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1. Introduction

In recent years, among theoretical geneticists, there has been a flourishing of
interest in the exact treatment of complex genetic systems. By complex, I mean
systems in which more than one genetic locus is varying and in which the inten-
sity of natural selection operating on a genotype is a function of the interaction
of physiological forces among the several loci. Obviously, if we can specify the
relative fitnesses of different genotypes at each locus separately without reference
to the state of other loci, then the usual single locus formulations are adequate.
If the relative fitnesses are not so unambiguously defined, however, the dimen-
sionality of our problem increases and with it the complexity of the various
solutions.
When very large populations are considered, and if environments are assumed

to be essentially constant over reasonably long periods of generations, then the
genetic change of a population, caused by differential fitness of various geno-
types, can be analogized to the movement of a point on a potential surface. At
any time the population state is given by a point in (n + 1) dimensional space,
in which n dimensions are the n variables needed to specify the genetic composi-
tion of the population and the (n + 1)st variable is the mean fitness or potential
function of the population. Looked at in this way, there are three problems to
be attacked. First, what is the minimum number of dimensions sufficient to
describe and predict population change and composition? For example, if we
consider two gene loci, each with two alternate alleles, will two dimensions, the
frequency of one allele at each locus, be sufficient (in addition to the extra dimen-
sion of mean fitness)? Or will it be necessary to have three dimensions to describe
the genetic composition, corresponding to the gametic types AB, Ab and aB
(the frequency of the fourth type ab is fixed by the other three)?
That is, is the genetic composition of a population sufficiently specified by

knowing the frequencies of alleles at each locus separately or do we need to know
the joint distribution of three alleles at different loci? In the former case, the
population composition can be represented by a point in a hypercube of {(a - 1)
dimensions, while in the latter case we require a hypertetrahedron of (a' - 1)
dimensions, where t is the number of gene loci and a is the number of allele per
locus, assuming a to be the same for all loci.
The second question is what are the kinetics of the process of genetic change

in time. What path on the n dimensional hypersurface, the fitness surface, will
439
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the population take? Third, we must inquiire into the static or equilibrium con-
figuration of the population. What kinds of singularities does the fitness surface
have, what are the maxima, minima, minimaxes and at which, if any of these,
does the population have stable equilibrium state of genetic composition?

These three questions are obviously closely related, and it is the purpose of
this paper to summarize our present understanding of these problems at the
theoretical level.

2. The basic model

Let us assume that a given genetic locus has n alleles as, each with frequency
xi in some generation t. Further, let us assume an infinite population mating at
random so that the frequency of any diploid genotype aiaj among fertilized eggs
is xixj (aiaj ajai). Associated with each genotype aiaj is a fitness W2j (= Wji)
which is the probability that an egg of that genotype produces a progeny egg in
the next generation. Defining the mean fitness of the population TW, by

(2.1) W = E x1xjW17,
ii

it can be shown that the change in gene frequency in one generation as a result
of differential fitness is given by [16]

(2.2) - 2W dxi
Equation (2.2) shows clearly that TW is a potential function and that Axi will be
zero for all i if

(2.3) xi = 0 for some subset of i,

and

(2.4) 0= ° for all i not in I.39xi
Condition (2.4) simply describes singularities in the W surface. Because of the
definition of W given by (2.1), the set of equations (2.4) has at most one solution
strictly inside the unit tetrahedron. This means that there is at most one equi-
librium value at which any particular subset of alleles ai is present in the popu-
lation. If such an equilibrium value exists, it may not be stable; but if it is stable
it corresponds to a maximum on the W hypersurface [4], [16].

For any particular set of fitnesses Wij, there may be many stable equilibrium
points, each one corresponding to the presence in the population of a particular
subset of the alleles so that stability in this sense is not global. Let us suppose
that three alleles at a locus are at equilibrium at zt = &2 = &3 = 0.33. Any
perturbation of the frequencies may result in a return to this equilibrium so that
it is stable, by definition. Nevertheless, the introduction of two new alleles may
result in a completely new stable equilibrium configuration with all five in stable



GENETICS OF COMPLEX SYSTEMS 441

equilibrium. A well kniown case of this is the equilibrium for self-sterility alleles
[15].

