‘LOCAL ASYMPTOTIC MINIMAX
AND ADMISSIBILITY IN ESTIMATION

JAROSLAV HAJEK
Froripa Srare Usiversiry
and
CHARLES UNIVERSITY. PRAGUE
1. Introduction

In their vigorous scarch for an adequate asymptotic theory of estimation,
statisticians have tried almost all their methodological tools: prior densities.
minimax. admissibility. large deviations, restricted classes of estimates (invari-
ant. unbiased). contiguity. and so forth. The resulting body of knowledge is
somewhat atomized and a certain synthetic work seems to be needed. In this
seetion. let us try to single out several picees of the jigsaw puzzle and combine
them into a logically connected theory. AMong with this we shall eriticize some
other approaches and make a few historical remarks.

Consider a fixed parametrie space 0 and a sequence of experiments deseribed
by families of densities p,(x,. 0). say p,(r,. 0) = II7_; f(y;. 0). where «, =
(1. - ). Firstof alll it is necessary to single out “regular cases.” This should
not be done only formally. for example. only in terms of 8 derivatives of f(y. 9).
The statistical essence of regularvity consists in the possibility of replacing the
family of distributions by a normal family in a local asymptotic sense. Loosely
speaking. given a point f € 0 and a small vicinity I, of 1. the quantity

.
(1.1 A, =n? : log p,(x,. 9)[,, .
cH

should be approximately suflicient and normal (with constant covariance and
expectation linearin ) for 0 € 1 and v large. See Section 3 for a precise definition.
The idea of approximating a general family by a normal family was first formu-
lated by A Wald [19]. and then sophisticatedly developed by L. LeCam [12],
[13]. [15]. In spite of its importance. the idea has not yet found its way into
current textbooks.

The next step is to get rid of ill behaved estimates and to characterize optimum
ones. This may be achieved by serutinizing an arbitrary sequence of estimates
T, from the point of view of minimax and admissibility. again in a local asymp-
totie sense. Theorem 4.1 below entails that there is a lower bound for asymptotic
local maximum risk and that this bound may be achieved only if
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, A,
(1.2) ST, — 1)~ I'i" 0 [pn]

where T, does not depend on the observation nor on the choice of (7,1,

Once the condition (1.2) has been established. we can develop particular
methods providing estimates satisfving (1.2) for every 1€ 6. These methods
would include Bayes estimates with respeet to diffuse priors; maximum likeli-
hood estimates. maximum probability estimates. RBAN estimates. "nonpara
metric’” estimates. and so forth. The justification for a ditfuse prior in Bayes
estimation — and probably the only sound one s that the resulting estimates
satisfy (1.2). and. under additional conditions. have satistactory local asvmptotie
minimax properties. Minimax serutiny of Bayes estimates seems to be even more
important in cases when we estimate a sealar parametric function © = t()) ot a
parameter whose dimensionality increases with o, Then it may be fir from
obvious what a “diffuse” prior means, Unfortunately local asymptotic minimax
results are not systematically available for this case.

In maximum likelihood and Baves estimation. we are troubled by the hehavior
of likelihood tails. This may be avoided by considering only some vicinity of a
consistent estimate. This leads to consistent estimates considered as a starting
point for arriving at better estimates.

If the families p,(-. 0) are well behaved, then (A, ) will be smooth in 0.
In turn. the distribution of any estimate 7, for which (1.2) is satistied will be
smooth in 0. Assuming that the laws 7’,,[\/'/:)(7‘,‘ — 0)] converge continuously
in 0 to some laws Ly, it was proved in [6] that L, may be decomposed ax a con-
volution

(1.3) Ly = ¢*0i,

where @, is a normal distribution and ¢/, is a distribution depending on the
choice of T, 1t also may he shown that the best possible 7 is degenerate at the
point zero. If ¢ is normal. the L, is also normal with larger covariance matrix
than ¢,. In such a case. the ratio of the generalized variances of ¢, and L, may
serve as a measure of the efficiency of 7, A simple short proof of (1.3) has been
recently suggested by P, Bickel (personal communication). LeCam [16] provided
still another proof and extended the result to families which may not be locally
asymptotically normal. Then. of course. ¢, will not be a normal distribution.
but. for example. the one sided exponential distribution.

Some points in the above exposition need comment. First, ket us explain what
we understand by local asymptotic minimax and admissibility. Roughly speak-
ing. by saying that {7,} is locally asymptotically minimax (admissible) we shall
mean that for any open interval 17 < 0 the estimate is approximately minimax
(admissible) on 1 if n s large, Actually. for o large there is little justification for
relating the minimax criterion and admissibility to the whole parametric space.
since after having obtained our observations, we are able to locate the unknown
parameter with considerable precision,
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It ix important to note that an estimate may he exactly minimax for every n.
but may fail to he locally asymptotically minimax. Forexample. this is true about
the nanimax estimator of the hinomial p from X suecesses in n trials:

N + /n/"
. . v /2
(1.4) 1,(X) = .

"ot /n

This estimate is obviously not approximately minimax relative to any open inter-
val I not containing p = 172, consequently_ it is not locally asymptotically mini-
max. Actually. the maximum mean square errorof f, on Vis [$n(l + n =221
"max, Ip(l = p)}

Also admissibility for all » does not entail local asymptotic admissibility.

whereas the minimax on P is smaller than n -

Estimate (1.4) may illustrate this point as well. Another example may be given
from the field of sample surveys, where Joshi and Godambe (see [11]) proved
that the sample average is an admissible estimate for the population average no
matter what the sample design is. Again this estimate fails to be locally asymp-
totically admissible if the concept is properly defined for this situation.

