 7 .5. Let f be uniform on On and let ~ be any p X q subblock of 
the matrix f. Then Vn ~ converges in distribution to a N(O, IP ® Iq) distribution 
as n ~ oo. 

We now turn to the question of the rate of convergence of the distribution of 
Vn ~ to the normal. The result described here is from Diaconis, Eaton and 
Lauritzen (1987). Recall that for two probability measures P1 and P2 , the 
variation distance between P1 and P2 is defined by 

//P1 - P21/ = 2sup/P1(B)- P2(B)/, 
B 

where the sup ranges over the relevant a-algebra. When P1 and P2 are both 
absolutely continuous with respect to a a-finite measure A, say Pi= dP;jdA., 
then 
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where f+= f when f is positive and t+= 0 otherwise. Therefore, 

(7.6) 

Here is one technical fact concerning variation distance which is used henceforth 
without comment. For P1 and P2 defined on a measurable space (X1, B1), 
consider a measurable map f from (X1, B1) to (X2, B2 ). Then f~ = Q; is defined 
on (X 2 , B2 ) by 

i = 1,2. 

Because f is measurable, f- 1(B2 ) ~ B1 so that 

IIQl - Q2ll ::;; IIP1 - P2ll· 

In other words, variation distance cannot be increased by measurable transfor­
mations. 

It is inequality (7.6) which is used to bound the variation distance between the 
distribution of Iii ll and the N(O, IP ® Iq) distribution. We now proceed with 
some of the technical details. First note that the variation distance between 
!i'(Vn ll) and N(O, IP ® lq) is the same as the variation distance between !i'(ll) 
and N(O, n -l[P ® Iq) because variation distance is invariant under one-to-one 
bimeasurable transformations. In the calculation below [from Diaconis and 
Freedman (1987)], we treat the case of q = 1 and p = 2r as an even integer. 
Under this assumption, the density of ll is [from (7.4)] 

(127T) -p 2PI2f(n/2) 
P1(x) = f((n _ p)/2) (1- x'x)<n-p·- 2l12I 0(x'x) 

for x E RP. Dividing p/x) by the density of a N(O, n··lJP) distribution, say 
p 2( x ), we have 

P (x) ( 2 )P/2 f(n/2) [nx'x] 1 ( 1 1 )(n--p-2)/2 l ( , ) -- = - -XX exp -- o XX • 
p 2(x) n f((n- p )/2) 2 

When p ::;; n - 3, this ratio is maximized for x'x = (p + 2)/n so the ratio is 
bounded above by 

( 2 )P/2 f(n/2) ( p + 2 )(n-p- 2)/2 [P + 2] 
B=- 1--- exp--. 

n r((n- p)/2) n 2 

Since p = 2r is even, it follows easily that 

(( ~)P/2 f(n/2) ) _ r ( _ 2j) 
log n r((n- p)/2) -~log 1 n 

r+l ( 2j) ( p+2) 7 log 1 - ---;;: - log 1 - -n- . 
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But 

r*l log( 1 - 2:) ~ for+ !log( 1 - 2: ) d:c 

so 

Therefore, 

Summarizing, we have: 

n-p-2 ( p+2) p+2 
= - 2 log 1 - -n- - -2-' 

( p + 2) log B ~ -log 1 - -n- . 

p+2 
B-1~---­

n-p-2 

PROPOSITION 7 .6. [Diaconis and Freedman (1987)]. If q = 1 and p ~ n - 4, 
then the variation distance between !f( /Ti .:l) and a N(O, Ip) distribution is 
bounded above by 2(p + 3)/(n- p- 3). 

PROOF. From inequality (7.6) when p is even, the variation distance is 
bounded above by 2(B- 1) which is bounded above by 2(p + 2)/(n- p- 2) ~ 
2(p + 3)/(n - p - 3). The easy argument extending the bound to odd p is 
given in Diaconis and Freedman (1987). 0 

When q > 1, similar bounds have been established by Diaconis, Eaton and 
Lauritzen (1987), but the details are substantially more gory. Here is one version 
of the bound: 

PROPOSITION 7.7. For p + q ~ n- 3 and t = min{p, q}, the variation dis­
tance between 2(/Ti.:l) and a N(O, IP 181 Iq) distribution is bounded above by 

where 

c= 
3t2 + 5t 

8 
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PROOF. See Diaconis, Eaton and Lauritzen (1987). D 

It is possible to bound 8n above by an expression of the form a(p + q + 2)/n 
(a is a constant) when (p + q + 2)/n is bounded away from 1. More explicitly, 
assume (p + q + 2)/n s y < 1 and set 

<t>(x) = 2[exp[ -clog(1- x)] - 1], 0 s x s y, 
where the constant c is given in Proposition 7.7. Because cp is increasing and 
convex on [0, y ], 

cp(x)< cp(y)x O~x~y. 
- y ' 

Setting a= a(y) = cp(y)jy yields the inequality 

p+q+2 p+q+2 
8n ~ a( y) , ~ Y. 

n n 

This bound is qualitatively the same as that given in Proposition 7 .6. 


