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1. Summary and introduction

Two examples are presented (one of them the sequential x2 test) of parametric
models in which the invariant Sequential Probability Ratio Test has exponenti-
ally bounded stopping time N, that is. satisfies P(N > n) < pf for some p < 1,
where the true distribution P may be completely arbitrary except for the exclusion
of a certain class of degenerate distributions. Another example demonstrates the
existence ofP under which N is not exponentially bounded, but even for those P
we have P (N < oo) = 1. In the last section a proof is given of the representation
(2.1), (2.2) of the probability ratio R, as a ratio of two integrals over the group
G if G consists of linear transformations and translations.

Let Z1, Z2, be independent, identically distributed (i.i.d.) random vectors
which take their values in d dimensional Euclidean space Ed and possess distri-
bution P. The symbol P will also be used for the probability of an event that
depends on all the Zi. Let 0 be an index set (parameter space) such that for
each 0 E 0, PO is a probability distribution on Ed. We shall say "the model
is true" if the true distribution P is one of the Po, 0 E 0, but it should be kept
in mind throughout that we shall also consider the possibility that the model
is false, that is, that P is not one of the Po. In the latter case we shall also speak
of P being outside the model as opposed to P being in the model. Let 0(, 02
be two disjoint subsets of 0. It is not assumed that their union is 0). The problem
is to test sequentially H1 versus H2, where Hi is the hypothesis: P = Po for
some 0 E Oj, j = 1, 2.

If 'the hypotheses Hj are simple, that is, Q, = {0j}, j = 1, 2, then Wald's
Sequential Probability Ratio Test (SPRT) [23] computes the sequence of prob-
ability ratios

(l.l) R HTt P2(Zi) H n = 1, 2,
i= IPi (Z),
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pj being the density of Poj with respect to some common dominating measure;
stopping bounds B < A are chosen and sampling continues until the first n
when Rn is either _ A (accept H2) or . B (accept H1). More convenient for
our purpose is to consider Ln = log R,. Put log B = (. log A = f2 N the
random stopping time, then N is the first n when

(1.2) f , < Ln, < t2
is violated.

If we put Yi = log [p2(Zd)/p1(Z1)] it follows from (1.1) that Ln = 1'1 Yi, that
is, Ln is a random walk on the real line, starting from zero. Wald [22] used
this to prove P(N < ox) = 1 for every P except if P(Y1 = 0) = 1, which can
also be written

(1.3) P{pl(Z1) = P2(Zl)} = 1.

Under the same assumption P(Y1 = 0) < 1, Stein [21] obtained a much stronger
result

(1.4) P(N > n) < pn. n _ r,

in which 0 < p < 1 and r is some suitably chosen integer. Stein's proof relies on
the demonstration that there exists an integer r and p > 0 such that

(1.5) P{Ln+r . fl or > 42141 < L,, < f2} > p. n = 1 2,

The property P(N < Ix)= 1 is usually referred to as "termination with prob-
ability one.*- For short. the property of N expressed by (1.4) will be called
exponential bounde(d ness of'N (it wvould of course be more correct to call it ex-
ponential boun(le(dniess of the distrlibtutioni of N: the shorter terminology follows
Berk [3]. [4]). The nondegeneracv condition that P not satisfy (1.3) is obviously
not only stufficienit but also necessary for N to be exponentially bounded. Thus,
Stein's result is tlle most Com1lplete general restult possible for the \X'ald SPRT.

If the hypotheses Hj are composite. a SPRT can )be formulated only if somehow
the composite hypotheses ean be re(ldlced to simple ones. In this paper we shall
consider only the reduction that results firom app)lying the principle of invariance
(for the theory of invariance see. for examiple. [I.5]: for anl extensive discussion
of weight function and invariance reduction SPRT and their ,oossible relation
see Berk [4]). Suppose x(n) is the sample space of' (Z1. ... Zn). Let G be a grotup
of invariance transformations on x(n) x 0. The principle of invariance restricts
decisions at the nth stage of sampling to those that depend on x E x(n) only
through its orbit Gx. At the same time, the distribution of' orbits in x(n) depends
on 0 E 0 only through the orbit GO of 0. (AAn alternative way of expressing these
facts is by means of so called maximal invariants.) Suppose now that forj = 1. 2.
E) is a single orbit, that is, there exists Oj e E)j such that E)j = GOj. Then as far
as the distribution of orbits in X(n) is concerned, the hypotheses Hj are simple.
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The probability ratio Rn at the nth stage may then be taken as the ratio of
(random) orbit densities, one for 01 and one for 02. The resulting sequence
{Rn: n = 1, 2, * * *} is used for testing in the same way as in the Wald SPRT.
Such a test will be called an invariant SPRT. Many well known sequential tests
of composite hypotheses are of this form: sequential t test, F test, and so forth.
The questions oftermination with probability one and ofexponential bounded-

ness of N can also be asked of invariant SPRT but are much harder to answer.
The results obtained so far are much less complete than for the Wald SPRT. In
fact, the history of these endeavors has had a very modest beginning with only the
question of termination with probability one being attacked and then only for P
in the parametric model: Johnson [13], David and Kruskal [7], Ray [18],
Jackson and Bradley [12], Wirjosudiijo [30], Ifram [9]. Berk [2] was the first
explicitly to consider P outside the model. This was followed by Wijsman in [28]
where the question of termination with probability one was also treated for a
class of distributions larger than given by the model.