According to Chernoft [5] the idea of local asymptotic minimax is due to
(. Stein and H. Rubin. who showed that Fisher's programs could be rescued by
it. The proof that local asymptotic minimax implies local asymptotic admis-
sibility was first given by LeCam ([12]. Theorem 14). There. he proved that
superefliciency at one point entails bad risk values in the vicinity of this point.
that ix. that supereflicieney excludes the local asymptotic minimax property.
Apparently not many people have studied LeCam’s paper so far as to read this
very last theorem. and the present author is indebted to Professor LeCam for
giving him the reference. Theorems 4.1 and 4.2 below may be regarded as ex-
tensions of the above mentioned result by LeCam and a related theorem by
Huber. Huber, [10] in addition to LeCam’s statement, proves that a locally
asvmptotically minimax estimate must be asymptotically normal with a given
ariance, This is made more precise by (1.2)0 sinee (1.2) entails asvmptotie
normality ot /1 (7T, — 1) on the basis of assumed asymptotic normality of A, .
From the methodological point of view. LeCam’s and the present paper both
use the Blvth [4] approach to admissibility based on a normal prior. whereas
Huber used the Hodges-Lehmann [9] approach based on the Cramér-Rao
inequality.

In his subsequent papers [13]. [15] LeCam perfected the idea of a locally
asvmptotically normal family. We shall base our proof on these papers. rather
than on his 1953 paper [12] which contains some omissions. When approxi-
mating a general family by a normal one. the basie point is that the distance
should be expressed in terms of the L) norm (variation) given by (3.5) below.
The Lévy or Prohorov distance would not do in proving (4.8) below. Of course.
we may not expeet that. for example, the distribution of A, ; approaches its
normal limit in the L, norm. However, as was shown by LeCam [13] and as is
proved here under different assumptionsin Lemmas 3.2 and 3.3, it approaches in
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the L, norm a shightly deformed normal aw with-slightly detormed likelihood
function. which is sufficient for our purposes. Another important point provided
in LeCam [15] wasx a general definition of loeally asymptotically normal
families. which is not restricted to partial sequences in an infinite sequence of
independent replications of some basic experiment. We take this attitude also.
and our local asymptotic normality (LAN) conditions of Section 3 represent a
selection from LeCam™s [15] conditions DNT-7.

Another comment is invited by (1.2) in connection with the approach sug-
gested by CL R Rao ([17]. p. 285) in his admirable hook. He uses property (1.2)
direetly as adetinition of asvmptotic efficieney. which seems to be justiticd by
the fact that the ratio of Fisher's information for 7', and for the whole observation.
respectively. approaches unity under (1.2) and some additional assumptions.
However: sinee Fisher's information is invariant under one-to-one transforma-
tions. I doubt whether giving it a central position in estimation problems can be
rationally explained. even if used joimntly with consisteney. For example. in
estimating the location parameter from » independent observations i the density
is otherwise known. the maximun likelihood estimator contains all of the Fisher
information (the apparently lost part of it may he “recovered™). but it is not the
hest estimate. not even the best location invariant estimate. The extent to which
the maximum likelihood estimate tags hehind the best one depends on how much
the likelihoods are irregularty shaped. asymmetrie. for example. Theorem 4.1
below provides a minimax justification for (1.2). which s somewhat less
mystical,

To be more precise. Rao ealls an estimate efficient. it (1.2) holds with [
replaced by any function i, not involving the observations. but possibly de-
pending on the estimate 7,0 However, Theorem 401 implies that T, cannot he
locally asymptotically minimax. it i, = 1, ' Rao s aware of bad consequences
of f, = I,V and proves in [ 18] that then the law of u(T, — 0) does not con-
verge unifornily in (. so that the imiting laws cannot be used to provide approxi-
mate confidence intervals,

Continuing our comments on approaches not embodied in the above ex-
position. let us mention another paper by LeCam [ 1H4] There he proved that
under certain conditions Bayves estimates provide asvimptotic risks that can be
improved on a set of measure zero onlv, Thus, it the prior is diffuse and the
asymptotic risk of a Bayes estimate is continuous in 0. as it usually is. then it
dominates the asyvmptotic visk of any other estimate having continuous asyvimp-
totie risk. A\ disadvantage ol this approach is that it detines lower hounds in
terms of certain estimates  Baves extimates  and not in terms of intrinsic pro
perties of the families of distributions involved. Also.a verification of assump-
tions entails difficult consistency investigations. On the other hand. it is the first
paper of a very general scope. for example, the estimates ave not assumed to be
necessarily asymptotically normal, In regulir eases. on which the present paper
is focused. Bayes estimates for diffuse priors will satisfy (1.2). so that we get a
good agreement with our previous considerations,
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Investications of estimates which are not necessarily asymptotieally normal
were started from a dilferent angle by Jo Waolfowitz [ 22]. He again defined the
hest possibile asvmptotiec behavior in teems of certain special estimates — general-
ized maximum likelihood estimates. In order to be comparable in his sense. the
estimates must be “regular.” so that his approach cannot be applied to arbitrary
estimates. However, for regular estimates we can under LAN conditions establish
the decomposition (1.3). which provides the conclusions obtained by J. Wolfowitz
more direetly, As was shown by LeCam [Hi] similar decomposition as (1.3) may
be obtained also for the “nonregular case” investigated by Weiss and Wolfowitz
[20].