3. Multiple loci

There is no loss of generality when we consider multiple loci, if each locus is
assumed to have only two alleles. If we assume as a first approximation that
the distribution of allelic frequencies at the 4 different loci are independent, the
description of the genetic composition is a point in a unit hypercube of 4 dimen-
sions since the allelic frequency at each locus separately is a sufficient descrip-
tion. The mean fitness function W is defined by

(3.1) W = E Zij...IWj.,
where Zij.... is the frequency of a diploid genotype and is equal to the product
of the separate frequencies of the partial genotypes at each locus. Thus, the
frequency of the genotype AaBBcc is equal to the product of the marginal fre-
quency of Aa by the marginal frequency of BB by the marginal frequency of cc.
The equation for gene frequency change at each locus separately is

(3.2) Ap, p( - pi dW
2W dpi'

where pi is the frequency of one of the two alleles at the ith locus and again the
problem can be seen as a potential problem with the point representing the gene
frequency composition of the population going to a value in the hypercube
representing a maximum of W. Two important points emerge from this analysis.

First, because of the definition of W in expression (3.1), there is not necessarily
a unique maximum in the hypercube. Unlike the single locus case, where the
population always goes to the same configuration of allelic frequencies given
the subset of alleles segregating in the population, there may be more than one
local maximum in the multiple locus case and two different populations will
tend toward different equilibria depending upon their instantaneous position.
Figure 1 shows a case of a two locus, two allele fitness surface derived from data
on natural populations of a grasshopper, Moraba .scurra [12]. There are two
stable points, represented by two peaks at the margins of the square, as well as
a low point (V) and a maximum (S). The figure shows different paths of gene
frequency change from different initial positions and it is particularly note-
worthy that two initial conditions very close to each other in the upper right
corner may lead to totally different final results. It is difficult to say what is the
maximum number of singularities on the W surface and what their nature
may be.

Since W, defined by (3.1), is the product of 4 quadratics, it would seem that
there would be 3e possible singularities including the boundaries and that 2' of
them would be on a boundary. This is obviously true for t = 1 and Moran [12]
has shown that it is true for t = 2, where, of the nine possible equilibria, five
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FIGURE 1

Fitness surface for two locus system estimnated from
field data on Moraba scurra [12].

Arrows show the direction of change in the gene frequencies
from given starting points.

P are fitness maxima, V are fitness minima, anld S is a minimax.

can lie entirely inside the unit square. Moran has produced a case where three
of these are maxima and therefore stable.
The second point is that W is not exactly a potential function in that the gene

frequency does not take the path of least action on the surface. Equation (3.2)
shows that Api is proportional not only to the gradient of the surface but also
to the absolute position, p(l - p). Thus, the direction of the vector of gene
frequency change which will be given by APi/AP2 in the two locus case is
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pO( - POdW
(3.3) - - -,AP2 P21- P)dW

dp2
instead of only by the ratio of the gradients. This effect is shown graphically in
figure 2 from Lewontin and Kojima [11]. One quadrant of the unit square is
shown with the stable equilibrium point corresponding to the maximum of the
W surface in the upper left corner. The solid line represents the path the popu-
lation composition would take if changed according to the principle of least
action, while the broken line shows the actual course of the change under the
assumption of independence of the two loci.
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FIGURE 2

Contrast between the actual trajectories of gene frequency change
on a fitness surface (broken lines) and the path of steepest ascent

of "minimum action" (solid lines) [11].

4. The complication of linkage

When two or more loci are considered, it is not at all obvious under what
conditions the joint distribution of genotypic frequencies at all loci can be rep-
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resented as the product of independent distribution at each locus separately.
If we relax the assumption of independence, the frequencies of the alleles at
each locus are insufficient to specify the populations since there are only t such
allelic frequencies while there are a' - 1 independent gametic frequencies.

