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1. Introduction

At a recent colloquium on combinatorial structures. H. Kamps and J. van Lint
presented a paper [2] on the minimal number of rooks g (n, k) required to
“cover”” a generalized chessboard; the latter is represented by Rj. the set of
n vectors (or cells) with components in the ring of integers mod k. To explain
the notion of “‘cover’” we first define the Hamming distance dy(x. y) between
two vectors (‘‘squares’” of the chessboard) as the number of components in
which they differ; under the metric dy, the board R} is a metric space. The
familiar chessboard is R3. Then the rook domain or region covered by a rook
at x is the unit sphere

(1.1) B(x, 1) = {y € Rf|du(x.y) < 1}.

Kamps and van Lint gave the following table of o(n, k) which represents
almost all the known results to date for the above deterministic problem.

TABLE I

K~NowN VALUES OF o(n. k)

" 3 4 5 6 7 8 13
k
2 2 4 7 12 16 23
3 5 9 33 310
4 8 24 43
5 13 54
6 18 72
7 25 78
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The only general results known (see their references) are

(1.2) o(2. k) = k.
(1.3) (3. k) = [(k* + 1)/2].
where [2] = integer part of x, and

k"
14 -
(14) o k) = Tk = 1)

for n > 3, provided

(a) the right side of (1.4) is an integer and

(b) the integer k is the power of a prime.

For example, from (1.4), ¢(4,3) = 9 and from (1.3), we have ¢(3.3) = 5.
Many values of o(n, k) were computed by R. Stanton [4]. Stanton and J.
Kalbfleisch [5], [6]. and others.

We consider two stochastic versions of the rook coverage problem. Rooks
are placed in cells (vectors) sequentially and independently with uniform proba-
bilities. We consider the distribution (in particular, the expectation) of the
number of rooks Y required to cover R} for the first time. In the multinomial
case (case M ), the cells have constant probability £ ~" and repetition of occupancy
is permitted. In the hypergeometric case (case H) each successive occupancy is
permitted only in one of the currently unoccupied cells, with uniform probability
over these cells.

By introducing the stochastic version of the problem, we feel that the problem
has been broadened in an interesting and nontrivial manner. Indeed, although
the deterministic problem is trivial for » = 2. the corresponding stochastic
problem is by no means trivial. Moreover. it is hoped that the more general
approach used in the stochastic version would lead to further extensions in the
deterministic version, especially in the case of higher dimensions.

2. Exact solution for the multinomial case with n = 2

Consider a two dimensional k x k chessboard. For case M, let Y, denote
the random number of rooks required to cover the & x &k board and let y denote
values of Y},. The event ‘‘covering a row (column)’ is equivalent to “‘occupying
a row (column).”

Coverage of the board R} is characterized by occupancy either of all the rows
or of all the columns. We also use the fact that for any given number of rooks N
the number of rows occupied is independent of the number of columns occupied.
Finally. occupancy of rows (similarly for columns) is a direct consequence of
of the classical Maxwell-Boltzmann statistics (see. for example, p. 59 of Feller
[1]). In particular, the probability that all k rows are occupied by 2 randomly
placed rooks is given exactly by

k k x
(2.1) F (x) = ago (—1)“(a> (1 - %)
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and the same result holds for columns. By virtue of the independence of row and
column occupancy, the cumulative distribution function (c.d.f.) G, (y) of Yy, is
given by

(2.2) Gily) =1 —[1 — F(y)]*

The corresponding probability law g, (y) of Y, is obtained by taking differences
in equation (2.2). Expectations are then obtained from g, (y) or by summing the
complement of G (y) overy = 0:this yields the two equivalent exact expressions

BRG]
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kD o j=1 k* — i

E{Yy}

(2.3)

both of which are useful for computing (see Table II).

3. Exact solution of the hypergeometric case for n = 2

Here rooks are placed one at a time, independently., and with uniform
probability in the unoccupied cells. This case requires extensive modification
of the solution strategy. mainly due to the loss of independence between row
occupancies and column occupancies. We employ the method of inclusion-
exclusion and Fréchet sums ([1], p. 99) but the basic events have to be defined
carefully.