The property of heing a generalized maximum likelihood estimate is implied
by (1.2) and in the usual situation also the converse is true. The same holds about
maximum probability estimators,

Al of the above approaches are based on “ordinary” deviations of the estimate
from the parameter. which are typically of order #” V2. A coneept of asymptotic
efficieney based on large deviations has been suggested by D, Basu [3] and
R. R Babadur [1] and [2]: Fixing 0 and some ¢ > 00 we define 1,(e. 0) as the
standard deviation of a normal distribution under which |7, = 0] 2 ¢ would
have the same probability as under £, ,. Formally

¢

(1.5) o T (J:'. 0)|

’Ivn - "! = ﬁ) = 2P| -

Now. under vegularity conditions somewhat stronger than LAN below it may be
proved that for any consistent estimate

(1.6) lim lim {ntie ) = 1,"

£—~0n—-x

and that the equality holds for the maximum likelihood estimator. It will generally
hold also for estimates satisfying (1.2). The only trouble with this approach is
that (1.2) is no longer necessary and that too many estimates satisfy equality in
(1.6). for example. the “supereflicient” Hodges estimator. which must clearly be
rejected by the minimax and ordinary deviations point of view. However.
cquality in (1.6) certainly may be used as an additional requirement for good
estimates. Our main proposition is partially proved by a different method in [16].

2. Normal families of distributions

Consider the extimation of 0 € R by wvandom variable Z which has the normal
distribution N (0. 1) given (1. We shall assume that the loss funetion is 7 (00 — 0),
where /7 satisties the following conditions:

2.1 /) = /(|ul])-
(2.2) /() < /2 lyl = |2



180 SIXTH BERKELEY SYMPOSIUM: HAJEK

. ax N .

(2.3) f /y)exp =iyt dy < % 2>
b’ £

(2.4) /() = 0.

Condition (2.3) entails

(2.5) fm Ly exp L =34y dy < x. i >0,

We shall also introduce a truncated version of /7

(2.6) /) = min (/(y). a). 0<u< 7.
(2.7) ro= (2m)" 12 f ' /() exp { =3y} dy.
(2.8) ry = (2m) V2 [“ /oY) exp {~%!/2} dy
and
~ b
(2.9) ra(b) = (2m)" 2 J falyyexp =1y} dy.

The estimator will be considered randomized. that is.
(2.10) ) = &7, U)
where U is a randomized variable. For convenience, we shall assume that {7 is
uniformly distributed on (0, 1). As always. U is independent of Z and 0. The
introduction of randomized estimates is justified since our loss function 7 (y)
may not be convex.

The risk function corresponding to 7, and ¢ will be denoted as follows:

= ] )

(2.11) R(0:&) = (2m)~ "2 f’ [I lo[E(zou) — 0 exp { =3z — 0)?} dudz.
o

‘e

The following is an extension of a result of Blyth [4] to situations involving
truncation and randomization. The important feature in the lemma is the inde-
pendence of the numbers a. a. b on ¢ if (2.12) holds. Since the lemma follows the
pattern of Blyth [4]. the proof will be condensed.

Lemma 2.1, Under the abore nolalions and assumptions. for any & > O there
exist positive numbers, a. b, ocand a prior density w(0). all depending on & only. with
the following property :

For any randomized estimator E(Z. U) such that

(2.12) P&z Uy — 7

then

(2.13) fh ROV (0: &) d0 > r + a.
b

> |0 =0)>¢
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Proor. It suffices to show that
. b v
(214 f TR, (0: 5 d0 > r,(b) + 2a
—b
for a. b sufficiently large and for an a which is independent of . b. Note that

b
(2.15) (2n)_l’/2f /gy — Brexp =1yt dy
-b

W h A X
ra(b) + (2m) ”lf [[ - f H ]('xp{—%]/2}(1;1/(”“(;1“)
0 o X ~x+p

ra(b) + 4. it |p] >}

where 0 > 0 depends only on &, but not on a. b when they are sufticiently large.
Next. following the idea of Blyth [4]. we shall assume € to be distributed with
density

o ) 1 . 0)?
(2.16) n() = a2n) 2 YT 262

where o will be appropriately chosen to depend on ¢ later. Then the conditional
density of 0 given Z = zis

. (1 + a®)'? I + a? za? \?
R BN

and the overall density of Z will be

1 2?2
218 (~ s T
(—lﬁ) .’(*) [( + (7 ) )TE)]I "{ 2(| i ﬂz)}.

In what follows we shall assume that

v

[\

(2.19) |z} =06 - 0.
Then
(2.20) fb lJ[E(z u) = 0]Y(0]z) dO
-b
. 20 2
=4 (2n)“"lf AT (‘XP{— Z.(_til} dy
—uh 20.2
K
Z "ll(b) — (72

- 2 . . .
where A does not depend on a, b. 6*. We have used the inequality

2 2 - 2
y (1 + %) Y
(2.21) exp {—— T} > [I - G—]IXP{ 1y}
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On the other hand, if

(2.22) |é(zou) — 2| > & || < M
we shall have

20? 20
2.23 o) — —— | > L& for (1 + a*) > ~—.
( ) )s( ‘) | 7 a2 3¢ or ) .