In order to handle this problem, we return to the one locus, multiple allele
model but now regard each gametic type as an allele. In such a model, the
"alleles" change frequency for two reasons. First, natural selection as sum-
marized in the fitness values W causes some gametic types to increase at the
expense of others. Second, recombination in heterozygotes produces "alleles"
that were not present in the parents. Thus, the double heterozygote AB/ab
also produces the alleles Ab and aB and the proportion of these each generation
is a function of the frequency of heterozygotes from which they can be produced,
but also of the linkage distance between the A and B loci. In general [10], the
change in frequency xi of a gametic type can be written as

(4.1) Axj = xi(l - xi) OW - p(x R),2W Ox i

where p(x, R) is a function of the vector of gametic frequencies x and the set of
recombination fractions among the loci R. In general, p(x, R) is a messy function
with large numbers of terms that make the actual evaluation of Axi tedious,
and completely general statements about rate of change and equilibrium values
difficult. For the case of two loci and two alleles at each locus Lewontin and
Kojima [11] have given a simple form of these equations (erroneously transcribed
in [8]),

(4.2) Axj = xi(Vi. - W) - k(i)RWIVD
W

where xo, XI, x2, and X3 are, respectively, the frequencies of ab, aB, Ab, and AB
gametes;

Wi. = EWjxj;

W =E Wi.xi;
(4.3)

D = XoX3 -XX2;

R = recombination fraction between locus A and B;
anid k(i) = 1 for i = 0, 3; k(i) = -1 for i = 1, 2. A closely analogous set of
equations was given by Kimura [4] for continuous generations and is the first
published exact treatment, to my knowledge, of the problem of linkage and
selection. Further analogous equations for haploid models are given by Felsen-
stein [2]. A completely general but not very useful form of p(x, R) is given by
Lewontin [8] for arbitrary numbers of loci. In general, resort must be had to
numerical solutions, to simplified symmetrical situations, or to approximations
for small values of selection coefficients aiid recombination fractions, since even
the simple equations given by (4.2) do not have simple equilibrium solutions.
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In recent years, a nluml)er of authors (Bodmer and Parsons [1], Felsenstein [2],
Haldane [3], Kimura [4], [5], Kojima and Kelleher [6], Lewontin [8], [9], [10],
Lewontin and Kojima [11]) have studied a number of models and situations by
a variety of methods. All together, these studies give a fairly broad picture of
the equilibrium and kinetic properties of multilocus systems in large popula-
tions. As yet, the importance of linkage in stochastic models is poorly under-
stood. The remainder of this paper will be devoted to the general principles that
have been established for linked gene systems.

5. Equilibrium properties

(1) If linkage is tight enough, gametic frequencies are affected by linkage even
though gene freqecncics may not be. Table I shows a general set of symmetrical

TABLE I

FITNESSES FOR A SIMPLE SYMMETRICAL Two Locus
MOfEL ALLOWING A xITERAL SO(LUTTION

AA Aa aa

1_)'B ~ Ub a

Bb c d c
bb a b a

fitnesses for the nine genotypes in a two locus system. In such a case, Lewontin
and Kojima [11] show that stable equilibrium of gametic frequencies is given by

(5.1) xi= 1,
or

(5.2) Xi = (I + b + c-a-d)
At both of these equilibria, the allelic frequencies at both loci are one half since
by symmetry xO = X3 = 1/2 -x = 1/2-x2, and the allelic frequencies at
the two loci, p and r, are given by xo + xi, and xO + x2, respectively. Equilib-
rium of the form (5.1) are also seen to be in linkage equilibrium since the gametic
frequencies are the product of the respective allelic frequencies. Equilibrium
of the form (5.2) are in linkage disequilibrium and this can be measured by

(5 3) D = xox3- xlx2 = -1- + b + c-d -)
Lewontiii and Kojima show that the conditioni for (5.2) to be the stable equi-
librium as opposed to (5.1) is that

(5.4) R < a + d-b-c b + c-a-d <0.
4d

That is, linikage must be tighiter than a value determined by the relationship
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among the fitnesses. Moreover, if a + d - b - c = 0, no value of linkage is
tight enough to cause stable linkage disequilibrium. But a + d - b - c is a
measure of deviation from additivity of the fitnesses. This leads to the second
rule, one which has been found to be general even for nonsymmetrical cases.

