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An equation-by-equation (EBE) method is proposed to solve a system of nonlinear
equations arising from the moment constrained maximum entropy problem of
multidimensional variables. The design of the EBE method combines ideas
from homotopy continuation and Newton’s iterative methods. Theoretically, we
establish the local convergence under appropriate conditions and show that the
proposed method, geometrically, finds the solution by searching along the surface
corresponding to one component of the nonlinear problem. We will demonstrate
the robustness of the method on various numerical examples, including (1) a six-
moment one-dimensional entropy problem with an explicit solution that contains
components of order 100–103 in magnitude, (2) four-moment multidimensional
entropy problems with explicit solutions where the resulting systems to be solved
range from 70–310 equations, and (3) four- to eight-moment of a two-dimensional
entropy problem, whose solutions correspond to the densities of the two leading
EOFs of the wind stress-driven large-scale oceanic model. In this case, we
find that the EBE method is more accurate compared to the classical Newton’s
method, the MATLAB generic solver, and the previously developed BFGS-based
method, which was also tested on this problem. The fourth example is four-
moment constrained of up to five-dimensional entropy problems whose solutions
correspond to multidimensional densities of the components of the solutions of
the Kuramoto–Sivashinsky equation. For the higher-dimensional cases of this
example, the EBE method is superior because it automatically selects a subset of
the prescribed moment constraints from which the maximum entropy solution can
be estimated within the desired tolerance. This selection feature is particularly
important since the moment constrained maximum entropy problems do not
necessarily have solutions in general.
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1. Introduction

The maximum entropy principle provides a natural criterion for estimating the
least biased density function subjected to the given moments [14]. This density
estimation approach has a wide range of applications, such as the harmonic solid
and quantum spin systems [20], econometrics [26], and geophysical applications
[5; 13]. In a nutshell, this moment constrained method is a parametric estimation
technique where the resulting density function is in the form of an exponential of
polynomials. This is a consequence of maximizing the Shannon entropy subjected
to the polynomial moment constraints, which is usually transformed into an uncon-
strained minimization problem of a Lagrangian function [27]. Standard approaches
for solving this unconstrained minimization problem are based on Newton’s iterative
method [1; 27] or a quasi-Newton-based method such as the BFGS method [3; 4].

In the last two papers [3; 4], where the BFGS-based method was introduced
and reviewed, Abramov considered minimization problems that involve 44–83
equations, resulting from a two-dimensional problem with moment constraints of
up to order eight, a three-dimensional problem with moment constraints of up
to order six, and a four-dimensional problem with moment constraints of up to
order four. In this paper, we introduce a novel equation solver that can be used
to find density functions of moderately high-dimensional problems (e.g., systems
of 70–310 equations resulting from moments up to order four of four- to seven-
dimensional density functions) provided that the solutions exist. The proposed
method, which we called the equation-by-equation (EBE) method, is an iterative
method that solves a one-dimensional problem at the first iterate, a two-dimensional
problem at the second iterate, a three-dimensional problem at the third iterate,
and eventually solves the full system of nonlinear equations corresponding to the
maximum entropy problem at the last iterate. Technically, this method combines
Newton’s method with ideas from homotopy continuation. We will show that the
EBE method is locally convergent under appropriate conditions. Furthermore, we
will provide sufficient conditions for global convergence. Through the convergence
analysis, we will show that, geometrically, the proposed method finds the solution of
the nonlinear system of equations by tracking along the surface corresponding to one
component of the system of nonlinear equations. The EBE method automatically
selects a subset of the prescribed constraints from which the maximum entropy
solution can be estimated within the desired tolerance. This is an important feature
since the maximum entropy problems do not necessarily have solutions for general
sets of moment constraints.

We shall find that the EBE method produces more accurate solutions (smaller
error in the moments) compared to the classical Newton’s method, MATLAB’s
built-in fsolve, and BFGS method on the test problem in [3; 4] and on test problems
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based on the solutions of the Kuramoto–Sivashinsky equation. Numerically, we
will demonstrate that the EBE method is able to solve problems where the true
solutions consist of components of order 100–103. We shall also see that the EBE
method can solve a system of hundreds of equations in various examples, including
those with explicit solutions as well as those with densities estimated based on
solutions of complex spatially extended dynamical systems.

The remaining part of the paper is organized as follows. In Section 2, we give a
brief overview of the multidimensional maximum entropy problem. In Section 3,
we introduce the EBE algorithm. In Section 4, we provide the local convergence
analysis. In Section 5, we discuss the practical issues with the proposed method and
provide remedies. In Section 6, we demonstrate the robustness of the EBE method
on various numerical examples. In Section 7, we conclude the paper with a brief
summary and discussion. We include an Appendix to show some computational
details that are left out in the main text. Interested readers and users can access the
EBE codes (written in MATLAB) at [10].

2. An overview of the maximum entropy problem

We consider the Haussdorf moment-constrained maximum entropy problem [1;
4; 8]. That is, find the optimal probability density ρ∗(x) which maximizes the
Shannon entropy

S(ρ) := −
∫
�

log(ρ(x))ρ(x) dx, (1)

where x ∈�= [−1, 1]d satisfies the linear constraints

F j :=

∫
�

c j (x)ρ(x) dx = f j , | j | = 0, 1, 2, . . . , p. (2)

In applications, one usually computes the statistics f j from samples of data. For
arbitrary finite domain, one can rescale the data to the domain �.

While c j (x) can be arbitrary functions in L1(�, ρ), we will focus on the usual
uncentered statistical moments with monomial basis functions, c j (x) = x j in
this article, where we have adopted the notations x = (x1, . . . , xd) ∈ �, j =
( j1, . . . , jd)∈Zd

+
with Z+={0, 1, 2, . . . }, and x j

=
∏d

i=1 x ji
i . In (2), the quantities

f j are the given j -th moments that can be computed from the data. Since the total
number of monomials x j where | j | = j is C j+d−1

d−1 , then the total number of
constraints in (2) for moments up to order p is

n =
p∑

j=1

C j+d−1
d−1 ,

excluding the normalization factor corresponding to c0(x)= 1. For example, in a
two-dimensional problem, the total number of moments up to order p= 4 is n= 14.



192 WENRUI HAO AND JOHN HARLIM

To simplify the notation below, we will use a single index notation and understand
that the total number of constraints to be satisfied is n, excluding the zeroth moment.
The exclusion of the zeroth moment will be clear as we discuss below.