Consequently. in view of (2.15). we have

(2.24) (2m)~ 112 f” /L= n) — 0] (0]z) dO
— b

N (1 :
(2n)~ ”Zf lly +3e)expl— v +’_al dy
b 20°

v

~ -

I

, vb K
mn)ﬂ/lf fuly + 38V exp {— 3yt dy — 5
b

N

v

rgb) + 0 — !\E
if (2.19) and (2.23) hold. a
Altogether, we have

(2.25) ffb 7(0) R, (0: &) d0 z."(:f_’,,ff/“[é(:‘ w) — 01 (02)f(2) dOd=du

>1:.‘Z

> r () P(|Z] < b = Jb) - ;‘2 N AN < ).

From (2.12) we see that

VA

> L.

(2.26) P|&Z.UY ~ 7

< M0 =0)> i

for M sufficiently large. Now under 0 = 0 the density of Z ix (2n) 7" 2 exp
{ =122}, whereas the overall density is given by f(z) of (2.18). The likelihood
ratio for the two densities is for |z] < M greater than

(2.27) sexp{—3M2)

1
%o
Thus

. . £ 5
Now it suftices to put
K

o . . oe ] ‘
(2.29) 3a = 51 4 02)2 expi—iME — e

which is positive for g sufficiently large. In the last step we choose a and b in
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such a way that
(2.30) ra(b) > r — 3a
and g.iven the above chosen 62,
(2.31) rP(|Z] > b — Jb) < L.

Now (2.25) to (2.31) yield (2.14). Q.K.D.
Of course, usually there will be nuisance parameters, and then the following
k-dimensional version of the preceding lemma is useful.

LeMMA 2.2, Let Z = (Z,, " -+, Z) be a normal random vector with expecta-
tion 0 = (0,,---.0,) € R* and fixed positive definite covariance matrix ¥ =

{6} j=1. Consider a function ¢ satisfying (2.1) to (2.4). Then for every ¢ > 0
there exist positive numbers a. b. a and a one-dimensional density m(-) with the
Jollowing property :

For any randomized estimator S(Z .-+ . Z,. U) of 0, such that

(2.32) P(|&Zy, - 2 Uy = Zy| > el = =0, =0)>¢

then

b
(2.33) f_b n(OE{[EZy ., 2 U) = 0,]]0, = 0, 6, 674, 1 S i S k}dO,

v

(2m)~ 172 fm /lyo.Jexp {—4y’}dy + a
= an
where 6, = (a,, )12
Proow.  For the submodel 0, = 0,6, ;67,1 £i Sk, —00 <0, < 0, Z,
is a sufficient statistic, and the result follows from the preceeding lemma.
LEMMA 2.3, Let Z be the same veclor as in Lemma 2.2. Then for every 6 > 0
there exist positive numbers a, b and a density n(-) such that for any randomized
estimator S(Zy. -+, Zy, U)

b
(2.34) f_bn(o.)ﬁ:{/,,[g(z,. e 2 ) = 0,110, = 0,0, 07,1 < i < k) dO,

z @02 [7 ([yolexp {~4y*hdy - 6

where ay has the same meaning as in Lemma 2.2
Proor. The proof follows the same lines as the proofs of the previous
lemmas, .

3. Locally asymptotically normal families of distributions

The essence of the definition of a locally asymptotically normal family is that
the log likelihood ratio is asymptotically normally distributed with a covariance
matrix, which is locally constant, and with an expectation which is locally a
linear function of 0. For our purpose—to obtain lower bounds for risks and
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necessary conditions for allowing equality in corresponding inequalities —we
need the following version, employed already in [6]: consider a sequence of
statistical experiments (%, o,, P,(-. 0)), » = 1, where 0 runs through an open
subset © of R* Take a point ¢ € ® and assume it to be the true value of the para-
meter §. We shall abbreviate P, = P,(-.t) and P, , = P,(-.t + 2~ '2h). If
appropriate, we could use in place of \/ n some more general norming numbers
k(n) = o0, or even matrices as in [6].

The norm of a point & = (hy.- " . k) from R* will be denoted by |h| =
max, ; <;|k|, and A'v will denote the scalar product of two vectors.

Given two probability measures P and @, denote by d@Q/dP the Radon-
Nikodym derivative of the absolutely continuous part of @ with respect to P.
Introduce the family of likelihood ratios

p, ,
ar,

3.1) rolh. x,) = (x,). he R n = n, x,€Z,.
where n, denotes the smallest integer such that n = n, entails t + n” V2 he @,
In what follows the argument x, will usually be omitted.

AssuMmpTioN 3.1. LAN (local asymptotic normality) at 0 = 1. Assume that

(3.2) ra(h) = exp {K'A, . — $K'T b + Z,(h, 1)}, he R* n 2 n,

where the random vector A, , satisfies L(A, |P) = N(0.T,). and Z,(h. 1) - 0 in
P, probability for every h € R*. Further assume that det T, > 0.
ExamMpLE. Consider the case k = 1.z, = (3, "' .¥y,) € R" and p,(x,. 0) =
i=1f(y:, 0).
Then the existence of Fisher's information, its positivity and continuity at
= {, entails LAN. Of course, in order for Fisher’s information to be well
defined, f(y, 0) must be absolutely continuous in 0 in a vicinity of ¢, and the
derivative f(y, t) = (8/00)f(y. 0)|o-, must exist for almost all y. Then the in-
formation equals

[f(y. 0
33) b=l { ﬂwo)}dy

Satisfaction of LAN for this case may be proved by methods developed in [8]
as is shown in the Appendix below. Specifically (3.2) will be satistied for

34 A, =n"17 S v r, =1,
( ) I—Zl Ju t),

Let ||P — Q| be the L, norm of two probability measures. If p and ¢ are
densities of P and @ with respect to g, then

(3.5) 1P =@l = [lp - al dn.