(2) Linkage has an effect on equilibrium gametic frequencies only if there is non-
additivity among the fitness effects at different loci.

(3) Tight linkage may produce stable equilibrium of intermediate gene frequency
where none would exist without linkage. Lewontin and Kojima [11] show that for
the condition (5.1) to be stable not only must linkage be looser than that given
by relation (5.4), but also la - dl > lb - cl and d > a. Consider the fitnesses
a = 3, b = 4, c = 1, and d = 5. These do not satisfy the condition just stated
so that stable equilibrium at xi = 1/4 is not possible. However, if linkage is
tighter than approximately R = 0.116, the equilibrium given by (5.2) is stable.

(4) Linkage, if it is too tight, may destroy the stability of a gene frequency
equilibrium.

Table II from Lewontin [8] shows the equilibria that result from assignments
of a = 0.9, b = 0.2, c = 0.2, and d = 1.00 in table I. The values of D' given in
the table are obtained by dividing the measure of linkage disequilibrium D by

TABLE II

RESULTS OF THE APPLICATION OF THE FITNESSES IN TABLE I
WITH a = 0.9, b = 0.2, c = 0.2, AND d = 1.00

goo, go9, gao, AND gil REFER TO THE GAMETES ab, aB, Ab, AND AB
(Other symbols are explained in the text).

R goo go] g'o gl1 p r DI W

.00 .50000 0 0 .50000 .50000 .50000 1.00000 .95000

.01 .49667 .00333 .00333 .49667 .50000 .50000 .98658 .94000

.02 .49324 .00676 .00676 .49324 .50000 .50000 .97297 .93000

.03 .48979 .01021 .01021 .48979 .50000 .50000 .95916 .92000

.04 .48629 .01371 .01371 .48629 .50000 .50000 .94516 .91000

.06 .47913 .02087 .02087 .47913 .50000 .50000 .91651 .89000

.08 .47174 .02826 .02826 .47174 .50000 .50000 .88694 .87000

.10 .46409 .03591 .03591 .46409 .50000 .50000 .85636 .85000
.10 to .375 no stable equilibrium of gene frequencies
.375 to .50 .25000 .25000 .25000 .25000 .50000 .50000 0 .57500

its maximum value given the allelic frequencies. The symbols p and r stand for
gene frequencies at the two loci. As the table shows, when linkage is quite tight
there are stable equilibria with gene frequency at one half and the gametic
frequencies very much distorted from independence. When linkage is between
0.10 and 0.375, however, there are no stable equilibria at all and the gene fre-
quencies at both loci fix at 0 or 1. Then, with yet looser linkage, there is a stable
equilibrium, but one corresponding to linkage equilibrium.
Table II also shows in striking form a phenomenon that will be apparent in

all results to be given.
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(5) Linkage increases the mean fitness of the equilibrium population. Table II
shows that very tight linkage results in a 65 per cent inierease in fitness in this
model. For the general model of table I, Lewontin and Kojima [11] show that

(3.3) T = lLE + 4D2(a + d - b - c),

where WLE is the value of mean fitness at linkage equilibrium (xi = 1/4). The
increase will not be large unless the epistatic deviation (a + d - b - c) is large
since D2 is always less than or equal to 0.0625.

(6) The equilib-ium allelic frequencies are generally altered by linkage. The
previous results based on the fitnesses in table I show no sensitivity of the
allelic frequencies at equilibrium to different values of R. This is an artifact of
the symmetry of the fitnesses in the table. Table III shows an asymmetrical

TABLE III

FITNESSES FOR AN ASYMMETRICAL Twuo Locus MIODEL

AA Aa aa

BB .5000 .5000 .3750
Bb .5625 1.00(0 .3125
bb .3750 .4375 .3750

model and table IV gives the stable equilibria found by numerical methods.
Not only are the gametic frequencies dependent uponi the value of R but there

TABLE IV

RESULTS OF THE MODEL WHOSE FITNESSES ARE SHOWN IN TABLE III
(Symbols are as in Table II.)