Study of the exponential boundedness of N started much later. Ifram [11]
still restricted P within the parametric model. Later studies of parametric models
by Wijsman [29], Abu-Salih [1] and Berk [4] allowed P outside the model. The
first nonparametric model (sequential two sample rank order test) was treated by
Savage and Sethuraman [19] and sharper results were obtained by Sethuraman
[20]. In both [19] and [20] P was allowed outside the model.
The only result in the literature to date for invariant SPRT that approximates

the completeness of Stein's result for the Wald SPRT is Sethuraman's [20] since
he shows for the particular rank order test in question that N is exponentially
bounded for every P, except for P in a certain class of degenerate distributions
(but whether the P in this class actually misbehave, that is. cause N not to be
exponentially bounded, is not known). In all parametric problems studied the
results have been considerably less complete. In order to obtain termination
with probability one a minimal assumption, made by all authors, has been that
under P certain random variables (the Xi of (2.4)) have first moments, and for
exponential boundedness of N the existence of their moment generating func-
tions. In addition, nearly all authors have been plagued by exceptional P (where
certain moments have certain exceptional values, not to be confused with de-
generate P) under which only weaker results or even no results could be obtained
(see, for example, the discussion in [29] Section 1). This is not typical for para-
metric as opposed to nonparametric problems, for Savage and Sethuraman [19]
encountered the same difficulty. The only authors whose methods have made it
possible to avoid having to exclude exceptional distributions are Berk [4] and
Sethuraman [20]. The latter author revived the Stein type of proof in which (1.5)
has to be established (this is of course much harder if Ln is not a random walk).
Berk [4] followed suit and used a modification of Stein's method to prove ex-

ponential boundedness of N. Judging from these examples it is not unreasonable
to guess that for sharpest results it is necessary to use the Stein type of proof,
centering around (1.5). (However, the absence of exceptional distributions in
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Berk's work must be due to his method [3] and assumptions in [3]. [4], since his
proof of termination with probability one has nothing to do with Stein's type
of proof.)
There is a certain amount of overlap in results and in assumptions between

[4] on one hand and [28], [29] on the other. There is a discussion of this in [4]
Section 2. However, there are also differences. Berk obtains the strongest results
whenever his method (relying on [3]) applies. Thus, he obtains exponential
boundedness of N in the sequential t test also for those exceptional P for which
only weaker results could be obtained in [29]. Moreover. [28] and [29] apply
only to invariant SPRT and assume a multivariate normal model whereas Berk's
method applies to a wider class of models and to weight function SPRT that
are not necessarily invariant SPRT. On the other hand there are some intrinsic
limitations in Berk's method that prevent the applicability of [3], [4] to certain
cases that are amenable to [28], [29]. Specifically, Assumption 2.4(d) in [4]
(which already assumes the existence of EpX,) implies in our notation (see (2.3),
(2.4)) that A'(O)EpX, + log c(0) has a unique maximum as 0 varies through
Oj, j = 1, 2. This condition is violated in Example 2, Section 5. if P is such that
EpZ1 Z'1 is a constant times the identity matrix because then 2'(0)E,X, + log c (0)
is constant on each O( . The same happens in Example 3, Section 6, ifEpZ1 = 0.
The main purpose of this paper is to provide two examples (2 and 3), one of

them being the sequential x2 test, in which N is shown to be exponentially
bounded for every P, excluding a certain class of degenerate P. In particular, it
is not assumed that any of the random variables has finite expectation under P.
We rely heavily on the Stein type of proof. To the best of our knowledge this is
the first time such examples have been given in parametric models. These ex-
amples give hope that in the future other (perhaps all?) invariant SPRT may be
shown to have exponentially bounded N for all but certain degenerate P.

In Section 3 a general discussion is given on distributions P for which N is not
exponentially bounded. Such P will be called obstructive. That such P do indeed
exist is illustrated in Example 1, Section 4. This example is nontrivial but so
simple that the behavior of {L,} can be studied easily. It seems to be the first
example of any nontrivial invariant SPRT-parametric or nonparametric-
where the existence of obstructive P has been demonstrated. Berk [4], Section 5,
gives examples of weight function SPRT where the tests do not even terminate
with probability one for certain P. However, those tests do not seem to be
invariant SPRT and fall therefore outside the scope of this paper.

2. Representation of Rn and approximation of Ln by 4>n

We assume that for each 0 E 0, P, has a density po with respect to Lebesgue
measure on Ed. Let G be a group of invariance transformations Zi -+ gZi,
i = 1, 2, - , where to each g E G is associated a d2 nonsingular matrix C and a
vector b e Ed, and the action is defined by gZi = C(Zi + b). The precise
assumptions on G are set forth in Section 7, Theorem 7.1. The hypotheses Hj for
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j = 1, 2, are of the form: P is one of the Po withO E GOj, where 01 and 02 are not
on the same orbit so that their orbits GO1 are disjoint. It will be proved in Section
7 that the probability ratio Rn at the nth stage for the invariant SPRT can be
represented in the form

(2.1) R. = J.(02)/Jn(01), n = d + 1, d + 2,

in which

(2.2) Jn(O) = f [l Pgo(Z)VG(dg).

In (2.2) VG is right Haar measure on G and we assume n > d + 1. Note that
the right invariance of VG guarantees that (2.2) is constant on each orbit in E, so
that R, does not depend on the particular choice of 01 and 02. The representation
(2.1), (2.2) bears a strong resemblance to (3) in [27], but in [27] the group G
acted linearly whereas in the present paper the action of G may include trans-
lations. Furthermore, (2.2) is written in terms of G acting on 0), whereas (3) in
[27] was expressed in terms of G acting on the sample space.
From now on we shall assume that the model is exponential, that is, the density

p6 of the Zi is expressible as

(2.3) po(z) = c(0)e`(0)s(z)h(z).
in which A (0), s(z) E Ek for some k _ 1, c(0), h(z) > 0 and prime denotes trans-
position. It is convenient to denote

(2.4) Xi = s(Zi), i = 1, 2,

so that X1, X2, * are i.i.d. vectors in Ek. Furthermore we introduce the
function

(2.5) /0 (g, x) = %(gO)x + log c(go), xEEk

and write Xn for (1/n) yn Xi. After substitution of (2.3) to (2.5) into (2.2) we
obtain

(2.6) J.(0) = f exp {nq,0(g, Xfl)}vG(dg).