First, we note that the k% vector space (chessboard) is not covered by y rooks
if and only if at least one cell is not covered and this, in turn, holds if and only if
at least one row is not occupied and at least one column is not occupied. The
event that one particular cell is not covered, in positive terms, requires that all
y rooks currently placed are in some (k — 1) x (k — 1) product subspace
defined by the offending cell. Intersections of these subspaces are again product
subspaces, which may be indexed by the deleted rows and columns. Thus, we
define our basic events £{}’ as the event (row i and column j are not covered
when y rooks are randomly placed). We now proceed to apply the Fréchet sum
technique as follows.

In this hypergeometric setup, ¥ rooks can be placed without repetition in ("y2 )
ways. They can fall in a product subspace avoiding r specified rows and ¢
specified columns in (*7*~9) ways and the probability of this event (not
necessarily basic) is given by

((k — )k — c)>
(3.1) y , y=01.2 "

()
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Since the » rows and ¢ columns can be specified in (¥)(t) ways, the Fréchet

sums, for a fixed total t =r + ¢,r = 1,¢c = 1, of rows and columns not
covered, are given by

(k)( k )((k -k —t+ r))
i\ )\t -
3.2) Sy = ¥ A -
r=1
()
According to the discussion above, if a cell is not covered then the sum ¢ of the
number of rows and columns not covered is at least 2 and clearly ¢t £ 2k — f(y)

where f(y) is the minimum total of rows and columns that ¥ rooks can occupy.
Hence, the probability of realization of at least one of the basic events is

2k=£0)
(3.3) 1—H(y) = » (=1)Sy),

t=2

where H,(y) is the c.d.f. of the number Yy of rooks required for coverage in
case H.

The expected value of Yy is obtained by summing (3.3) over y = 0. In this
sum, the first & terms are all equal to 1. Since Y; < 1 + (k — 1), it follows
that 1 — Hy(y) = 0 fory = 1 + (& — 1)? and hence,

(k—1)2

(3.4) E{Yy} =k + Zk (1 — Hy(y)).
R

This completes the exact solution for E{Yy} in case H (see Table II).

4. Asymptotic evaluations
In case M, we have from (2.1) asymptotically (k = o)
o

k x
(4]) Fk(x) — Z (_l)a(k> (l _ _) ~ (1 — e—x/k)k ~ exp {_ke—x/k}.
=0 o k

Using the normalizing transformation ([1], p. 106),

(4.2) X =klogk + kZ,

we obtain for large k the limiting c.d.f. of Z (which takes on values z)

(4.3) Vi(z) = exp {—e "%}, — 0 <2z< o,

the (standardized) extreme value distribution.
In our application, Y), is the smaller of two independent chance variables
each having the same c.d.f. Fi(x) and it follows from (4.2) that for k¥ — oo,

(4.4) E{Yy} ~ klogk + kE{Z,,,} = k(C + logk),

where Z,., is the smaller of two independent chance variables with c.d.f. V,(z)
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in (4.3) and E{Z,} = C = —0.1159315 by the table of J. Lieblein and
H. Salzer [3].

In case H we no longer have independence of row and column coverage and
have to resort to an “‘ad hoc method” to obtain a useful approximation which
is as good as the approximation already obtained for case M. Indeed, one
reason for considering the two cases together in the same paper is that we
suspected that asymptotically the expectations for case M and case H would
be the same to the first order approximation.

We make use of the fact that if we delete repetitions in placing Y,, rooks at
random by the multinomial scheme, then the remaining observations Y are
formally indistinguishable from a hypergeometric sample sequence. The
difference D = Y,, — Yy is the redundancy in the multinomial sampling and
our evaluation of E{Yy} arises by using

(4.5) B{Yy} = E{Y,} - B{D}.