The following lemmas are cssentially contained in LeCam [13], and form a
bridge between exactly normal models and locally asymptotically normal
models.
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Lemya 3.1, For any sequence of statisties {8,} put

(3.6) , s, u) = inf {y: P,[S, S ylA,, =2] 2 reR 0 <u<l,

and denote by F, , the distribution of S, under P, , and by F, , the distribution of
Su(Bn e, U) also under P, ., if U is uniformly distributed on (0, 1) and independent

of A, .
Then, under Assumptions LAN
(3.7) lim ||1"',,‘,l - F,:_,,H = (), heR.

Proor. We see from (3.6) that F, , = F, , if h = 0. Now, as shown in the
proof of the theorem in [6], P, , may be approximated by @, , such that A, | is
a sufficient statistic for the pair (P,, @, ,) and |Q, , — P, 4| — 0. That yields
(3.7).

In the next two lemmas we shall treat the cases k = 1 and k > 1 separately,
hecause for k = 1 we are able to reach a greater degree of explicitness

Lemma 3.2, Assume k = 1. Denote G, ,(x) = P, (A, ;S S x) and O(x) =
(2m) (% o exp {—3y?} dy. Let G, , be the distribution of G, § ®(ZT,'2), if Z is
normal (hr,, I,).

Then, under Assumplion LAN,

(3.8) lim ” (t - ln h” = 0, heR.
n-—*a

Proor. We again have G, , = @, , for k = 0. Since G, o(x) » ®(xl1/?)

uniformly under Assumptions LAN we have

3.9) G4 @@l V%) - & uniformly on compacts.

Further, referring again to the proof of the theorem of [6], we may approximate
Gonby G, 4(@) = Qu (A, S x)satisfying |G, , — G, .| = 0. The rest follows
by showing that

10
(3.10) :l—('""' (&) = exp {— he — 3071},
n, 0
da,
(3.11) nh(x) = exp {—hx — 1A%}

e, o

LeMMA 3.3. Assume k = 1. Denote G, ,(x) = P, (A, S x), x€ R and
denote by Z = (Z,, -, Z,) a random vector such that ¥(Z) = N(I,h, ), if
0 =t + n~Y2h. Then there exists a sequence of functions ¢,(x) such that

(3.12) lim sup |pu(x) — x| =0

n—* o xeR

and the distribution of ¢,(Z) under 0 = t + n~''2h, say G, ,, salisfies

(3.13) lim |G, — G,,] = 0.
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Proor. Consider a sequence of cubes

(3.14) Ci={@y . 0): | £j 154

A

Ky, =12

Partition each cube C; into j2* subcubes Cjin1 £i £ 7%, all of equal volume
(2/j)*. Since G, o = N(0, I,), we have

(315) f A6, o = f dAN(0, T).
Cyi Cyi
Let ¢, ; be a function mapping C'; ; into (; ;.
(3.16) G Cii = O, 1SjS o, 1 i £j*

and such that
(3.17) OGn ) = & for x¢

Furthermore, we choose @, ; so that the difference between the €, =
ZL(¢,.,(Z)|N(O,I})) and G, o tends to zero in the L, norm, that is,

(3.18) 1Gnj0 = Gnol < 1 as n 2z n;.

J
This is possible in view of (3.15). Now define j(#) by nj, S n < nj, . and put
(319) ¢,,(.I') = ¢n.j(n)('r)‘

Then ¢, (x) satisfies (3.12) because of (3.17) and (3.16) and the fact that diameters
of the cubes C;; converge to 0 as j— o0. Furthermore. (3.18) entails
[Gr.0 = Gnol = 0since G, o = Gp im0

The proof may then be concluded by showing that (3.10) holds, referring
again to the theorem of [6], and that (3.11) is true. The last statement follows
from (3.12).

4. The main proposition

We shall generalize and modify theorems by LeCam [12] and P. Huber [10].
treating the cases k = 1 and k 2 | separately, again.

THEOREM 4.1. Assume k = 1. Under Assumptions LAN of Section 3. any
sequence of estimates {T,} for 0 satisfies for ¢ of (2.1) to (2.4)
4.1) lim lim inf sup E,,{/’[\/;(T,, -0}

820 n—w yp-q<s

> (2n)—1/2f

a

Y P exp { =3y} dy.

Furthermore, we can have for a nonconstant £

(4.2) lim lim sup Eo{/[/n(T, — 0)]}

4-0n—w 10—t <a

= (2m)” 12 fw ((yT7 V) exp {—3y*} dy
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only if
(4.3) Sl =) =7V A, , -0
in P, probulbility.

Proor.  We shall first prove (4.1). Introducing local coordinates by 0 =
t + hn~'? and using Ky(-) and E(-|0) interchangeably, we may write for n
sufficiently large
(4.4) sup Eo{¢[/n(T, — 0)]}

j0—tl<s

2 1 aBLL/uT, = 0 = K[t + 0712 d.

whatever the constants a, b and density n(-) may be. We fix some § > 0 and
choose a. b and 7 in such a way that

(+.5) ffb R(RYE{A[E(Z, UY = ]|t + n~ 2R} dk

2 (2m)7 2 Jw /yr” ") exp {—4y*}dy — &
for any estimator &(Z, U), provided that #(Z|t + n~'/2h) = N(T,k, T). This is
possible according to Lemma 2.3, if applied to I, Z which is normal (&, [, 1).