If in (2.6) the integration were over a Euclidean space instead of over a group,
the method of Laplace (see, for example, [6]) could be used to approximate
Jn(0) for large n. Assuming that Laplace's method is applicable even if the inte-
gration is over a group (provided certain conditions are fulfilled) we expect the
main contribution to the integral to come from values of g that come close to
maximizing ,6. This suggests putting

(2.7) 4o (x) = max ilo (g, x),
geG

assuming the maximum exists, and putting
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(2.8) (D(x) = 462(x) -6o,(x).
Then we may expect that asymptotically Rn - exp {nd)(X.)}. Taking log and
writing

(2.9) (D, = n4)(Xn)
we may expect then that 4)n is in some sense an approximation to L" = log R,.
This approach was used in [28], [29].
Suppose now that the approximation of Ln by tD,n has the following form: there

is a constant B such that for all n

(2.10) IL, - (DI < B.

Let t1 = 1 -B, t'2 = 1 2 + B, where 11 and t 2 are the stopping bounds on Ln
(see (1.2)). In analogy to N defined in (1.2), define N' to be the first n for which
f1 < (D < 1' is violated. Then clearly N . N' so that if the latter is exponenti-
ally bounded, so is the former. Since our aim is to prove exponential bounded-
ness ofN for all choices of f1, 12, the problem then becomes to prove exponential
boundedness of N' for all choices of t1, t1. This shifts therefore the original
problem to a similar one, the only difference being that the original sequence
{L,} has been replaced by a new sequence {eD.}. The advantage is that {@Dn} is
usually much more tractable than {L,}. In Examples 2 and 3 it is indeed possible
first to show (2.10) and then to prove exponential boundedness of N'. In the
proofs the primes on e1, 12 and N will be dropped for notational convenience.

3. Obstructive distributions

For the purpose of this paper we shall call a distribution P obstructive if for
some stopping bounds (1.4) is not true, that is, N is not exponentially bounded
when the true distribution is P. In Wald's SPRT Stein's result shows that P is ob-
structive if and only if it satisfies (1.3). In the case of invariant SPRT we know
much less about the characterization of obstructive P. In fact, there is not even one
example where this has been carried out. All that has been achieved so far is that
in a few isolated examples classes of P that contain the obstructive P have been
characterized. For instance, Sethuraman [20] shows in a sequential two sample
rank test that the obstructive P satisfy (in his notation) P (V (X 1, Y1 ) = 0) = 1,
but it is not known whether all P in this class are obstructive. In Examples 2 and
3, Sections 5 and 6, certain classes ofP will be characterized and shown to include
the obstructive P. Again it is not known whether the inclusion is proper but this
seems likely in the light of Example 1.

In the exponential model there is some reason to conjecture that any obstruc-
tive P satisfies

(3.1) P(v'X1 = constant) = 1 for some v eEk, v * 0,

X1 being defined in (2.4). That is, X1 is confined to a (k - 1) dimensional hyper-
plane, a.e. P. However, very likely the class defined by (3.1) is usually too big.
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At least in Examples 2 and 3 the class ofP defined by (3.1 ) is larger than the class
of obstructive P. A smaller class than defined by (3.1) is the one defined by Berk
in his Assumption 2.4(c) of [4] (in different notation):

(3.2) Ppo(Z1) = p6 (Zl)} = 1 for some 0' E 01, 0" e 02.

This is the composite hypotheses analogue to (1.3). It is immediately seen that
in the exponential model (3.2) implies (3.1). In Examples 2 and 3 it is true that
the obstructive P, if any, are contained in the class defined by (3.2), but again
the latter is too big. It turns out in those examples that obstructive P satisfy (3.2)
only for certain pairs of (0', 0"). One can make a conjecture that the pairs (0', 0")
for which (3.2) may give obstructive P are those pairs that minimize the Kullback-
Leibler "divergence between po, and po,," (see (2.6) in [14]). It should be men-
tioned that in Examples 2 and 3 no P are actually demonstrated to be obstructive.
Example 1, Section 4 demonstrates for an invariant SPRT the existence of

obstructive distributions P. They do satisfy (3.2), with the further restriction to
pairs (0'. 0") that minimize the Kullback-Leibler divergence; but even in this
smaller class not all P are obstructive. In Example 1 we would have a complete
characterization of obstructive P if we would know that every P outside the class
(3.2) is not obstructive. Unfortunately, this is not known at present.
There is a qualitative difference between obstructive P for Wald's SPRT and

obstructive P for invariant SPRT, at least for those of Example 1. In Wald's
SPRT P is obstructive if and only if (1.3) is satisfied and in that case L" = 0 for
all n a.e. P so that not only is N not exponentially bounded but N = x a.e. P.
The obstructive P in Example 1 behave much more mildly: {Ln} is truly random
and P(N < cx) = 1. The only thing that goes wrong is that the distribution of
N does not have nice properties. Not only is N not exponentially bounded but
the stopping bounds of the test can be chosen so that not even the first moment of
N is finite.