R goo gol gio gil p r D D' W

.0( .55556 .00000 .00000 .44444 .55556 .55556 +.24691 + 1.00000 .72223
.00000 .50000 .50000 .00000 .50000 .50000 -.25000 -1.00000 .68750

.01
.01664 .48928 .48593 .00815 .50592 .50257 -.23762 -.96684 .67849

.02 .54063 .02385 .01668 .41884 .56448 .55731 +.22604 +.93128 .70255
.03563 .47750 .47063 .01624 .51313 .50626 -.22415 -.90940 .66738

.03 .53282 .03652 .02543 .40523 .56934 .55825 +.21499 +.89423 .68779
.05457 .46552 .45443 .02548 .52009 .50900 -.21016 -.89190 .65730

.05 .51637 .06352 .04396 .37615 .57989 .56033 +.19144 +.81325 .67350
.10201 .43688 .41605 .04506 .53889 .51860 -.17717 -.79727 .63669

.07
.16945 .39738 .36821 .07036 .56683 .53226 - .13225 -.65273 .61463

.075
. 1)9509) .38244 .34280 .07967 .57753 .53789 - .1556 - .59 187 .60815

.1( .46805 .14242 .09X54 .29099 .(A;107 .56659 + 1'221G +.55351 .62830

.15 .41262 .21957 .15828 .20953 .632 1 ! .5709 +.05170 + .24621 .59970

.20 .38645 .24803 .18406 .18146 .63448 .57051 +.02447 +.11734 .5935t;

.35 .36977 .26391 .19969 .16663 .63368 .56946 +.00891 +-.04271 .59138

.50 .36582 .26743 .20328 .16347 .63325 .56910 +.00544 +.02606 .59101
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is a considerable change in allelic frequencies at each locus with increasingly
tight linkage. This table also illustrates two other points.

(7) There may be alternative stable equilibrium for a given linkage value. Coindi-
tion (5.2) allows for reciprocal equilibria with either the coupling gametes in
excess (x0 and X3 have the positive sign before the radical while xl and x2 have
the negative) or repulsion in excess. These alternative and totally equivalent
equilibrium have oppositely signed D values but the same mean fitness. In the
asymmetrical case of table IV, however, there are two nonequivalent equilibria
for each of the tighter linkage values. The coupling equilibria have a slightly
higher W in each case, and it is these that persist at looser linkages; but in other
models it is the repulsion equilibrium that gives the higher fitness.

(8) Even genes on different chromosomes may be out of random combination at
equilibrium. The last line in table IV shows that a linkage disequilibrium of 2.6
per cent of maximum persists at gene frequency equilibrium for this model even
when the genes recombine with a frequency of 50 per cent. Thus, genes on dif-
ferent linkage groups can nevertheless be correlated in their allelic frequencies.
What is required is that the epistatic interactioni be quite strong. In the model
of table III, the heterozygote Bb changes from underdomiinance to overdomi-
nance as the genotype at the A locus changes from aa to Aa. A similar change
takes place for the Aa heterozygote for changes at the B locus. This is an extreme
form of interaction and may be considered as unrealistic. As we shall show, there
are natural models of natural selection that generate evenl greater amounts of
epistatic interaction.

(9) AIultiple locus systems show cumutlative effects of linkage alony the chromlo-
some. The effects of linikage on the e(uilibrium configuration of gametes is small
unless linkage distances are short. Table IV shows that the changes of gene
frequency and fitness are not very great for recombinatioin values in excess of
0.075. Since most genes controlling a character are sprinkled throughout the
genome, it does not seem that tight linikage is very impoltant. However, it turns
out that effects are cumulative along the chromosome as showIn in table V.
This is a sample of results from a five locus model discussed by Lewontin [8].
The body of the table shows stable equilibrium frequencies of 16 gametic types
out of the 32 possible for five loci with two alleles each. The complementary
gametic types have frequencies equal to those sholwn because of symmetry of
the model. The bottom half of the table shows all possible pairwise lin;kage
disequilibrium measures D'h. What is important about this result is that whell
R = 0.05 between adjacent loci, the outside loci are 20 recombination units
apart yet they are out of ranidom combillation with a D' = 0.23. Thus, even
though the linkages betweenl adjacenit genies mnust be small for theie to be a
significanit linkage effect, the entire chromosome cani be strolngly correlated.
The selectioni model oii which table V is based is onie of cumulative heterosis