By introducing Lagrange multipliers, the above constrained optimization problem
can be transformed into the unconstrained problem

L(ρ(x), λ0, . . . , λn)= S(ρ)+
n∑

j=0

λ j (F j − f j ). (3)

In order to find a solution of (3), we set ∂L
∂ρ
= 0, which gives

ρ(x)=
1
Z

exp
( n∑

j=1

λ j c j (x)
)
, (4)

where we have defined Z = exp(1− λ0). Since
∫
�
ρ(x) dx = 1, we have

Z(λ1, . . . , λn)=

∫
�

exp
( n∑

j=1

λ j c j (x)
)

dx, (5)

which indicates that Z (or implicitly λ0) is a function of λ1, . . . , λn . Therefore,
the normalization factor Z can be computed via (5) once λ1, . . . , λn are estimated.
Therefore, we can just concentrate on finding the Lagrange multipliers λ1, . . . , λn

which satisfy n constraints in (2), excluding the case c0(x)= 1. In particular, the
constrained maximum entropy problem is to solve the nonlinear system of integral
equations

F j (λ1, . . . , λn) := F j (λ1, . . . , λn)− f j

=

∫
�

(c j (x)− f j ) exp
( n∑

k=1

λkck(x)
)

dx = 0, j = 1, . . . , n, (6)

for λ1, . . . , λn .
In our numerical implementation, the integral in system (6) will be approximated

with a nested sparse grid quadrature rule [9]∫
�

f (x) dx ≈
∑

i

f (xi )wi ,

where xi are the nested sparse grid nodes, and wi are the corresponding weights
based on the nested Clenshaw–Curtis quadrature rule [25]. The number of nodes
depends on the dimension of the problem d , and the number of the nested set (based
on the Smolyak construction [23]) is denoted with the parameter ` (referred to as
the level). In the numerical implementation, we need to specify the parameter `.
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3. An equation-by-equation algorithm

In this section, we describe the new equation-by-equation (EBE) technique to solve
the system of equations in (6),

Fn(λn)= 0, (7)

where we have defined

Fn(λn) := (F1(λn), . . . , Fn(λn)),

and λn = (λ1, . . . , λn). In the following iterative scheme, we start the iteration with
an initial condition (α1, . . . , αn) ∈ Rn . We define µ(i) ∈ Ri as the exact solution to
the i-dimensional system

Fi (λi , αi+1, . . . , αn)= 0, i = 1, . . . , n, (8)

where we have fixed the last n − i coefficients, λi+1 = αi+1, . . . , λn = αn . With
this notation, the exact solution for (7) is µ(n) ∈ Rn . We also define µ̂(i) to be the
numerical estimate of µ(i). With these notations, we now describe the algorithm.

Generally speaking, at each iteration i , where i = 1, . . . , n, the EBE algo-
rithm solves i-dimensional system in (8). At each step i , given the numerical
solution at the previous step µ̂(i−1)

∈ Ri−1 and initial condition αi , we apply an
idea from homotopy continuation to find the solution µ(i) ∈ Ri that solves the i-
dimensional system of equations (8). Notice that we do not only add a new equation
Fi (λi , αi+1, . . . , αn)= 0 but we also estimate the i-th variable in the previous i−1
equations Fi−1(λi , αi+1, . . . , αn)= 0. The scheme proceeds by solving the larger
systems one by one until i = n so we eventually solve (7).

Now let us describe how to numerically estimate µ(i) at every step i . For the
first step i = 1, we solve the one-dimensional problem

F1(λ1, α2, . . . , αn)= 0

for λ1 with Newton’s method. For the steps i = 2, . . . , n, we have µ̂(i−1) which are
the numerical estimates of Fi−1(λi−1, αi , . . . , αn)= 0. To simplify the expression
below, let us use Fi (λi−1, λi ) as a short-hand notation for Fi (λi−1, λi , αi , . . . , αn)

to emphasize the independent variables.
We proceed to estimate λi using Newton’s method with Tol1 on the i-th equation.

That is, we iterate

λm+1
i = λm

i −

(
∂Fi

∂λi
(λm

i−1, λ
m
i )

)−1

Fi (λ
m
i−1, λ

m
i ), m = 0, 1, . . . ,

λ0
i = αi , λ0

i−1 = µ̂
(i−1)

(9)
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assuming that ∂Fi
∂λi
(λm

i−1, λ
m
i ) 6= 0. Here, the partial derivative of Fi with respect

to λi evaluated at λm
i is defined as

∂Fi

∂λi
(λm

i−1, λ
m
i )=

∫
�

(ci (x)− fi )ci (x) exp
( i−1∑

j=1

λm
j c j (x)+ λm

i ci (x)
)

dx, (10)

where we have denoted λm
i−1 = (λ

m
1 , . . . , λ

m
i−1). Notice that to proceed the iteration

in (9), we need to update λm
i−1 for m > 0. We propose to follow the homotopy

continuation method for this update. In particular, we are looking for λm+1
i−1 that

solves Fi−1(λ
m+1
i−1 , λ

m+1
i ) = 0, given the current estimate λm+1

i from (9) as well
as Fi−1(λ

m
i−1, λ

m
i )= 0. At m = 0, this last constraint is numerically estimated by

Fi−1(µ̂
(i−1), αi )≈ 0.

One way to solve this problem is through the following predictor-corrector step
which is usually used in the homotopy continuation method [7; 24]. In particular,
we apply Taylor’s expansion to

Fi−1(λ
m+1
i−1 , λ

m+1
i )= Fi−1(λ

m
i−1+1λ, λ

m
i + (λ

m+1
i − λm

i ))= 0

at (λm
i−1, λ

m
i ), which gives

Fi−1(λ
m
i−1, λ

m
i )+ Fi−1,λi−1(λ

m
i−1, λ

m
i )1λ+ Fi−1,λi (λ

m
i−1, λ

m
i )(λ

m+1
i − λm

i )= 0,

which means that

1λ=−F−1
i−1,λi−1

(λm
i−1, λ

m
i )Fi−1,λi (λ

m
i−1, λ

m
i )(λ

m+1
i − λm

i ),

assuming that Fi−1,λi−1(λ
m
i−1, λ

m
i ) is invertible. Based on this linear prediction,

λm+1
i−1 is approximated by

λ̃m+1
i−1 = λ

m
i−1+1λ

= λm
i−1− F−1

i−1,λi−1
(λm

i−1, λ
m
i )Fi−1,λi (λ

m
i−1, λ

m
i )(λ

m+1
i − λm

i ). (11)