4. Example 1

Let Z1, Z2, *-- be i.i.d. normal with mean C variance a2. both unknown.
Hj: a = a , j =1, 2, where the aj are given and distinct. Thus, C is a nuisance
parameter. The problem is invariant under the transformation Zi -* Zi + b,
i = 1, 2, * , C - + b, -oo < b < o, a -*a. The group G is therefore the
group of reals b under addition, and right ( = left) Haar measure vG(dg) can be
taken simply as db. The points 01 and 02 on the orbits Oi can be chosen as
oj = (0, aj), j = 1, 2. Then

(4.1) P0j(Zi) = 2_7aj)' exp {-(2a3)](Zi-b)2}
where b corresponds to g. Substituting this into (2.1) and (2.2). integrating with
respect to b, and taking log yields
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n

(4.2) Ln = [(2 1)- (2a2)'] E (Zi - Zn) + (n - 1) log-1
i1 ~~~~~~U2

in which Zn = (I/n)In Zi.
Now for convenience choose a1 < U2 in such a way that

(4.3) a- 2 + 2 log 1 = a-2 + 2log1a2.

It is easily checked that with this choice the two normal densities with mean zero
and variance U2, C2, respectively, are equal at + 1, that is,

(4.4) Po1(_ ) = P02(+1)

Take the distribution P as follows:

(4.5) P(Z1 = -1) = P(Z1 = 1) = 2,

so that InZX = n a.e. P. Substituting this into (4.2) and using (4.3) we get

(4.6) Ln = [log-|U (1 - nZ2) a.e. P.

Suppose f'2 is chosen > log (a2/a1) then Ln < t2 for all n a.e. P. The double
inequality (1.2) reduces then to the single inequality el < Ln, which can be put
in the form

n

(4.7) Z i <<an

for some a > 0 depending on a1, a2 and e,. The law of the iterated logarithm
guarantees that for every a > 0, we have P(N < oo) = 1, but if a _ 1 then
EpN = x [5].

It follows from (4.4) and (4.5) that P satisfies (3.2) for the couple (O', 0") =
(°1, 02), where Oj = (0, uj). It is clear from (4.2) that the behavior of Ln is un-

changed if P puts probability 2 on c + 1 for arbitrary c, so that such a P is also
obstructive. It can be shown that this class of P, with -oo < c < oo, constitutes
the class of obstructive P among all P satisfying (3.2) (or even among all P for
which Z2 has finite moment generating function). At the same time, a P with
support on c + 1 satisfies (3.2) with

(4.8) 0' = (c, a1), 0" = (c, a2),

and a simple computation shows that the pairs (0', 0") given by (4.8) are the
pairs that minimize the Kullback-Leibler divergence. But note that not even
all P satisfying (3.2) with 0', 0") satisfying (4.8) are obstructive, since for this
property it is not only required that P is supported on c + 1 but also that the
probabilities in these two points are 2.
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5. Example 2

Let ZI, Z2, be i.i.d. bivariate normal with mean 0 and covariance matrix
E. Put Zi = (xi, yi)'. We want to test the hypotheses Hj, j = 1, 2, that the char-
acteristic roots of L` are aj, Tjr, with aj > Tj, where the aj and Tj are given
positive numbers such that (a1, T1) * (a2, T2)- Consider the invariance trans-
formation Zi -* QZ,i i = 1, 2, - **, E -+ OLK', with El 22 orthogonal. It is suffi-
cient and more convenient to restrict G to all Q) having determinant + 1. Then we
may take Q2 in the form

F.cosco -sinlco 0 < co < 2x,
sin c cos co

and right (= left) Haar measure vG(dfl) can be taken as dwo. The density po of Zi
with respect to Lebesgue measure in E2 is

(5.2) po(Zi) = (27r)-1 l- 1/2 exp {- tr E-1ZiZi}.

We may identify 0 with L- and take O = diag (aj, Tj), j = 1, 2. In order to
evaluate R, using (2.1), (2.2), we have to replace in (5.2) E-L by Q diag (aj, Tj)Q',
j = 1, 2, substitute into (2.1), (2.2), and integrate. The integrals involve expres-
sions of the form

(5.3) 2 L exp {x cos t} dt = Io(x),

where Io is one of the Bessel functions of imaginary argument ([25], p. 77). The
random variables Zi = (xi, yi)' enter into the result only in the following com-
binations:

n
(5.4) Un = E (x4 + ybh)

i= 1

_n n \2 n \2- 1/2
(5.5) V. = -1 3 + 2 E Xiyi

In this notation we obtain for L, = log R,, the result

(5.6). Ln = !(a, + 1, - a2 - T2)Un + 2nlg a21

+ logI0[4 (a2 - T2)VJ - 10)IO[(l - Vn]-

On the other hand, performing the maximization in (2.7) and substituting into
(2.8) we find

(5.7) On = 14(al + T1 - a2 - T2)Un + -log2 alT1
+ 4(a2 -2 - a + T1) Vn.



118 SIXTH BERKELEY SYMPOSIUM: WIJSMAN

From the continuity of Io and its asymptotic behavior,

(5.8) lim (2itx)12 exp {-x}Io(x) = 1
x b0

(see [25], p. 203, but this also follows directly from the integral representation of
I0(x) and Laplace's method), we deduce that for any given a, ,B > 0 there exists
B such that for all x _ 0

(5.9) |log Io(oax) - log Io(fix) - (a - fl)xI < B.

Using this to compare (5.6) and (5.7) we see that (2.10) is satisfied. Hence for the
question of exponential boundedness of N we may replace Ln by D,s as discussed
in Section 2.

It turns out that the distributions P, for which we cannot prove exponential
boundedness of N, satisfy (3.2) with the pairs (0'. 0") of the form (gO1, g02),
g E G (and these are precisely the pairs that minimize the Kullback-Leibler
divergence). That is, the two values of - 1 (under 0' and 0") are Q diag (a1, z1 )Q'
and Q diag (a2, T2) Q', where Q is any matrix of the form (5.1). Substituting (5.2)
for Z1 into (3.2). with the above values of - ' and putting cos 2o = u
sin 2 = -u2, the negation of (3.2) then has the form

(5.10) P{2(a02 - 2- gl +z)[T1(4 -yI ) + U2(2x1yl)]

+ l(a1 + T1 - a2- T2)(X2 + Y2) + log 22 = o} < I.