To evaluate £ {D}, we first write D = 3| =%_ | D,;;, where D;;is the redundancy
due to extra rooks placed in the (i, j) cell. The total number of rooks placed in
the (i,7) cell under multinomial sampling is approximately binomial with
parameters Y,, and 1/k%. Our “ad hoc method” is to replace Y, by E{Yy} in
evaluating £ {D;}; we justify this by noting that the error introduced in the last
expressions of (4.7) and (4.8) below is of the order of magnitude

E{Yy}\ _ ,(C +logk .
. o)) _ (€t 8)

as k — c0. We now obtain

E{Yn} E{YM} 1 a 1 EYm)—a
@n By}~ ) (- 1)( . ><p> (1 - P)

a=

l 1 k(C +logk)
=I~CEE{YM}—1+<1—F> .

Using (4.4) for E{Y,,} and expanding the last term in (4.7) gives

1/C + log k\? log? k
(4.8) E{Du’} ~ 5( k ) + 0( 13

and the error term in (4.8) can also be disregarded. Thus, for the total set of k?
cells we have from (4.8),

3
(4.9) E{D} ~ %(0 + log k)? + o(logk k)

and hence by (4.5),
(4.10) E{Yy) ~ k(C + log k) — %(0 + log k)2,

where the error, which tends to zero as k — 00, is now omitted.
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TABLE 11

EXPECTED VALUE OF THE NUMBER OF
Raxpom Rooks REQUIRED To COVER THE k%2 CHESSBOARD

Approximation to Approximation to
k E{Yy; E{Y\} E{Yy} E{Yy}
based on (A.9) based on (A.10)
2 2.3333333333 1.5115 2.0000000 1.8619
3 4.1821428571 3.7886 3.5000000 3.6634
4 6.3655677654 6.1561 5.3522478 5.5832
5 8.7938685820 8.6870 7.4723892 7.7268
6 11.4171670989 11.1376 9.8091916 10.0743
7 14.2030879491 14.2070 12.3278253 12.5990
8 17.1286506847 17.1658 15.0029299 15.2784
9 20.1766249904 20.2393 17.8152024 18.0941
10 23.3335906237 23.4163 20.7494692 21.0315
11 26.5887915430 26.6878 23.7935002 24.0784
12 29.9334107812 30.0458 26.9372363 27.2250
13 33.3600877782 33.4837 30.4628
14 36.8625841610 36.9958 33.7848
15 40.4355447768 40.5770 37.1847
16 44,074322209 44.2229 40.6573
17 47.77484495 47.9297 44.1980
18 51.5335164 51.6940 47.8025
19 55.3471359 ) 55.5125 51.4674
20 59.212836 59.3827 55.1892
21 63.12803 63.3019 58.9652
22 67.09038 67.2679 62.7925
23 71.09771 71.2786 66.6689
24 75.1481 75.3321 70.5921
25 79.2396 79.4267 74.5600
26 83.3704 83.5607 78.5710
27 87.539 87.7327 82.6231
28 91.743 91.9413 86.7150
29 95.981 96.1852 90.8450
30 100.250 100.4632 95.0119

Table II gives exact values of E{Y),} for k = 2(1)30 using (2.3) and approxi-
mate values based on (A.9). It also gives exact values of E{Yy} for k = 2(1)12
using (3.4) and approximate values based on (A.10). Roundoff errors in this table
are estimated to be at most one in the last digit shown.

5. Coverage of k" board for n > 2

Define a skeletal axis centered at cell ' as the » mutually perpendicular lines
of cells parallel to the sides of the hypercube and having the cell (' in common:
for n = 3 denote the cell by Copy-o By =12 k. and the corresponding
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skeletal axis by ('*#7. For any n. a cell (', ;. is not covered if and only if the
skeletal axis C*#7 has no occupancies. Hence, we can use as our basic sets for
an inclusion-exclusion argument the sets C*#7 o. f. 7 = 1. 2.+ k. However.
the intersections of these skeletal axes are not simple and the corresponding
analysis is complicated even for n = 3. A complete discussion of this analysis
will not be considered here. Thus, the stochastic problem becomes more difficult
as n increases as it does in the deterministic case of Kamps and van Lint [2].
Theodore Levy. a student of one of the authors at Michigan State University.
is working on a class of such problems: the results are not yet very encouraging.