Subsequently, when ‖Fi (λ̃
m+1
i−1 , λ

m+1
i )‖ ≥ Tol2, apply a correction using Newton’s

method by expanding

0= Fi−1(λ
m+1
i−1 , λ

m+1
i )= Fi−1(λ̃

m+1
i−1 , λ

m+1
i )+ Fi−1,λi−1(λ̃

m+1
i−1 , λ

m+1
i )1λ̃,

assuming that λm+1
i−1 = λ̃

m+1
i−1 +1λ̃, to find that

λm+1
i−1 = λ̃

m+1
i−1 − Fi−1,λi−1(λ̃

m+1
i−1 , λ

m+1
i )−1 Fi−1(λ̃

m+1
i−1 , λ

m+1
i ). (12)

This expression assumes that Fi−1,λi−1(λ̃
m+1
i−1 , λ

m+1
i ) is invertible.

In summary, at each step i , we iterate (9), (11), and (12). So the outer loop i
corresponds to adding one equation to the system at the time, and for each i , we apply
an inner loop, indexed with m, to find the solution µ(i) for Fi (λi , αi+1, . . . , αn)= 0.
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We denote the approximate solution as µ̂(i). An adaptive tolerance technique is
employed to compute the initial guess of Fi by using Newton’s method. In particular,
when the current tolerance Tol2 is not satisfied after executing (12), then we divide
Tol1 by ten until Tol2 is met.

Recall that the standard Newton’s method assumes that the Jacobian Fn,λn ∈Rn×n

is nonsingular at the root of the full system in (6) to guarantee the local convergence.
In the next section, we will show that the EBE method requires the following
conditions for local convergence.

Assumption 1. Let µ(i) ∈ Ri be a solution of Fi (λi , αi+1, . . . , αn) = 0, for each
i = 1, . . . , n. The EBE method assumes the conditions

(1) ∂Fi
∂λi
(µ(i), αi+1, . . . , αn) 6= 0,

(2) Fi,λi (µ
(i), αi+1, . . . , αn) are nonsingular, and

(3) each component of Fi is twice differentiable in a close region whose interior
contains the solution µ(i).

These conditions are similar to the standard Newton’s assumptions on each
system of i equations. The smoothness condition will be used in the proof of
the local convergence in the next section. Of course if one can specify initial
conditions that are sufficiently close to the true solution, then one can simply apply
Newton’s method directly. With the EBE method, we can start with any arbitrary
initial condition. Theoretically, this will require an additional condition beyond
Assumption 1 for global convergence as we shall discuss in Section 4. In Section 5,
we will provide several remedies when the initial condition is not close to the
solution. In fact, we will always set the initial condition to zero in our numerical
implementation in Section 6, αi = 0 for all i = 1, . . . , n, and demonstrate that the
EBE method is numerically accurate in the test problems with solutions that are far
away from zero.

4. Convergence analysis

In this section, we study the convergence of this method. First, let’s concentrate on
the convergence of the iteration (9), (11), and (12) for solving the i-dimensional
system Fi (λi−1, λi , αi+1, . . . , αn) := Fi (λi−1, λi )= 0 for λi−1 and λi . In compact
form, these three steps can be written as an iterative map

(λm+1
i−1 , λ

m+1
i+1 )= Hi (λ

m
i−1, λ

m
i ), (13)

where the map Hi : R
i
→ Ri is defined as

Hi (λi−1, λi ) :=

(
gi − Fi−1,λi−1(gi , Hi,2)

−1 Fi−1(gi , Hi,2)

λi −
(
∂Fi
∂λi
(λi−1, λi )

)−1 Fi (λi−1, λi )

)
. (14)
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In (14), the notation Hi,2 denotes the second component of (14) and

gi := λi−1− Fi−1,λi−1(λi−1, λi )
−1 Fi−1,λi (λi−1, λi )(Hi,2− λi ) (15)

is defined exactly as in (11).
For notational convenience in the discussion below, we let the components of

the exact solution of (8) be defined as µ(i) := (µ(i)i−1, µ
(i)
i ) ∈ Ri . Here, we denote

the first i − 1 components as µ(i)i−1 = (µ
(i)
1 , . . . , µ

(i)
i−1) ∈ Ri−1. Similarly, we also

denote Hi = (Hi,1, Hi,2). First, we can deduce:

Theorem 4.1. Let µ(i) ∈ Ri be a fixed point of (13). Assume that F∗i−1,λi−1
:=

Fi−1,λi−1(µ
(i)) is nonsingular and ∂F∗i

∂λi
:=

∂Fi
∂λi
(µ(i)) 6= 0; then F∗i := Fi (µ

(i))= 0.

Proof. Evaluating the second equation in (14) at the fixed point, we obtain

µ
(i)
i = µ

(i)
i −

(
∂F∗i
∂λi

)−1

F∗i ,

which means that F∗i := Fi (µ
(i))= 0. This also implies that H∗i,2=µ

(i)
i , where H∗i,2

denotes the second component of (14) evaluated at the fixed point. Subsequently,

g∗i := gi (µ
(i)
i−1, µ

(i)
i )= µ

(i)
i−1.

Substituting H∗i,2 = µ
(i)
i and g∗i = µ

(i)
i−1 into µ(i)i−1 = H∗i,1, where H∗i,1 denotes

the first equation in (14) evaluated at the fixed point µ(i), we immediately obtain
F∗i−1 := Fi−1(µ

(i))= 0. �

This theorem says that the fixed points of (13) are indeed the solutions of

Fi (λi−1, λi , αi+1, . . . , αn)= 0,

which is what we intend to solve on each iteration i = 2, . . . , n. Next, we will
establish the condition for the fixed point to be locally attracting. This condition
will ensure that if we iterate the map in (14) with an initial condition that is close
to the solution, then we will obtain the solution.