Suppose first a2 - T2 - a1 + c, = 0. Using (5.7) and (5.4) it is seen now that
on is of the form (D)n = 1n Wi, with W1 FW2, i.i.d. and

(5.11) Vii = 4(a1 + T, - °2 - T2)(X 2)y
+ A+ 2log(2T2/a11).

and thus by (5.10)P(W1 = 0) < 1. Exponential boundedness follows from [21].
Assuming from now on that a2 -T2 -a1 + rl * 0 we shall put

(5.12) a- ,1 + T, 2 - T2 2

= log 2T2
a2 - T2 - °1 + T1 a2 - T2 - a1 + T1 aZTl1

so that (5.10) can be written

(5.13) P{u1(4 _ y1) + U2(2x1yl) + a(x + y2) + b = O} < 1.

For the purpose of proving exponential boundedness of N,vwe may divide <Dn
by any nonzero constant. Dividing in (5.7) by the ecoefficient of V'n we get

(5.14) 4)n = Vn + aUn + bn.

A further simplification in notation will be made. Consider the vectors
Y1, Y2, , where Yi = (xi - y3, 2xjyj)', then xi + y2 = llYill and (5.13).
(5.14) can be put in the form

(5.15) P{u'Y, + aIllYi + b = 0} < 1
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for every u E U,

(5.16) (D.= Y Yi || + a E || Yi ±|+ bn.
1 1

in which U = {u E E2: ||U = 1}. In (5.15). (5.16) there are some restrictions on
a and b that follow from (5.12) and aj > rj, j = 1, 2. For instance, if b = Owe
must have -1 < a < 0. However, these restrictions are of no help in the proof
of exponential boundedness ofN and we shall ignore them. Also, the fact that the
dimension of the sample space of the Yi is two plays no role. We shall give the
proof for Yi e Ek, for any positive integer k. This necessitates a redefinition of the
set of unit vectors

(5.17) U = {ucEk: IJuJI = 1}.

LEMMA 5.1. Let Y1, Y2, . be i.i.d. random vectors taking their values in Ek
for some k > 1, their common distribution P satisfying (5.15) with U defined in
(5.17). Let N be the first integer n such that t1 < on < t2 is violated, where (D,, is
given by (5.16) and e2 are arbitrary real numbers. Then N is exponentially
bounded, that is, satisfies (1.4).

Before proving Lemma 5.1 it is convenient to prove
LEMMA 5.2. Let {Xt, t E T} be a family of real valued random variables. T a

compact index set, such that for every t E T, (i) P(X, < 0) > 0. and (ii) X, X,
in law as s -+ t. Then there exists 3, E > 0 such that P(X, < -3) > 8for every
t E T.
PROOF. Let F, be the distribution function of X,. and x, < 0 a continuity

point of F, such that F1(x,) = 28, for some E, > 0 (this can be done by assumption
(i)). For any t E T let s -+ t then F.(x) -* F,(x) for every continuity point x of F,
using assumption (ii). In particular, F(x,) - F(x,) = 2r, so that there exists a

neighborhood U, of t such that s E U1 implies F,(x,) > Et. Since T is compact, we
can cover T with a finite number of such U,. say U1, - Ut,,. Put e = min
(E.i-i= 1, , n), = min (-x,.. i = 1. .n) so that E, 3> 0. Take an
arbitrary t E T then t is in one of the U,,. say in U,J. We have then F,(-3) _
F, (x,j) > j > E8.
PROOF OF LEMMA 5.1. The case P(Y1 = 0) = 1 is trivial for .ien by (5.15),

(5.16) (D, = bn. b * 0 so that N is constant. Henceforth wu shall assume
P(Y1 = 0) < 1. We shall distinguish two cases.

Case 1. There exists u E U (defined in (5.17)) such that

(5.18) P{u'Y1 + al Y11 + b > O} = 1.

We define

(5.19) Wi = u'Yi + allYi + b

so that W1, W2, are i.i.d. real valued random variables. Equation (5.18)
states that P(W1 _ 0) = 1, and (5.15) in addition implies that P(W1 > 0) > 0.
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Thus, the random walk Tn = Y.' Wi takes only nonnegative steps, and the
steps are positive with positive probability. Let N' be the first integer n such that
t1' < Tn <12 is violated, then N' is exponentially bounded according to [21].
Define

n

(5.20) Sn = E Y"
i= 1

then IISnII _ u'Sn and therefore, using (5.16) and (5.19),

(5.21) (Dn >_ U'Sn + a Y || Yi 11 + bn = Y Wi = Tn.
1 1

This, together with the fact that Tn is nondecreasing, implies N _ N' so that N
is also exponentially bounded.

Case 2. For all u E U, P(u'Y1 + all Y,1| + b _ 0) < 1, which can also be
written in the form

(5.22) P{u'Y1 + allY1, + b < 0} > 0

for every u E U. We shall prove that there exists a positive integer r and p > 0
such that

(5.23) P{,'l < (Dn+i < e2, i = 1, * * * X r|{l < (Dn < e52l < I P,
n = 1,2,---.