6. Use of independence in higher dimensions

It is of some interest to find a way to generalize the independence of row
occupancy and column occupancy that was used above for » = 2. For this
purpose, we define a piece that starts at a cell (' in n dimensions and moves
(anywhere) inside any Hamming sphere centered at (' and of radius n — 1. For
n = 2, this reduces to the usual rook move. For n = 3 and starting at cell C,
the piece moves inside the horizontal plane (H plane) through C or inside the
north-south plane (NS plane) through €’ or inside the east-west plane (EW plane)
through C'. Hence, one such piece covers all the cells in three mutually perpen-
dicular slabs that contain the starting cell..

The cube R} will be covered as soon as either all L slabs or all NS slabs or
all EW slabs are occupied. Hence, the same argument as for n = 2 (case M)
gives for general n (case M) the exact solution for the c.d.f. of Yy,.

(6.1) Gi(y) =1 = [1 = F(y)]"

where F,(y) is given by (2.1). For n = 3. the expectation becomes

o© k—1 IC o 713
6.2) E{Yy}=k— 3 [Z (—1)“< )<1 - —) ]
B=k |L2=1 o k
kN (kN (k
k-1 k-1 k—1 (ot) (B) ()}) (aﬁ"/')k
YT Y (—1p -
=1 f=1 y=1

k> — apy

1
k — J36=1D)

both of which can be used for computing.

In the corresponding asymptotic (k¢ = oc) evaluation for n = 3. we need the
expectation of the smallest of three independent observations on the c.d.f. (4.3):
this is given in [3] as —0.4036136. This analysis is easily generalized to any
number of dimensions n. This type of solution became possible only after we
defined a ‘‘super piece” that moved in more than one dimension. No similar
analysis was found for the original definition of a rook move in the Hamming
sphere of radius 1.
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OV O R O
APPENDIX

A more careful evaluation of E{Y),} starts as in (4.1) but, lettingz’ = x — 1
and k' = k — 1 we now write

k [k a\* & ¥ a\*
(A1) F(x) = ago (=1) (a) (1 - E) = a;o(—l) (a) (1 - E) .

Letting " = x — 2, we use the approximation

oa\* o 1 a?\*
I O I C IR B 9

pd_ Xl & [ o
PY™ % 2 2P )VT

Substituting this in (A.1) and summing gives

21\
(A.3) Fi(x) ~ (1 — exp {— Z})
'k — 1) 2x" 1 — _ x_” k-2
2% P17 % P1T %
x'k' x" .T” k'—1
+Wexp % 1 — exp iy ,

which is correct up to terms of order log k/k and 1/k in F,(x). These in turn
yield all the terms in the final answer for E(Y,,} of order log k and 1, so that
the new error will go to zero as k — .

Letting X' = klog k' + kZ, we obtain for large k

(z + log k&)
2k

&

(A4) Fy(x) ~exp{—e?} + e “exp{—e*}(1 — e7%),

where the leading term is the same as in (4.3) and we have dropped terms that
approach zero in the final result. Using the same method as in (2.3) above, we
replace the sum by an integral and obtain

(* o
(A5) E{Yy}~k+k [1 — exp {—e"?}
- (z + logk') _, -z =
i % e “exp{—e*}(1 —e”%)| dz
~k+k| (I —exp{—e?})dz

— jw (1 — exp {—e_’})(l — e’ %)

a

“(z + logk'ye *exp {—e™*} dz,
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where a = 1 — log k' — 3/2k and we have taken a as the value of z when
x = k — 4 to get a valid approximation. Using the Euler-MacLaurin sum
formula, it can be shown that this leads a correct asymptotic approximation
for k — o0 ; we omit this proof.