For local convergence, we want to show that eigenvalues of the Jacobian matrix
D H∗i := D Hi (µ

(i)) are in the interior of the unit ball of the complex plane. One
can verify that the components of the Jacobian matrix D H∗i are given by

∂H∗i,1
∂λ j

=−(F∗i−1,λi−1
)−1 F∗i−1,λi

∂H∗i,2
∂λ j

, (16)

∂H∗i,2
∂λ j
= δ j,i −

(
∂F∗i
∂λi

)−1 ∂F∗i
∂λ j

, (17)

for j = 1, . . . , i , where we have used all three conditions in Assumption 1 (see
the Appendix for the detailed derivation). Here, δ j,i is one only if j = i and zero
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otherwise. To simplify the discussion below, let’s define the notations

J := F∗i−1,λi−1
,

v := F∗i−1,λi
,

c :=
(
∂H∗i,2
∂λ1

, . . . ,
∂H∗i,2
∂λi−1

)> (18)

such that

D H∗i+1 =

(
J−1vc> 0

c> 0

)
∈ Ri×i . (19)

We can now obtain the following result.

Theorem 4.2. Let µ(i) ∈ Ri be a fixed point of (13) such that the conditions in
Assumption 1 are satisfied. Let σ j (F∗i−1,λi−1

) be the eigenvalues of F∗i−1,λi−1
, and

assume that they satisfy the order |σ1| ≥ |σ2| ≥ · · · ≥ |σi−1|. If∣∣∣∣(∂F∗i
∂λi

)−1 i−1∑
j=1

∂F∗j
∂λi

∂F∗i
∂λ j

∣∣∣∣< |σi−1(F∗i−1,λi−1
)|, (20)

then µ(i) is locally attracting.

Proof. From (19), we only need to analyze the eigenvalues of J−1vc>. From basic
matrix theory, recall that the magnitude of the largest eigenvalue can be bounded
above as

|σ1(J−1vc>)| = ‖J−1vc>‖2 ≤ ‖J−1
‖2‖vc>‖2,

where ‖ · ‖2 denotes the matrix `2-norm. For the fixed point to be locally attracting,
all of the eigenvalues of J−1vc> have to be in the interior of the unit ball in the
complex plane. This means that we only need to show that ‖J−1

‖2‖vc>‖2 < 1
or ‖vc>‖2 < |σi−1(J )|, where σi−1(J ) denotes the smallest eigenvalue of the
(i − 1)× (i − 1) matrix J following the ordering in the hypothesis.

Since Tr(vc>)=
∑i

j=1 σ j (vc>) and vc> is a rank-one matrix, then its nontrivial
eigenvalue is given by

σ(vc>)= Tr(vc>)=
i−1∑
j=1

∂F∗j
∂λi

∂H∗i,2
∂λ j
=−

i−1∑
j=1

∂F∗j
∂λi

∂F∗i
∂λ j

(
∂F∗i
∂λi

)−1

,

where we have used the definitions in (18) and the second component in (17). From
the assumption in (20), we have

‖vc>‖2 = |σ(vc>)| =
∣∣∣∣(∂F∗i
∂λi

)−1 i−1∑
j=1

∂F∗j
∂λi

∂F∗i
∂λ j

∣∣∣∣< |σi−1(J )|. �
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This theorem provides the conditions for local convergence on each iteration i . In
particular, if the hypothesis in Theorem 4.2 is satisfied, we will find the solutions to
(8) by iterating (13) provided that we start with a sufficiently close initial condition.
Notice also that this condition suggests that in practice the local convergence will
be difficult to satisfy if the Jacobian matrix Fi−1,λi−1 is close to singular. With these
two theorems, we can now establish:

Theorem 4.3. Let µ(n) ∈ Rn be the solution of the n-dimensional system of equa-
tions in (7). We assume the hypothesis in Theorem 4.2; then the EBE method is
locally convergent.

Proof. Choose an initial condition (α1, . . . , αn) that is sufficiently close to the
solution µ(n) of Fn(λn) = 0. First, let us define the surface F1(λ1, . . . , λn) = 0
as Mn; here, the dimension of Mn is at most n− 1. Subsequently, we define the
surfaces F2(λn) = 0 as Mn−1, F3(λn) = 0 as Mn−2, and so on. The dimension
of M j is at most j − 1. We assume that Fn(λn)= 0 has at least one solution; then
M1 contains the solution µ(n). It is clear that Mn ⊃Mn−1 ⊃ · · · ⊃M1.

For i = 1, we solve F1(λ1, α2, . . . , αn)= 0 for λ1. Geometrically, we look for
the first coordinate on the surface Mn . From Assumption 1(2), we have the local
convergence of the usual Newton’s iteration. If α1 is sufficiently close to the solution
µ(1) = µ

(1)
1 ∈ R, as m→∞ we obtain the solution (µ(1)1 , α2, . . . , αn) ∈ Mn . By

the smoothness assumption, (µ(1)1 , α2, . . . , αn) is also close to µ(n).
Continuing with i > 1, we want to solve Fi (λi , αi+1, . . . , αn)= 0 for λi . Numeri-

cally, we will apply the iterative map Hi in (13) starting from (µ(i−1), αi , . . . , αn)∈

Mn−i+2. By Assumption 1(2), the Jacobian Fi−1,λi−1(µ
(i−1), αi , . . . , αn) is non-

singular, so by the implicit function theorem, for any local neighborhood V of
µ(i−1), there exists a neighborhood U of αi and a C1 function hi−1 :U → V such
that µ(i−1)

= hi−1(αi ) and Fi−1(hi−1(λi ), λi , αi+1, . . . , αn) = 0 for all λi ∈ U .
Since the initial condition αi is close to µ(n)i , by the smoothness assumption
it is also close to µ(i)i that solves Fi (λi , αi+1, . . . , αn) = 0. The continuity of
hi−1 on U means that (µ(i)i−1, µ

(i)
i ) ∈ V × U . Geometrically, this means the

surface Fi (λi , αi+1, . . . , αn) = 0 intersects with the curve λi−1 = hi−1(λi ) at
µ(i) = (µ

(i)
i−1, µ

(i)
i ). Therefore, we can find the solution for this i-dimensional

system by tracking along the curve λi−1 = hi−1(λi ) where we consider λi as an
independent parameter. The iterative map Hi in (14) is to facilitate this tracking,
and the conditions in Theorem 4.2 guarantee convergence to the solution. Notice
that during this iteration, the solution remains on Mn−i+2. The solution for this
i-dimensional problem is (µ(i), αi+1, . . . , αn) ∈Mn−(i+1)+2 ⊂Mn−i+2 ⊂ · · · ⊂Mn .
Continuing with the same argument, we find that for i = n, µ(n) ∈M1 ⊂Mn . �

This iterative procedure finds the solution by searching along the manifold
Mn in the direction of the hypersurfaces of a single parameter at a time, whose
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local existence is guaranteed by Assumption 1. It is clear that after each step i ,
the estimated solution may not necessarily be closer to the true solution since the
estimates do not minimize the closest path to the true solution along the manifold Mn

(or the geodesic distance). This means that, locally,

‖(µ(i+1), αi+2, . . . , αn)−µ
(n)
‖ ≤ ‖(µ(i), αi+1, . . . , αn)−µ

(n)
‖

for i < n− 1 is not true.
In practice, when initial conditions are not close to the solution, the (global)

convergence of EBE requires the additional condition that, for every i , there exists
a nonempty connected set that contains (µ(i), αi+1) and µ(i+1) such that Fi,λi

evaluated at any point in this set is nonsingular. The existence of this set will allow
us to build a path to connect these two points that are far apart. If this condition
is not met, we need an additional treatment to overcome this issue which will be
discussed in the next section.

5. Practical challenges

In this section, we will discuss several practical challenges related to our algorithm
with remedies. They include nonlocality of the initial condition, mistracking due to
multiple solutions, nonexistence of solutions within the desired numerical tolerance,
and the computational complexity.

Adaptive tracking. As we mentioned in the previous section, the EBE method only
converges locally, which means that it requires an adequate initial condition which is
practically challenging. In our numerical simulations below, in fact, we always start
from zero initial condition, αi = 0 for all i = 1, . . . , n. In this case, notice that even
when we obtain an accurate solution at step i , that is, Fi (µ̂

(i))≈ 0, as we proceed
to the next iteration, |Fi+1(µ̂

(i), αi+1)| � 0, meaning that (µ̂(i), αi+1) is not close
to the solution µ(i+1). Even when ∂Fi+1

∂λi+1
(µ̂(i), αi+1) is not singular, according to (9),

λm+1
i could be very far away from λm

i . In this case, Newton’s method could fail in
(12) because the initial guess could be very far from the solution.

As a remedy, we employ an adaptive tracking on λi to guarantee that the appli-
cation of Newton’s method is within its zone of convergence for each predictor-
corrector step. The idea of the adaptive tracking is that we cut the tracking step,
1λi := λi+1−λi , by half until the prediction-correction step in (11)–(12) converges.
The algorithm is outlined in Algorithm 1.

Bifurcation. In order to solve Fi (λ1, λ2, . . . , λi )= 0, we track Fi−1(λi−1, λi )= 0
along λi as a parameter. During this parameter tracking, we may have some
bifurcation points of λi for the nonlinear system Fi−1(λi−1, λi )=0. This means that
the Jacobian Fi−1,λi−1(λi−1, λi ) is rank deficient such that Fi−1(λi−1, λi )= 0 has
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Input minimum step size λmin and threshold value of Tol.
Compute 1λi by using Newton’s method to solve Fi = 0.
Set Final=1λi .
while |Final|> 0 do

Solve Fi−1(λi−1, λi +1λi )= 0 by using Newton’s method.
if Newton’s method fails then

1λi =1λi/2
if 1λi < λmin then

Discard the i-th equation.
end

else
Final= Final−1λi

1λi =min{1λi ,Final}
end

end

Algorithm 1. Summary of adaptive tracking algorithm.

Figure 1. Plot of Fi (λi ) versus λi . There are two bifurcation branches for the nonlinear
system Fi−1(λi−1, λi ) = 0. The left part is a mistracking example; the right part is the
illustration of a numerical method to avoid the bifurcation point.

multiple solutions λi−1 for a given λi . In this situation, Fi has multiple realization
functions of λi . See the illustration in Figure 1 where the bifurcation point is the
intersection of the two possible realizations of Fi . In this illustration, the goal is
to track along the red branch to find the root, Fi (λi )= 0. As we get closer to the
bifurcation point, the Jacobian Fi−1,λi−1(λi−1, λi ) is singular such that we can’t
evaluate (11). Intuitively, the existence of multiple solutions near the bifurcation
point induces a possibility of mistracking from the red curve to the green curve (as
shown by the arrows), which prohibits one from finding the solution.

To avoid such mistracking, we apply the deflation technique to compute the
bifurcation point directly [12; 16]. Once the bifurcation point is estimated, we
approximate the correct branches using Richardson extrapolation to avoid mistrack-
ing. Denoting the bifurcation point as λ∗i , the nonlinear system Fi−1(λi−1, λi )= 0
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is difficult to solve when λi is close to λ∗i since the Jacobian of Fi−1(λi−1, λi )

becomes near singular. If the last attempt is (λ̃i−1, λ̃i ), we compute (λ∗i−1, λ
∗

i ) by
solving the deflated system

G(λ∗i−1, λ
∗

i , v)=

 Fi−1(λi−1, λi )

Fi−1,λi−1(λi−1, λi )v

ξ>v− 1

= 0,

where v is the kernel of Fi−1,λi−1(λi−1, λi ) and ξ is a random vector to guarantee
that v is not a zero eigenvector. In this case, G(λ∗i−1, λ

∗

i , v) is well conditioned [12;
16]. Once the bifurcation point (λ∗i−1, λ

∗

i ) is estimated, we can avoid mistracking
by setting λi = 2λ∗i − λ̃i and solve Fi−1(λi−1, λi )= 0 by using Newton’s method
with an initial guess 2λ∗i−1− λ̃i−1 (which is a Richardson extrapolation).

Nonexistence of solutions. In general, the moment constrained maximum entropy
problems may not necessarily have solutions. Even when the solutions exist theoret-
ically, they could be difficult to find numerically due to the noisy dataset, error in the
numerical integration, etc. In this case, we simply discard the equation Fi when the
minimum is larger than the desired tolerance. This feature (discarding the constraints
that give no solutions) is only feasible in the EBE algorithm. However, some theories
are needed to preserve the convexity of the polynomials in the exponential term of (4)
while discarding some of these constraints. In our numerical simulations below, we
handle this issue by reordering the constraints. In particular, for a problem with mo-
ment constraints up to order four, we include the constraints corresponding to E[x4

i ],
i = 1, . . . , d , in the earlier step of the EBE iterations to avoid these constraints being
discarded. Note that this method is sensitive to ordering, that is, different ordering
of constraints yields different paths to compute the solution. Therefore, a systematic
ordering technique that simultaneously preserves the convexity of the polynomial
in the exponential term of (4) is an important problem to be addressed in the future.