This statement is weaker than (1.5) but exponential boundedness of N follows
from (5.23) in the same way as it does from (1.5).
We apply Lemma 5.2 to X, = t'Y1 + a || Y, || + b, t E U. Obviously, U is com-

pact. Assumption (i) in Lemma 5.2 is (5.22) and assumption (ii) follows immedi-
ately from the fact that X,, - X, everywhere as s -+ t. Using Lemma 5.2, there
exists 61, ej > 0 such that

(5.24) P{u'Y1 + allY1, + b < -251} > 2s,
for every u E U. Now take B1 so large that P(|l Y1 || _ B1) < es and combine
with (5.24), then

(5.25) P{IlY1ll < B1, u'Y1 + a|Yill + b < -231} > Es

'for every u E U. For any vectors s, y E Ek we compute

(5.26) l2 + Yl - lsh < llK'(s'y + ilyl2)
With Sn defined in (5.20) define un = Snl/| Sn || if Sn * 0, and if Sn = 0 take un
equal to any fixed vector in U. Let i be any positive integer. Since Sn+, =
Sn+i-I + Y,+i, (5.26) states that

(5.27) |IISn+il |ISn+i-I 1||_ Un'+i-Yni+i + yt+i12
From (5.16) we obtain
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(5.28) Dn+i - On+i-I = IjSn+ijj - |1S.+i-111 + ajjYn+ijI + b.

Substitution of (5.27) into (5.28) gives

(5.29) ,Dn+i -n+i-I
< Un+i-lyn+i + alYln+ill + b + (21ISn+iS111)+ 'IYn+iIj2-

Let B2 be so large that B'/(2B2) < 61, then

(5.30) [IjYn+ilI < Bi, IISn+i-1l1 > B2] [(21ISn+i-i II)1IYn+iI2 < 1]

Together with (5.29) this gives

(5.31) [IjYn+i1f <B1, |ISn+i-l >B2,Un+i-lYn+i + aIjYn+ijI + b < -261]
=> [ n+l (Dn+i-i < -61]

Choose integer n1 so that n16I > d = e2 - 7 and put B = B2 + nIB1. Then

(5.32) [IISnll > B, IjYn+ijI < B1, i = 1, , nl]
-[IISn+i- I > B2ti ,in ]

Define the events

(5.33) Ai = [IlYil| < B1, ui_1Yi + aIlYill + b < -261], i = 1,2,-*

then given 11Sn |1 > B,An + i implies the left side of(5.31)for i = 1, * * *, n1(making
use of (5.32)) and therefore

-~ ~~~~~~n1

(5.34) [IiSnil > B, n+i = -D n+i-1 < - 1, i = 1 n]
=> [Dn+nl -Dn < nl61]

=> [Dn+nl - Dn < -d].
From (5.25) and the independence of the Yi it follows that P(AiISi- 1 ) > e1 for
every given value of Si- 1. (Note that the Ai are not independent, but Ai depends
on Y1, --, Yi-1 only through ui 1, that is, through Si-i.) Therefore, given
IISn > B, the extreme left side of (5.34) has probability _ en,', and consequently
(5.35) P{Dn+n, - Dn < - dIS} > 1 if |Sn|| > B.

Since P(Y1 = 0) < 1, we can choose u E U so that P(u'Y1 > 0) > 0. Then
there exists 62, 82 > 0 such that P(u'Y1 > 62) > 82. Choose integer n2 such
that n262 > 2B. Then

(5.36) [IIS.II - B, u'Yn+i > 62, i = 1, *n2] [IISn+n211 > B].
Therefore

(5.37) P{IISn+n2jI > BIS,} > 8112 if ||S. < B.



122 SIXTH BERKELEY SYMPOSIUM: WIJSMAN

Now put r = n1 + n2 and consider

(5.38) P{(Dn+i _<.l for some i = 1 ~, r|l < D,n < {2, S}n
If |ISnll > B it follows from (5.35) that (5.38) is > E87. If IISnlI _ B it follows
from (5.37) and from (5.35) with n replaced by n + n2, that (5.38) is > en2 n,.
Taking p = , we have then, whether jS,|1 is > B or < B,

(5.39) P{I,,+i _ el for some i = 1, r I,| < (Dn < e2l >P
and (5.24) is an immediate consequence.

6. Example 3: sequential x2 test

Let Z1, Z2, *. be i.i.d. d-variate normal with identity covariance matrix and
unknown mean vector 4. We want to test the hypotheses Hj that H14|| = yj,
where yi # Y2 are given positive numbers. (Note that we exclude the null hypo-
thesis 4 = 0.) Let G be the group of all d2 orthogonal matrices Q and consider
the invariance transformations Zi -, QZj, i = 1, 2,... C- Q. The parameter
0 in Section 2 may be identified with C and we may take Oj = yju, j = 1. 2, where
u is any fixed element of U defined in (5.17) with k = d. The density of Zi is
given by

(6.1) p,(Zi) = (271) d/2 exp I - (Zi - )'(Zi -)
Replacing in (6.1) C by Wj = yjfQu, j = 1, 2, substituting into (2.1), (2.2) and
taking log results in

(6.2) L. = logf(Y2 |S.) - 10gf(Y IS ) + (n/2)(y/ - y2).
in which

n

(6.3) Sn = z
i= 1

and

(6.4) f(x) =(f exu"nu(dQ) [x > 0, u E U].

In (6.4) ju is Haar measure on G. Clearly, f does not depend on the particular
choice of u E U. The function f satisfies the differential equation f"(x) +
(d - I)x- f'(x) = f(x) and can be related to the hypergeometric function OF1
[24], [10] :f(x) = 0F1 [ld( x)2] provided p is normalized. This permits writing
down the asymptotic behavior off; we have limx x(d- 1)/2e-xf(x) = constant.
We can obtain this also directly from (6.4) using Laplace's method after writing
f(x) in the form cf710 exp {x cos ow} (sin wO)d-2 dw). A third way is provided by
verifying that f(x) = cx`VIV(x), with v = 'd- 1 and consulting [25], p. 203
for the asymptotic expansion of Iv. It follows that for any a, ,B > 0 there exists B
such that

(6.5) Ilogf(cxx) - logf(,Bx) - (a -,)xl < B.
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Maximizing the integrand in (6.4) in order to obtain (D)n defined in (2.9) we get

(6.6) (D = (Y2 - y1)S + (n/2)(y1 - y2)
and comparison between (6.2) and (6.6), using (6.5), shows that (2.10) is satisfied
so that we may replace Ln by (D, in order to investigate exponential boundedness
of N.