wher-e fitness depenids oiily uponi the iiumber of loci heterozygous. Iindividuals
with zero, one, two, three, four and all five loci heterozygous have fitness 0.03,
0.06, 0.12, 0.24, 0,48, and 0.96, respectively. A multiplication model is a reasonl-



GENETICS OF COMPLEX SYSTEMS 449

TABLE V

TIE RESULTS OF A FIVE Locus CUMULATIVE HETEROSIS MODEL
(Symbols are explained in the text.)

R between Adjacent Loci

Gametes 000 .01 .02 .03 .04 .05 .06 .063 .0645 .065

00000 .50000 .46199 .42053 .37444 .32183 .25904 .17488 .13627 .09817 .03125
00001 0 .01083 .02193 .03316 .04418 .05411 .05997 .05874 .05413 .03125
(0010 0 .00016 .00074 .00201 .00438 .00863 .01675 .02119 .02567 .03125
00011 0 .00775 .01572 .02384 .03192 .03947 .04495 .04515 .04336 .03125
00100 0 .00010 .00048 .00133 .00299 .00611 .01254 .01642 .02087 .03125
00101 0 .00000 .00003 .00013 .00044 .00135 .00458 .00754 .01213 .03125
00110 0 .00013 .00061 .00166 .00363 .00723 .01443 .01869 .02344 .03125
00111 0 .00775 .01572 .02384 .03192 .03947 .04497 .04515 .04336 .03125
01000 0 .00016 .00074 .00201 .00438 .00863 .01675 .02119 .02567 .03125
01001 0 .00000 .00003 .00015 .00050 .00155 .00524 .00859 .01370 .03125
01010 0 .00000 .00000 .00001 .00006 .00029 .00164 .00341 .00700 .03125
01011 0 .00000 .00003 .00013 .00044 .00135 .00458 .00754 .01213 .03125
01100 0 .00013 .00061 .00166 .00363 .00723 .01443 .01869 .02344 .03125
01101 0 .00000 .00003 .00015 .00050 .00155 .00524 .00859 .01370 .03125
01110 0 .00019 .00088 .00234 .00504 .00985 .01905 .02410 .02912 .03125
01111 0 .01083 .02193 .03316 .04418 .05411 .05997 .05874 .05413 .03125

D'12 1.00000 .95476 .90300 .84164 .76508 .66172 .49236 .39660 .28448 0
D',3 1.00000 .92352 .83888 .74296 .63072 .49236 .29912 .20836 .11928 0
D'14 1.00000 .89284 .77752 .65208 .51380 .35836 .17452 .10408 .04720 0
D',5 1.00000 .85140 .69840 .54184 .38376 .22808 .08192 .03984 .01344 0
D'23 1.00000 .96744 .92944 .88300 .82260 .73604 .58104 .48584 .36680 0
D'24 1.00000 .93572 .86316 .77876 .67656 .54488 .34880 .25104 .15068 0
D'25 1.00000 .89284 .77752 .65208 .51380 .35836 .17452 .10408 .04720 0
D'34 1.00000 .96744 .92944 .88300 .82260 .73604 .58104 .48584 .36680 0
D'35 1.00000 .92352 .83888 .74296 .63072 .49236 .29912 .20836 .11928 0
D'45 1.00000 .95476 .90300 .84164 .76508 .66172 .49236 .39660 .28448 0
W .49500 .45688 .41927 .38203 .34491 .30738 .26720 .25240 .24021 .22781

able one for fitnesses although the actual fitness loss per locus is unusually
strong for this model. One result of the big fitness difference is that there is
more than a doubling of TW from the loosest to the tightest linkage (last line of
table V).