Computational complexity. The most expensive computational part in EBE is the
numerical evaluation of (6). For a fast numerical integration, we store the monomial
basis c j (x) as a matrix of size N` × n, where N` is the number of sparse grid
points and n is number of monomial basis. In this case, the computational cost in
evaluating F j is (2 j+1)N` ( j−1 additions, j+1 multiplications, and 1 subtraction
for each grid point), excluding the computational cost for exponential function
evaluation, which is on the order of log2 m to obtain an error of resolution 2−m

[6]. For the i-th iteration of the EBE algorithm, the computational cost to evaluate
the i-dimensional system Fi is

∑i
j=1(2 j + 1)N` = 1

2(i
2
+ i)N`, excluding the

exponentiation.



202 WENRUI HAO AND JOHN HARLIM

6. Numerical results

In this section, we show numerical results of the EBE method on five examples. In
all of the simulations below, unless stated, we set the Newton’s tolerance Tol1=10−1

and the predictor tolerance Tol2 = 10−10. In the first test example, we will describe
how the EBE method works on each iteration. The goal of the second example
is to demonstrate the global convergence with solutions that are far away from
initial condition, α j = 0. In particular, we will test the EBE method on a problem
with solutions, λ j , that have magnitudes ranging from orders 100–103. In this
example, we will show the robustness of the estimate as a function of the number
of integration points (or the sparse grid level `). The third example demonstrates
the performance on high-dimensional problems (with 70≤ n ≤ 310 of order one
hundred), induced from order-four moments of four- to seven-dimensional density
functions. While these first three examples involve estimating densities of the
form (4), in the next two examples, we also test the EBE method to estimate
densities from a given data set where the maximum entropy solutions may or may
not exist. The first data-driven problem is to estimate densities of the first two
leading EOFs of the wind stress-driven large-scale oceanic model [3; 4]. The
second data-driven problem is to estimate two- to five-dimensional densities arising
from solutions of the Kuramoto–Sivashinsky equation. In these two problems, we
compare our method with the classical Newton’s method, the MATLAB built-in
solver fsolve, and the previously developed BFGS-based method [3; 4].

Example 1. We consider a simple example ρ(x)∝ exp(x+x2
+x3) for x ∈ [−1, 1]

so that the exact solution is λ= (1, 1, 1). Here, the moments f j can be computed
numerically by

f j =

∫ 1
−1 x jρ(x) dx∫ 1
−1 ρ(x) dx

for i = 1, 2, 3.

In order to numerically integrate both the denominator and numerator, we used
a regular one-dimensional sparse grid of level `= 7 (the number of nodes is 65).
Our goal here is to illustrate the method and to show the trajectory of the solutions
after each iteration of the inner loop m and outer loop i . In Figure 2, we show
the surface of F1(λ1, λ2, λ3) = 0 (gray). For i = 1, we solve F1(λ1, 0, 0) = 0;
after three iterations (m = 3) the solution converges to λ1 = 2.3 (see Table 1). For
i = 2, we start with this solution and introduce the second variable λ2 for solving
the second equation F2(λ1, λ2, 0)= 0 with constraint F1(λ1, λ2, 0)= 0. Here, the
solution follows the path λ1= h1(λ2) thanks to the implicit function theorem (black
curve). Numerically, a sequence of (green) points following this path converges
to a point that satisfies F1(λ1, λ2, 0) = F2(λ1, λ2, 0) = 0 (the green point in the
intersection between black and red curves in Figure 2). In the next iteration i =3, we
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Figure 2. The illustration of Example 1. The black curve is λ1 = h1(λ2), the green points
are the iterations when we solved F1(λ1, λ2, 0)= 0, the red curve is (λ1, λ2)= h2(λ3),
the blue points are the iterations when we solved F1(λ1, λ2, λ3) = F2(λ1, λ2, λ3) = 0,
and the cyan point is the numerical solution.

m ↓ i→ 1 2 3

0 (0, 0, 0) (2.30, 0, 0) (1.58, 1.43, 0)
1 (1.76, 0, 0) (2.23, 0.22, 0) (1.52, 1.38, 0.26)
2 (2.23, 0, 0) (1.87, 0.57, 0) (1.12, 1.09, 0.76)
3 (2.30, 0, 0) (1.67, 1.21, 0) (1, 1, 1)
4 (1.58, 1.43, 0)

Table 1. The coordinate of the solutions of Example 1 for each iteration, starting from
(0, 0, 0). For each outer loop i , the EBE takes few iterates (m) to find the i-dimensional
solution, fixing λ j = α j = 0 for j > i .

introduce the third variable λ3 for solving the third equation F3(λ1, λ2, λ3)= 0 with
constraints F1(λ1, λ2, λ3)= F2(λ1, λ2, λ3)= 0. By the implicit function theorem,
we have (λ1, λ2)= h2(λ3) that satisfies F1(h2(λ3), λ3)= F2(h2(λ3), λ3)= 0, which
is shown by the red curve in Figure 2. On this red curve, we have a sequence of
(blue) points which converges to the solution of the full system (cyan point shown
in Figure 2). The coordinate of the solution on each iteration is shown in Table 1.
Notice that the solutions always lie on the surface F1(λ1, λ2, λ3)= 0.

Example 2. We consider a one-dimensional example with up to order-six moment
constraints with explicit solution given by

ρ(x)∝ exp(2x + 16x2
+ 24x3

+ 96x4
− 256x5

− 1024x6),

as shown in Figure 3. This example is a tough test problem since the solution,
λ = (2, 16, 24, 96,−256, 1024), has components of order 100–103. Following
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Figure 3. The unnormalized density ρ(x) in Example 2.

Example 1, we compute the moments fi by using a one-dimensional sparse grid of
level ` = 7 (65 nodes). The EBE algorithm converges to the exact solution with
error ‖λ−λ∗‖ = 5.44× 10−13. Since the numerical experiment is performed with
an initial condition α j = 0 that is far from the solution, this result demonstrates a
global convergence of the EBE method.