As in Example 2, in order to prove exponential boundedness of N it suffices
to exclude distributions P satisfying (3.2) with (0'. 0") of the form (g01, gO2),
g E G (again. these are the pairs that minimize the Kullback-Leibler divergence).
Equatingpo (Zl) for these pairs, using (6.1), yields2(2 - y1) U'Z1 + 71 -Y2 0

with u E U. If this is not to hold a.e. P then P must satisfy

(6.7) P(u'Z1+ b = 0) < 1

for every u E U in which b = - 1(Tl + /2). On the other hand, (6.6), after
dividing by the immaterial factor 72 - yt. may be written

(6.8) (D, = S,, II + bn.

It is seen that (6.7), (6.8) is a special case of (5.15). (5.16). with a = 0, and there-
fore exponential boundedness of N follows from Lemma 5.1.

7. Representation of orbit density ratio as ratio of integrals over the group G

Suppose X is a Euclidean space carrying a family of probability densities
po(x) with respect to Lebesgue measure in X, 0 E E0. Suppose G is a group of
invariance transformations, implying (among other things) that for every g E G,
O E and measurable set A c: X

(7.1) r p,o(x) dx = po (x) dx

in which dx is Lebesgue measure in X. Let Q0 be the distribution on the orbit
space X/G and assume it has a density qo with respect to some sigma-finite
measure (since we shall need qo only for two values of 0, this assumption is justi-
fied), where q6(x) depends on x only through its orbit Gx. Let 01. 02 have distinct
orbits GO1, G02, and consider the orbit density ratio R(x) = q62(x)/qo,(x). If G
acts on X linearly, it was shown in [27], Equation (3) that for all x, except
possibly for x in a set of Lebesgue measure zero, R(x) can be expressed as

(7.2) R (x) = J(01, x)/J(02, x)

with

(7.3) J(0.x) = fpo(gx)Ig9IG(dg).
in which lgl is the Jacobian of the transformation x -+ gx and IUG is left Haar
measure on G. Using (7.1) it is easy to establish that
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(7.4) pO(gx)lgl = Pgi- (x)

and substitution of (7.4) into (7.3) gives

(7.5) J(0, x) = fPg-l(X)IG(dg).

The measure VG defined by vG(dg) = ,G(dg 1) is right Haar measure on G and
therefore (7.5) can be put in the form

(7.6) J(O. x) = {PgO(x)vG(dg)

This leads immediately to (2.1), (2.2) provided (7.2), (7.3) can be justified also
for G whose action on X consists not only of linear transformations but also of
translations. The derivation of (3) in [27] depended on the nature of the action of
G only insofar the existence of a flat local cross section at almost every x had
been shown only for linear Cartan G spaces [26], Theorem 2. We shall extend
this result now and show the existence of a flat local cross section at almost all x
when G consists of linear transformations as well as translations. Basic to the
proof are certain results of Palais [17]. Definitions in [17] and [26] will be used
freely. No use will be made of Lemma 5 in [26].
THEOREM 7.1. Let X1, * * * X,, be copies of Ed, where n > d > 1, and let

X = ]7J' Xi. Let G = LH, in which L is a Lie group of linear transformations on
Ed (with the usual topology as a matrix group) and H is the group of all translations
of a subspace B cz Ed such that LB = B. Let the action of G on Ed be defined as
follows: if g = th, t E L corresponding to the d2 nonsingular matrix C, h E H
corresponding to the vector b E B, then gz = C(z + b), z E Ed. Let the action of
G on X be defined by g(x1,-.- x.) = (gx1. *- -, gxn), xi E Xi, i = 1, . n.
Then there is an open subset XO of X, invariant under G and X - XO having zero
Lebesgue measure, such that each point x e XO admits aflat local cross section.

Before proving the theorem we shall prove a lemma. Also, the definition of G
needs discussion. As an analytic manifold G is defined as L x H. Now there
are two ways of defining the multiplication in order to make G into a group. The
first one of these is consistent with the way we have defined the action of G on Ed
(that is, gz = C(z + b)) and is given by

(7.7) (C1, b1)(C2, b2) = (C1C2, b2 + CI 1b,).
C1, C2 E L, b1, b2 E B, where it should be observed that b2 + C-'bl EB by
virtue of the assumption LB = B. From (7.7) follows that the elements of G of
the form (C, 0) form a subgroup isomorphic to L, and the elements of the form
(I, b) (I = identity matrix) form a subgroup isomorphic to H. Furthermore, also
from (7.7), (C, 0)(I, b) = (C, b) so that the group multiplication (7.7) is con-
sistent with writing the elements g E G in a unique way as g = fh, t E L, h E H.
This suggests the notation G = LH. It is also easily verified that g- 'kg E H,
g E G, h E H, so that H is normal in G. The second way of defining the group
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multiplication, which also results in H being normal and which is consistent with
thegroupactiongz = Cz + b,is given by(C1,bl)(02,b2) = (C1C2,b1 + C1b2).
This is consistent with writing g E G in a unique way as g = he, h E H, f' E L,
and we would have denoted G = HL. Either way of defining G from L and H
is called a semidirect product (see (2.6), (6.20) in [8] and 30D in [16]). It is
immaterial which of the two ways one chooses, as long as the action of G on Ed is
defined in accordance. We have arbitrarily chosen the first way. After the proof
of Theorem 7.1 we shall deal with Haar measure on G.
LEMMA 7.1. Let V1, .., Vd be copies of Ed and let L be a Lie group of d2

matrices (with the usual topology) acting linearly on Ed. Let V = I-Id Vi, consider
the points v E V as d 2 matrices v = [V1, Vd* , vi cE Vi being a d x 1 column
vector, and let VO = {v E V: v is a nonsingular matrix}. Then VO is a linear Cartan
L space.