(10) Genes closer to the center of a linkage group are more strongly correlated
than those at the ends. This can be seen in table V by comparing D23 and D34
which are adjacent intervals at the center of the group, with DT2 and D4'5 which
are intervals of the same length but at the ends. In all cases

(5.6) D12 = D45 < D23= D34.
(11) Optimum deviation models generate enough epistasis to cause profound

effects of linkage.
We define epistatic interactions as deviations from additivity between loci.

As we have seen, it is necessary to postulate very intensive selection to produce
strong epistasis. However, ill any model in which an intermediate phenotype is
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the most fit anid in which that phenotype is determined additively by manly loci,
there will be extreme epistatic effects, even when selection is weak. This is
because the relation between gene dose and fitness is not monotone.
A commonly studied form of optimum model is the squared deviation model

of Wright [15]. If
Pi = phenotype of the ith genotype,
O optimum phenotype, and
K = an arbitrary scaling constant,

then the fitness of the ith phenotype is

(5.7) Wi = K-(P
Table VI shows the result of calculations on a two locus quadratic optimum

model [8]. The model assumes that the phenotype Pi is simply the sum of con-

TABLE VI

RESULTS OF A Two Locus OPTIMUM QUADRATIC DEVIATIONS MODEL
(Symbols are explained in the text.)

R gil ggo9o0 goo p = r D' W P V

.(0 .19913 .40043 .40043 .00001 .59956 -1.0000 .95138 5.84670 17.5465

.01 .30506 .34188 .34188 .01118 .64694 -.91038 .94814 6.81564 17.9847

.02 .36381 .30850 .30850 .01919 .67231 -.82129 .94546 7.30789 17.8294

.03 .40313 .28600 .28600 .02487 .68913 -.74265 .94345 7.62661 17.5641

.05 .45275 .25738 .25738 .03250 .71013 -.61327 .94065 8.00729 17.1108

.07 .48238 .24025 .24025 .03712 .72263 -.51746 .93885 8.22940 16.7698

.10 .50913 .22471 .22471 .04144 .73384 -.41501 .93710 8.42475 16.4406

.15 .53288 .21090 .21090 .04532 .74378 -.30968 .93557 8.59495 16.0963

.20 .54575 .20340 .20340 .04744 .74915 -.24600 .93467 8.68589 15.9160

.25 .55400 .19867 .19867 .04866 .75267 -.20483 .93416 8.74475 15.7663

.30 .55950 .19547 .19547 .04956 .75497 -.19121 .93376 8.78303 15.6847

.35 .56350 .19314 .19314 .05022 .75664 -.15213 .93349 8.81086 15.6191

.40 .56650 .19139 .19139 .05072 .75789 - .13477 .93328 8.83166 15.5717

.45 .56900 .18997 .18997 .05106 .75897 -.12101 .93310 8.84954 15.5301

.50 .57050 .18898 .18898 .05153 .75948 -.11098 .93295 8.85796 15.5231

tributions from the two loci. Each locus has phenotypes corresponding to
genotypes as follows:

genotype AA Aa aa
phenotype 6 3.6 -t,

so that there is considerable dominance of the A allele. The optimum value is
O = 6, so that no genotype in particular corresponds to the optimum. The
double heterozygote Aa Bb is closer than any other, with a score 7.2. Table VI
shows that all values of recombination including R = 0.50 have a significant
effect on gametic frequencies and that tighter linkages alter the gene frequencies
as well. Two general points are illustrated that apply to all quadratic deviation
models investigated.

(12) Quadratic optimum models aluays generate repulsion equilibria. All the
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D' values in table VI are negative indicating an excess of repulsion classes. This
is to be expected since an intermediate phenotype is achieved by a mixture of
alleles operating in opposite directions.

(13) The effect of linkage in quadratic optimum models is to increase the genetic
variance and decrease the deviation of the population mean from the optimum.

If we take the expectation of both sides in expression (5.7), we get

(5.8) E(Wi) = W =K- [(p 0)2+4.
In table VI it can be seen that a very small change in W takes place over the

entire range of recombination values because of the compensatory changes in
the two terms of the right side of (5.8). As linkage tightens the mean phenotype
P changes from 8.86 to 5.85 so that its deviation from t7 changes from 2.85 to
-0.15. At the same time the genetic variance of the population increases from
15.52 to 17.54. Therefore, the sum of squared deviation of genotypes from the
optimum has changed very little.