Next we identify S, = 4,(7, — ) in Lemma 3.1 and conclude (£, is bounded!)
that for every h e R

B/ (T = t) = B[t + n™ 2R}
— E{t[s.(A,,, U) = k]|t + n~2R}| > 0.

(4.6)

Furthermore, by Lemma 3.2, putting
+.7) a2, U) = s (0 p(ZT712), U)
we obtain for every h e R

(+.8) E{l[50(By,. U) = R]|t + n™ "R}
~ B[z, U) = R]jt + n™Y2h]| — 0.

Consequently
+.9) ffh n(lt)E-{/“[\/;i(Tn =) = At + n” 2k} dh
> f”b RAE(G[EZ.U) = Rt + 0™ Vh} db = 8. 1> n(a,b.m.3).
Combining (4.4). (4.9). and (4.3). we obtain (4.1).
Now we shall prove the necessity of (4.3) for (4.2). Assuming that (4.3) does

not hold we shall contradict (4.2). Again putting S, = 4,(7, — ¢), and recalling
Lemma 3.1, we can see that 4,(7, — t) — I,7'A, , has the same distribution
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under P, as
(4.10) . sp(Ay  U) = r,—lA,,',.

Furthermore, in view of (3.9), if expression (4.10) fails to converge to zero in
probability, then also

4.11) EZ.UY =TV

fails to do so. But then, there is an ¢ > 0 such that for every n there exists an
m > n such that

(4.12) Pol|émlZ, U) — T VZ| > ¢) > &

Therefore, according to Lemma 2.2, applied to [7'Z and k = 1, we choose
a, b, a, and n(-) such that

(4.13) ffb (R)E{L,[En(Z, U) — K]\t + n™ 2R} dh

> (2m)~ 12 fw Fyl7 ) exp {=1y*} dy + a.

This in connection with (4.4) and (4.9) contradicts (4.2), since é can be made
smaller than a. Q.E.D.

Without proof let us also formulate a k-dimensional version of the previous
theorem. The parametric function of interest will be the first coordinate. 0,,
while the other coordinates will be regarded as nuisance parameters. The proof
could be based on Lemma 2.2.

THEOREM 4.2. Under Assumptions LLAN above, any sequence of estimates T',
for the first coordinate 0, of 0 satisfies

(4.14) lim lim inf  sup E{e[/n(T, - 0,)]}

-0 n—=w 10-tj<é
2 @2m) 2 [ rahy)exp {— 4o} dy
where 6 = (0,,.,)"* and {0, ;}t;=, = "
We can have
(4.15) lim lim sup E,{¢[/n(T, — 0,)]}

620 n— gy <s
= (27r)“”2fao /(o'y) exp {—3y*} dy
only if
(4.16) (n(T, = 1)) — (T 'A, )} = 0

in P, probability, where (- ), denoles the first coordinate in the corresponding veclor.
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Remark 1. In (4.1) we could replace the left side by

(4.17) lim liminf  sup  E,{/[/aT, — 0)]}
. a~® n-=®  pjg-r|<a

REMARK 2. (4.16) in connection with asymptotic normality entails that
\/;(T, — t,) is asymptotically normal N(0. o, , ,). as is proved in Huber [9]. _

REMARK 3. Condition (4.16) is only necessary. In order that there exists an
estimate for which (4.15) holds for all ¢ € 0, additional global as well as local
conditions on the underlying family of distributions are necessary. If £ is not
bounded, we also need to know something about how fast probabilities of
moderate deviations of T, from ¢ approach zero. '

REMARK 4. If we-are interested in a general scalar function o = 1(0), we
may reduce the problem to one considered in Theorem 4.2 by introducing new
loeal coordinates (t,.+++, 7;) such that 1, = 7.

OO SR O

APPENDIX

We shall here prove that the LAN conditions are satisfied under assumptions
of Example in Section 3. To this aim it will be sufficient to adapt Theorem
V1.2.1 of [8] for the present situation (see also Problem 7 of Chapter VI 1.c.).

Let us restate our conditions carefully:

A.l.  Insome vicinity of @ = ¢ the functions f(y. 0) are absolutely continuous
in 0 forall ye R.

A2, Forevery 0 in some vicinity of ¢ the 0 derivative f(y. 0) = (9/00) f(y. 0
exists for almost all (Lebesgue measure) y € R.

A3, The Fisher information

~ (Lfw, 0)]2}
Al I, = f =) dy
(A.1) o e { Ty, 0) Y
exists, is continuous at 0 = t and I, > 0. (The integrand in (A.1) is to be inter-

preted as zero if f(y, 0) = 0).
Our preliminary goal is to show that

(A.2) s(y, 0) = [fy. 0)]2 ’

is also absolutely continuous and has a mean square derivative at 0 =

Lemma A1, If g( 0) 0 is absolutely continuous on (a, b) and its derivative
g(0) satisfies
l9(0)]
a [9(0)]"?

then [g(0)]"/? is also absolutely continuous on (a, b).