PROOF. Since L is contained in the group GL(d, R) of all real d2 nonsingular
matrices and L has the relative topology of GL(d, R), the conclusion of the
lemma is true for L if it is true for GL(d, R). We shall therefore proceed to prove
the lemma for L = GL(d, R). Note that V0 is a copy of L. Hence the task is to
prove that L is a linear Cartan L space.

In order to show that every e E L has a thin neighborhood it is sufficient to do
this for the d2 identity matrix I. Let E be the d2-dimensional Euclidean space in
which L is embedded and observe that L has the relative topology of E. Define
U0 = {M E E: tr MM' . c} in which c > 0 is chosen so that I + M is non-
singular for every M E UO (it can be shown that any c < 1 will do). Then
U = I + UO c- L is a compact neighborhood of I. It follows from the con-
tinuity of inversion and group multiplication that UU- is compact. Let A =
{e E L: eU r) U * 0} then A c UU-1 so that A has compact closure and there-
fore U is a thin neighborhood of I. Q.E.D.
PROOF OF THEOREM 7.1. Choose any n2 orthogonal matrix Q whose last

column has all its entries equal to n 1/2. Write X = [X1, * * , Xj] and let W =
[WI, * * *, Wj] be defined by W = XQ. It suffices to prove the conclusion of the
theorem for W instead of X. The action of G on W is determined by the action of
0 on X. An easy calculation shows that L acts on the Wi in the same way as on the
Xi. On the other hand, H acts trivially on WI, * * , W.- 1 whereas the action on
W, is given by hw. = wn + bn'2 if h corresponds to b E B. Write W, = W,') x
W") where W,,) = B and W its orthogonal complement in W,. Thus,
LW1() = W(1) and H is transitive on W,1) and acts trivially on " It is easily
established from the invariance of W,1) under L that the action of L on W,
induces an action of L on n so that is a linear L space. Put V = rId W
and let V0 be the subspace of V as defined in Lemma 7.1 SO that V - V0 is an
invariant nullset. Write Y for (nId+ WI) x W or Y nW"2) if n = d + 1,
and Z for W."), then Y is a linear L space and

(7.8) W0= VO X Y X Z

differs from W by an invariant nullset. Since by Lemma 7.1 VO is a Cartan L
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space and Y is also an L space. it follows from [17] Proposition 1.3.3 that
V0 x Y is a Cartan L space (it is also linear but that is not being used). Using the
fact that H is a group of translations of Z it is elementary to establish that W0
is a Cartan G space. Furthermore, from the nature ofL acting on V0 it is obvious
that the isotropy group is trivial at each point of V0 and it follows that G acting
on W0 has trivial isotropy group G. at each x E W0. Using [17] Lemma 2.2
there is at x E W0 a flat near slice (take as S* in that lemma a translate through
x of any linear complement to (Gx)x, taking into account that G, is trivial). By
[17] Proposition 2.1.7 this near slice at x contains a slice S at x. Using [26]
Lemma 3 and the fact that G, is trivial for every s e S, we conclude that S is a
local cross section. This concludes the proof of Theorem 7.1.
We conclude this section by showing how Haar measure on G = LH can be

obtained from the Haar measures on L and H. Our G is a special case of the
following general semidirect product. Given Lie groups L and H such that for
each 1' E L there is an automorphism a, ofH satisfying uTf1-2 = uf2u.17 f2( L.
(in our G, a,, is the automorphism b -- C 'b if C corresponds to f{), and more-
over the function (V. h) -+ a,(h) is an analytic mapping of L x H onto H. Then
G is defined as the analytic manifold L x H with the group multiplication
({,, h1)((2. h2) = (tYi2, o72(hl)h2) (see 30D in [16]). (With this group multi-
plication and the obvious identification of L and H with subgroups of G it is
readily verified that a,(h) = f -hf.) Let UL. IUH be left Haar measure on L., H,
respectively. Then the product measure JUL X PH on L x H is left Haar measure
on G(see 30D, E in [16]). This can also be expressed as follows: let VL, VH be right
Haar measure on L, H, respectively, and let A be any measurable set in G. then
the measure IIG(VG) defined by

(7.9) PGA = .fLhcA PL(df)11H(dh),

(7.10) "GA = , VL(dV)'H(dh)

is left (right) Haar measure on G. Here (7.10) follows from (7.9) using the familiar
fact that for any group K, if l, is a left invariant measure on K then VK defined
by VKA = ,uKA'- is right invariant. We can write (7.9). (7.10) also in the following
form: let f be integrable on G with respect to PG (VG), then

(7.11) ff(g)PG(dg) = Jff(h)PL(d&) PH(dh),

(7.12) ff(g)vG(dg) = fff (ht)VL(dt)VH(dh).

The fact that the integral on the right side of (7.11) (of (7.12)) is unchanged if
f (g) is replaced byf(g1g) (byf(gg1 )), for anyg1 E G, can of course also be checked
directly (as in (15.29) (a) of [8]).
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APPLICATIONS. Using (7.11), the function f(h) in Equation (10) of [27]
could have been omitted by writing on the right side p(hgxo) instead ofp(ghxo).

Using (7.12) and observing that right (= left) Haar measure on H can simply
be taken as Lebesgue measure db on B, we can write (2.2) now in the form

ffn
(7.13) J.(0) = JHJf ph((Z )VL(dt) db

and (2.6) in the form

(7.14) Jn(0) = ff exp {n Jr6(h{, Xn)}vL(dt) db.

I would like to thank R. H. Berk for several valuable comments.
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