Next, we investigate the sensitivity of the estimates to the number of sparse
grid points used in approximating the integral. In our numerical experiments, we
estimate the true moments fi using a one-dimensional sparse grid of level `= 20
(524 289 nodes) and feed these moment estimates into the EBE algorithm. In
Figure 4, we show the error in λ (with `2-metric) for different levels of the sparse
grid from 6 to 15 that are used in the EBE method. Notice that the error decreases
as a function of ` and the improvement becomes negligible for ` > 8.

6 7 8 9 10 11 12 13 14 15

level of sparse grid

10
-10

1

10
3

||
λ

-
λ

*
||

Figure 4. The solution error as a function of the number of sparse grid.
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Methods Order
4 6 8

BFGS algorithm with uniform grid 4.07× 10−2 1.45× 10−4 1.14× 10−2

EBE algorithm with uniform grid 1.27× 10−11 9.84× 10−15 7.75× 10−13

EBE algorithm with sparse grid 7.54× 10−12 8.12× 10−15 2.43× 10−13

MATLAB fsolve with sparse grid 4.70× 10−7 1.19× 10−4 1.74× 10−4

Newton with sparse grid 5.12× 10−11 divergence divergence

Table 2. Summary of solutions for Example 4: moment errors for different algorithms
with different grids.

Example 3. In this example, we consider a d-dimensional example with an explicit
solution,

ρ(x)∝ exp(−2x4
1 + x3

2 − x4
2 − x4

3 − 1.8x4
4),

on domain �= [−1, 1]d where we will vary d = 4, . . . , 7. For these simulations,
we consider up to order-four moment constraints and fix the sparse grid level `= 8
to compute the integration.

Here, the EBE method is able to estimate λ with `2-errors of order 10−13 (the
error in λ is 1.11× 10−13 and moments error is 3.15× 10−15). In this computation,
the dimensions of the nonlinear system are 70 for d = 4, 126 for d = 5, 210 for
d = 6, and 310 for d = 7. Here, the EBE method is able to recover the true density
even if we prescribe more constraints, corresponding to d larger than four.

Example 4. Next, we consider estimating a two-dimensional probability density
of the two leading empirical orthogonal functions of a geophysical model for a
wind stress-driven large-scale oceanic model [18; 19]. This is exactly the same test
example as in the previously developed BFGS-based method [3; 4]. In fact, the
two-dimensional density that we used here was supplied by Rafail Abramov. First,
we compare the EBE method with the BFGS algorithm of [3], whose code can be
downloaded from [2]. In this comparison, we use the same uniformly distributed
grid points where the total number of nodes is 85×85= 7 225. We set the Newton’s
tolerance of the EBE algorithm to be 10−10. In Table 2 notice that the moment
errors of the EBE are much smaller compared to those of the BFGS method.

While the EBE is superior compared to BFGS, we should note that the BFGS
method does not use the Hessian of Fi whereas the EBE does. For a fair compari-
son, we include results using the MATLAB built-in function fsolve, whose default
algorithm is the trust-region-dogleg (see the documentation for detail [17]). In our
numerical implementation, we apply fsolve with a specified Hessian function Fn .
We also include the classical Newton’s method with a specified Hessian function Fn .
In this comparison, we use the same sparse grid of level `= 11 (or 7 169 nodes) to
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Figure 5. The 2D measured probability density functions supplied by R. Abramov (first
row), and PDFs computed by the EBE method (second row), BFGS algorithm (third row),
and the MATLAB fsolve function (fourth row).

compute the two-dimensional integral. Notice that the EBE method is still superior
compared to these two schemes as reported in Table 2. In fact, Newton’s method
does not converge for higher-order moment constraints. The joint two-dimensional
PDFs are shown in Figure 5. The first row is the two-dimensional density function
provided by R. Abramov. The second row shows the EBE estimates using up to
order-four, -six, and -eight moment constraints. The third and fourth rows show the
BFGS and MATLAB fsolve estimates, respectively.

Example 5. In this example, we consider estimating multidimensional densities
of the solutions of the Kuramoto–Sivashinsky equation. Here, the solutions are
integrated with a fourth-order time-differencing method on 128 equally spaced grid
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d EBE method fsolve Newton

2 1.098× 10−15 9.779× 10−7 8.128× 10−14

3 4.29 × 10−13 3.150× 10−2 divergence
4 1.19 × 10−14 0.021 divergence
5 2.47 × 10−11 0.018 divergence

Table 3. Summary of solutions for Example 5.
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Figure 6. The comparison of the density functions obtained by the EBE algorithm, the
MATLAB fsolve function, Newton’s method, and the kernel density estimate (denoted as
the measured PDF) for the two-dimensional case.

points over a domain of [0, 32π ] as in [15]. We use initial condition u(x, 0) =
cos(x/(16ξ))(1 + sin(x/16)), with ξ ∼ U [0, 1] and integration time step 0.25.
The data is generated by integrating 10 000 time steps. Based on this data set,
we randomly select d components and estimate the d-dimensional joint density
associated to these components. For visual comparison, we also show the results
from a two-dimensional kernel density estimation method [22; 21] as a reference.
Numerically, we use the MATLAB built-in function, ksdensity. Note that the BFGS
algorithm [3] does not work on this data set while the classical Newton’s method
only converges for the two-dimensional case. We also show the corresponding
results with the MATLAB fsolve with specified Hessian function as in the previous
example. The moment errors of these three schemes are reported in Table 3.
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Figure 7. The comparison of the two-dimensional marginal density functions obtained
by the MATLAB fsolve function (first column), the EBE algorithm (second column) that
solves a three-dimensional problem accounting for up to order-four moment constraints,
and the two-dimensional kernel density estimate (third column).

In Figure 6, we show the two-dimensional density estimated by the EBE algorithm
compared to those from fsolve, the classical Newton’s method, and the 2D kernel
density estimate. For the two-dimensional case, the resulting densities are visually
identical although the corresponding moment error of the EBE method is still the
smallest compared to Newton’s and the MATLAB fsolve (see Table 3). In Figure 7,
we show the contour plot of the two-dimensional marginal densities obtained from
solving the three-dimensional problem given four-moment constraints with the
EBE method and the MATLAB fsolve. For diagnostic purposes, we also provide
the corresponding contour plots of the two-dimensional kernel density estimates.
Notice that the MATLAB fsolve produces a completely inaccurate estimate. The
EBE method produces an estimate that qualitatively agrees to the corresponding
two-dimensional KDE estimates. The slight disagreement between these estimates
is expected since we only provide up to order-four moment information.