(A.3) df < oo,
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Proor. If g(0) > 0 and g(0) exists for some point 0. then it is well known
from caleulus that

g(0)
2[g(0)]"*

Furthermore, ifa £ o < ff £ b and g is positive on [a. f#]. it is casy to see that
[g(x)]*'? is absolutely continuous on [a. ] and

(A.5) b1 =~ [g] = 4 [ I

(A4) 5 [g(0]"* =

In view of the continuity of g (0) and in view of (A.3). (A.5) extendsto 2 < fSsuch
that g is positive on (a, f8), that is. even if possibly g(a) = 0 or g(ff) = 0. Now
for any ¢, a < ¢ £ b the interval (4. ¢) may be decomposed as follows:

(A.6) (a.¢) =I:U(ot ﬁ]UA
i=1

where (a;, f;) are disjoint intervals such that g(0) is positive on them. g(%;) = 0
ifo; # aand g(f;) = 0 if f; # ¢. and g(0) = 0 for 0 € A. Then. interpreting
g0 [g0)] 12 as zero when g(0) = 0. we may write, in view of (A.3).

« g - (# (7(0) 2 12
(A7) —df}) = - d0 = [g(c)]V? = [g(a)

« [g(0)]"? -Zl w [go]" Lot L)

because the summands with endpoints satisfying 0 = g(o;) = g(f;) vanish
according to (A.5). Relation (A.7) holding for all ¢ € («. b) proves absolute
continuity.

LeMMA A2, Under Assumptions A.1-A.3 the functions s(y, 0) are absolutely
continuous in some vicinity of 0 = { for almost all y.
Proor. Continuity of Iy and the Fubini theorem imply for some £ > 0

(A8) 0 > f'_ L,d0 _f f (U v OF )(I()dy.

Consequently, for almost all y

(A9) j (U /‘('f/ i{’)ll>,lo < w

and, in turn, for almost all y.

|/(1/ ()|
A.10
( ) (- [’(I[ ())]”2

Thus it suffices to apply Lemma A1 for g(0) = f(y. 0). for those y that satisfy
(A.10).
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Lemma A3, Under A.1-A4.3 the function $(y, t) defined by

fw. b
Alll o fiu D172
( h Sy 1) =< 20w, 0n]'"?

0 otherwise

if f(y.t) >0 and f(y,t) exists

is the mean square derivative of s(y, 0) at 0 = 1, that is,

A

2
(A.12) lim J {'— [s(y, t + A) — s(y. )] — 5(y, t)} dy = 0.
a-0 J_o (A

i 2 A 2
0

| A
J [#(y. t + 1)]? dA.
0

Proor. Lemma A.2 entails

2
(A.13) {% [s(y. t + A) — s(y, t)]}

IA
>d

Consequently. in view of continuity of /.

IA

x 2 w© A
(A.14) J {% [s(y. t + A) — s(y, t)]} dy < lj [(y. t + A)])? didy

- A—-ooO

(e ]
= IZJ; iy, dA "";11
= [$(y. ))?dy, as A —0.
- o
Put M = {y:s(y.t) > 0}). Then (1/A)[s(y.t + A) — s(y, )] converges to
&(y. 1) almost everywhere (Lebesgue measure) on M, and (A.14) entails

2 @©
(A.15) lim supj {% [s(y. t + A) — s(y. I)]} dy £ j [s(y. )] dy
M ®

A0

J [s(y, 0]* dy.
M

Utilizing Theorem V.1.3 of [8], we conclude that

2
(A.16) lim J {l [s(y. t + B) = s(y. )] — &(y. t)} dy =0
A=0 Juy A

and

o

2
(A7) lim J {l [s(y. t + A) = s(y, t)]} dy = J [sty, 6] dy.
A-0 JIpm A -

£ o]
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However (A.17) and (A.14) are compatible only if

2
(A.18) lim {l [sty.t + A) = sy, )]} dy =0
Me A

A-0
where M¢ = B — M. Now (A.17) and (A.18) together are equivalent to (A.12)

if 8(y, t) is defined by (A.11).
REMARK A.l. Since s(y. 1) = 0 on M (A.18) is equivalent to

(A.19) ) S0y dy = o[(0 — 1)?]
{(y: S(y.) =0}

which describes how large the singular part of f(y, 0) relative to f(y. {) may be.
Satisfaction of (A.18) is necessary for ¢,(x) = M=, f(yi, ¢t + n~'/?h) to be con-
tiguous with respect to p,(x) = IMi., f(y;, t).

THEOREM A.4. Under A.1-A.3 the LAN conditions defined in Section 3 are
satisfied at 0 = t with I, = I, and A, , of (3.4).

Proor. Introduce

n o -1/2
Lnw= 3 log"”"’ + n h)

i=1 S Y."-\it)
(A.20) W i s(Yi t + n~V2h) |
TS s(¥i b .
We need to prove that for every he R

(A.21) (L — A, + 3021) B30

in P, probability, P, referring to 0 = t. According to LeCam’s second lemmain
[8] (A.21) is equivalent to

(A.22) (Wow — kA, + 2021) B0

if we show that L(W, ,|P,) = N(— k%1, h21)). Al this will be accomplished, if
we prove the following relations:

(A.23) E@A, | = 0.
(A.24) ' E(W, P = =53,
(A.25) Var (W, , — kA, |P,) = 0,
(A.26) LA, |l = N ).