Let T, and T, denote the first two terms and the last term in (A.5), respectively.
We let « = e % and let b = e™° = k'/exp {1 — 3/2k} ~ k'[e.. Using (5.1.1),
(5.1.40), and (5.1.51) of [7], we obtain

b _ p—u\2
(A.6) T1=k+kjwdu
0 u
P 2% _ -u
=k+2kJ‘&e_)du_kj Q___e__)du
0 U 0 u

=k + 2k[E,(b) + log b + y] — k[E,(2b) + log 2b + 7]
~k+Fk(y—log2+logh) ~ 3+ k(C + logk'),

where y = 0.5772156649 is Euler’s constant and C = y — log 2. This agrees
with (4.4) in the two leading terms.
From (A.5) we obtain, for T,,

b

(A7) T, ~ J e (1 — e *)(1 — u) log <1> du
0 k

e )30

_ le-zub+l Zb(l—e“")dx~y+l+log2k’.
4 o 4Jo x 4

Combining this with T, in (A.6) gives
(A.8) EYy ~ k(logk' + C) + $(log 2k’ + y + 7),

which contains all terms not approaching zero in the asymptotic expansion.
The same method used above can be extended to give the (correction) terms
of order (log 2k')*/k for « = 0, 1, and 2, and we give these without proof. The
complete result, including all terms of order 1/k and larger, is
log2k' + 7 +y

’ 1 1\2
(A9) E{Yy} ~ k(logk' + C) + . + 1g7 {log 2K)

+ (2y — 1)log 2k’ — (9 + y + 2 log 2)}.

This is tabulated in Table II for comparisons with the exact answers; the error
appears to be less than 3 for all &k = 2.

An improvement is also possible in the approximation (4.10) for E{Y}. For
large values of Yy, (for example in the neighborhood of E{Yy}), the total
number of rooks in the. 4, j cell under multinomial sampling is approximately
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binomial with parameters Y,, — 1 and 1/k?. The reason for using ¥,, — 1 is
that the last rook set down cannot be a duplicate.

If we go through the same analysis as in Section 4 for E {Yy } with Y, replaced
by Y3 — 1 (except in (4.5) and the definition of D) and use (A.9) for E{Y)},
then we obtain instead of (4.10)

(loghk + C)> log2k' + 7 + 7y
+
2 4
(logk' + C)

— 2" " " log 2k 1).
TR (log2k’ +y + 1)

(A.10) E{Yy} ~ k(logk' + C) —

This is the quantity tabulated in the last column of Table II.

O R S S

The authors wish to thank Mr. Theodore Levy and Ms. Elaine Frankowski
for their assistance in programming Table I1. Thanks are also due to Mr. Gary
Simons of Stanford University for some preliminary desk computer computa-
tions and to Mr. Arthur Roth for proofreading.

REFERENCES

[1] W. FELLER, An Introduction to Probability Theory and its Applications, Volume 1, New York,
Wiley, 1968 (3rd ed.).

[2] H.J.L. Kampsand J. H. van LinT, “A covering problem,” Colloquium on Combinatorial Theory
and Its Applications, Balatonfiired, Hungary, 1969, (edited by P. Erdos, A. Rényi, and Vera
T. Sés, Budapest, Janos, 1970, distributed by North Holland Publishing Co., Amsterdam;
Humanities Press, New York.

[3] J. LieBLEIN and H. E. SALzZER, “Table of the first moment of ranked extremes,” J. Res. Nat. Bur.
Standards, Vol. 59 (1957), pp. 203-206.

[4] R. G. StaNToN, “Covering theorems in groups (or: How to win at football pools),” Recent
Progress in Combinatorics, New York, Academic Press, 1969.

[5] R. G. SranToN and J. G. KaLBrLEIScH, “‘Covering problems for dichotomized matchings,”
Aequationes Math., Vol. 1 (1968), pp. 94-103.

[6] , “Intersection inequalities for the covering problem,” SIAM J. Appl. Math., Vol. 17
(1969), pp. 1311-1316.

[7] I. A. StEeu~ and M. ABrRaMowITZ (editors), Handbook of Mathematical Functions, Appl.
Math. Ser. 55, Washington, D.C., National Bureau of Standards, 1964.