In Figure 8, we show the results for the four-dimensional problem. We do not
show the estimate from the MATLAB fsolve since it is not accurate at all. Here, we
include more than four-order moments. Specifically, the total number of constraints
for up to order-four moments is 70 while this result is based on 87 constraints,
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Figure 8. The comparison of the two-dimensional marginal density functions obtained
by the EBE algorithm (first column) that solves a four-dimensional problem accounting
for more than order-four moment constraints (see text for detail) and the two-dimensional
kernel density estimate (second column).

including 17 additional higher-order moment constraints that include order-six
moments, E[x6

i ], i = 1, . . . , 4. See the movie of the density estimates for each
iteration in the supplementary material [11]. Notice that the marginal densities
estimated by the EBE look very similar to those estimated by the two-dimensional
kernel density estimation. If more constraints are included, we found that we lose
the convexity of the polynomial terms in (4). As we mentioned before, we need
better criteria to preserve the convexity of the solutions.
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Figure 9. The comparison of the two-dimensional marginal density functions obtained by
the EBE algorithm (first column) that solves a five-dimensional problem accounting for
the automatically selected 91 out of the prescribed 125 moments, and the two-dimensional
kernel density estimate (second column).

In Figure 9, we include the result from a five-dimensional simulation. We also
do not show the estimate from the MATLAB fsolve since it is not accurate at all. In
this five-dimensional case, the EBE method automatically discards 34 equations
(moment constraints). In this case, we suspect that either the maximum entropy
solution that accounts for all of the constraints does not exist or the EBE method
cannot find the solution. Here, the EBE method just estimates the best-fitted solution
within the tolerance of 10−10 by solving 91 out of 125 moment constraints.
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7. Summary

In this paper, we introduced a novel equation-by-equation algorithm for solving
a system of nonlinear equations arising from the moment constrained maximum
entropy problem. Theoretically, we have established the local convergence and
provided a sufficient condition for global convergence. Through the convergence
analysis, we understood that the method, geometrically, finds the solution by search-
ing along the surface corresponding to one component of the nonlinear equations.
Numerically, we have demonstrated its accuracy and efficiency on various examples.
In one of the examples, we found that the EBE algorithm produces more accurate
solutions compared to the previously developed BFGS-based algorithm which does
not use the Hessian information [3; 4]. In this same example, we also found that
the EBE is superior compared to two schemes that use the Hessian information,
including the current MATLAB built-in solver which uses the trust-region-dogleg
algorithm and the classical Newton’s method.

We also found that the proposed EBE algorithm is able to solve a system of
70–310 equations when the maximum entropy solution exists compared to the
previously developed BFGS method which was shown to work for a system of
size 44–83 equations. On the Kuramoto–Sivashinsky example, the EBE method is
able to reconstruct the density of a four-dimensional problem accounting for up to
order-four moments (or 70 constraints). In this case, we showed that the estimate is
improved by accounting for 17 additional constraints of order-six moments. For
the five-dimensional problem with moments up to order four, the EBE method
reconstructs the solution within the desired precision, 10−10, by automatically
selecting a subset of 91 constraints from the total prescribed 125 constraints induced
by moments of up to order four.

While the automatic constraint selection is a desirable feature since the maximum
entropy solutions within the tolerance may not be easily estimated (nor theoretically
available), further study is required to fully take advantage of this feature. In particu-
lar, an important open problem is to develop a mathematical theory for ordering the
constraints since the path of the solution is sensitive to the order of the constraints.
Simultaneously, the ordering of the constraints needs to preserve the convexity of the
polynomials in the exponential term of (4). We should stress that the EBE method is
computationally not the most efficient method since it is designed to avoid singular-
ities by tracking along the surface corresponding to one component of the nonlinear
equations. Therefore, a more efficient EBE method will be one of future goals.

Appendix: The detailed calculation of the Jacobian of the map Hi

In this appendix, we will give the detailed computation for the Jacobian of the
map Hi in (14) evaluated at µ(i), the solution of Fi (λi , αi+1, . . . , αn)= 0. Recall
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that for Hi = (Hi,1, Hi,2) in (14),

Hi,1(λi )= gi − Fi−1,λi−1(gi , Hi,2)
−1 Fi−1(gi , Hi,2),

Hi,2(λi )= λi −

(
∂Fi

∂λi
(λi )

)−1

Fi (λi ),

where gi : R
i−1
→ Ri−1 is defined as in (15).

To take another derivative of Hi,1 with respect to λ j , we use the fact that if
Fi−1,λi−1 is a nonsingular matrix, then

∂

∂λ j
(Fi−1,λi−1)

−1
= (Fi−1,λi−1)

−1 ∂Fi−1,λi−1

∂λ j
(Fi−1,λi−1)

−1,

and the Hessian
∂F∗i−1,λi−1

∂λ j
is well defined, which are Assumption 1(2)–(3). We can

deduce that for j = 1, . . . , i ,

∂Hi,1

∂λ j
=
∂ gi

∂λ j
− (Fi−1,λi−1)

−1(Fi−1,λi−1)
−1 ∂Fi−1,λi−1

∂λ j
(Fi−1,λi−1)

−1 Fi−1

− (Fi−1,λi−1)
−1
(

Fi−1,λi−1

∂ gi

∂λ j
+
∂Fi−1

∂λi

∂Hi,2

∂λ j

)
, (21)

∂Hi,2

∂λ j
=
∂λi

∂λ j
−

∂

∂λ j

(
∂Fi

∂λi

)−1

Fi −

(
∂Fi

∂λi

)−1
∂Fi

∂λ j
. (22)

Evaluating these two equations at µ(i) and using the fact that F∗i := Fi (µ
(i))= 0,

the second terms in the right-hand-side of (21)-(22) vanish and we have

∂H∗i,1
∂λ j

=
∂ g∗i
∂λ j
− (F∗i−1,λi−1

)−1
(

F∗i−1,λi−1

∂ g∗i
∂λ j
+
∂F∗i−1

∂λi

∂H∗i,2
∂λ j

)
=−(F∗i−1,λi−1

)−1
(
∂F∗i−1

∂λi

∂H∗i,2
∂λ j

)
,

∂H∗i,2
∂λ j
= δ j,i −

(
∂F∗i
∂λi

)−1 ∂F∗i
∂λ j

.

where δ j,i is one only if j = i and zero otherwise.
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