We shall start with (A.23). We have

o

(A27) 0= j %[f(y.t + A) — f(y. t)dy

- ®
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©
j A+ 8) = 2y 0] dy

-

. an l
j A syt + A) = s(y. 0] dy

e 91

L
+ ZJ A [sty.t + &) = s(y. )]s(y, O) dy

e )

-0 + ZJ s(y. DSy Hdy = J. f(y.t)dy

as A - 0.

The last statement follows from (A.11) and (A.12). Consequently

-1/2 /() P
ﬂ » [f()_’ﬁfﬂ ]

= ”Zf fy. ydy = 0.

(A.28) E(A,. P

In order to prove (A.24) and (A.25) we employ the same idea as in Lemmas
VI.2.1a and VI.2.1b in [8]:

n 1/2
(A.29) E(W, P = Z }|: ) 1]

Sy )

“ Lyt + 0720 — sy, t)]?
=7 ,"ZJ‘ [_ n-ViZp dy

- —/fZJ (4. O dy = —Lk%I,.

Furthermore.

(A.30) Var (W, , — hA, )
12

—4Z\m|:Yt+n h)—l—zn szYt:I

=1 sYi ) S(¥ t)
<1 i F[-“(Y.wl + a2 I — la= 12 fr :l
e s(Yi 1) f(Y.,t)

© { U2y . 2

=< 4/12.[ [q('lu_t n& /z’,) My S(y, t)_] dy = 0.

Finally. (A.26) follows easily from (3.4) by the central limit theorem. Q.E.D.



194

(1]

8
[10]
(1]
(12]
(13}

(14]
[15]
(16]
[17]
(18]
(19]
[20]
[21]
(22]

SIXTH BERKELEY SYMPOSIUM: HAJEK
REFERENCEN

R. R. BAHADUR, “On the asymptotic efticiency of tests and estimates.” Sankhya. Vol. 22
(1960), pp. 229-252.

———, “Rates of convergence of estimates and test statistics.” Ann. Math. Statist.. Vol. 38
(1967), pp. 303-324.

D. Basu. “The concept of asymptotic efticiency. " Sankya. Vol 17 (1956). pp. 193-196.

C. R. BLyTH, ‘On minimax statistical decision procedures and their admissibility.” Ann.
Math. Statist., Vol. 22 (1951), pp. 22-42.

H. CuerNoFrr, “Large sample theory: Parametrie case.” Aun. Math. Statist.. Vol. 27 (1956).
pp. 1-22.

J. HAJEK, ‘A characterization of limiting distributions of regular estimates. Z. Wahrschein-
lichkeitstheorie und Verw. Gebicte. Vol. 14 (1970). pp. 323-330.

“Limiting properties of likelihoods and inference.” Foundations of Statistical
Inference (edited by V. P. Godambe and D. A. Sprott), Toronto. Holt. Rinchart and
Winston, 1971.

J. Hasex and Z. Sipik, Theory of Rank Tests. New York. Academic Press. 1967.

J. L. Honees and K. L. LEHMANN, “Some applications of the Cramer-Rao inequality.”
Proceedings of the Second Berkeley Symposinm on Mathematical Statisties and Probability.
Berkeley and Los Angeles, University of Californin Press. 1950, pp. 13-22.

P. HuBER, “Striet efficiency excludes supereflicieney.” (abstract). Ann. Math. Statist.. Vol.
37 (1966), p. 1425, proof unpublished but available.

V. M. JosHi, “Admissibility of estimates of the mean of a finite population.” New Derelop-
ments in Survey Sampling, New York, Wiley. 1969,

L. LeCam, “On some asymptotic properties of maximum likelihood estimates and related
Bayes’ estimates,”” Univ. California Publ. Statist.. Vol. b (1953). pp. 277-330.

————, *'On the asymptotic theory of estimation and testing hypotheses.”™ Procecdings of
the Third Berkeley Symposium on Mathematical Statisties and Probability. Berkeley and Los
Angeles, University of California Press. 1956, Vol 1. pp. 129-156.

. 'Les propriétes asymptotiques des solutions de Bayes.™ Pubd. Inst. Statist. Unir.
Paris, Vol. 7. fasc. (3-4) (1958). pp. 17-35.

. “Locally asymptotically normal fimilies of distributions.”™ Oniv. California Publ.
Statist. Vol. 3 (1960). pp. 27-98.

, “Limits of experiments.”” Procecdings of the Siwth Berkeley Symposium on Mathe-
matical Statistics and Probability. Berkeley and Los Angeles. University of California Press,
1971, pp. 245-261.

C. R Rao, Linear Statistical Inference and Its Applications. New York. Wiley. 1965.

—— -, “Criteria of estimation in large samples.” Sankhyd Ser. 4. Vol. 25 (1963). pp. 189-206.
A. Wawnn, “Tests of statistical hypothesix coneerning several parameters when the number of
observations is large,” T'rans. Amer. Math. Soc.. Vol 54 (1943). pp. 426-482.

L. WEiss and J. WorLrow11z, " Generalized maximum likelihood estimators, T'eor. Verojatnost.
i Primenen.. Vol. 11 (1966). pp. 68-93.

. “Maximum probability estimators.”™ Ann. Inst. Statist. Math.. Vol. 19 (1967). pp.
193-208.

J. WoLrowitz, **Asymptotic efficiency of the maximum likelihood estimator.” Teor. Vero-
Jjatnost. i Primenen.. Vol. 10 (1965). pp. 267-281.