6. Kinetics of gene frequency change

If we consider selection problems in which no stable equilibrium of allelic
frequencies at intermediate values will occur, or in which the approach to an
equilibrium is of interest, we can ask about the rate of gene frequency change
and fitness change with time as well as under what conditions lilnkage disequi-
librium will be generated or in what direction it will change if it is already
present. General results of this nature have been derived by Felsenstein [2] for
both continiuous and discontinuous generation models. In contrast to the equi-
librium studies where epistasis is measured on an additive scale, it should be
measured on a multiplicative scale for kinetic studies. Redefining epistasis as
deviation of fitnesses from the product of the fitnesses at each locus separately,
Felsenstein has shown:

(14) if D = 0 it will remain zero in the absence of epistasis;
(15) if there is epistasis, linkage disequilibrium will be generated of a type

predicted by the direction of the epistasis;
(16) tight linkage will accelerate the rate of gene frequency change if coupling

linkages are generated by selection and retard the rate if repulsion linkages are
generated.
The general principle given in property (16) can have quite remarkable

results. Lewontin [9] considered several intermediate optimum models in which
no stable intermediate equilibrium of gene frequency is expected. In these
models the effect of genotype on the phenotype was completely additive both
between loci and between alleles within loci, so that a multiple balanced homo-
zygote of the form AA bb CC dd *--, and so forth, could have the optimum
phenotype. In fact, in such a model the gene frequencies go to fixation at 0 or 1
to produce such a balanced genotype. Figure 3 shows the results for this model
with five loci and the optimum value exactly halfway between the extremes.
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In the top graph the allelic frequencies of the five loci are shown. The solid lines
give the results when the adjacent loci are 23.4 linkage units apart. By 90
generations, two loci are virtually fixed at q = 0 and two at q = 1.0. The fifth
locus is beginning to fix at q = 0. The dashed lines show the contrast when the
linkage between adjacent loci is reduced to R = 0.05 and R = 0.01. For this
tightest linkage there is essentially no change in allelic frequencies after the
initial adjustment of the population mean to be at the optimum. The tight
linkage has produced a quasiequilibrium of allelic frequencies. As the bottom
graph of the figure shows, all D' are negative so that the retardation of gene
frequency change is to be expected. The virtual stasis of the frequencies, how-
ever, is unexpected. Linkage has produced what is effectively an equilibrium
of gene frequencies.

Changes in fitness are more complex. The most tightly linked cases rise in
fitness very rapidly while loose linkage is slower in its rate of improvement but
finally catches up and surpasses the fitness of the tightly linked case. The course
of events is as follows. In the loosely linked case, gene frequencies are going to
fixation, and fitness slowly improves as the alleles are fixed. When all genes are
fixed, the fitness goes to unity. In the tightly linked case, however, there is no
change in allelic frequency but a very rapid change in gametic frequency so that
essentially only alternate repulsion gametes of the type AbCdE and aBcDe are
left. As a result, nearly every individual is at the phenotypic optimum and
fitness is very high. However, since the genes continue to segregate, no further
advance in fitness can be achieved. Loosely linked systems achieve high fitness
by changing allelic frequencies, while tightly linked systems become highly fit
through elimination of poor gametic combination.

7. Work to be done

Our most complete understanding is in the realm of equilibrium models, but
even for these, general literal solutions are difficult to find. What is required to
complete our understanding of the equilibria in complex systems is, first, a solu-

FIGURE 3

Results of optimum model with five loci.
Part a shows the frequency of the 0 allele (ordinate)

at various times (abscissa) for five loci.
Dashed lines are for R = 0.01, mixed line for R = 0.05,

solid lines for R = 0.234.
Part b shows the mean fitness of the population (ordinate) at

various times (abscissa) for different degrees of linkage.
Part c shows linkage disequilibrium parameters D' (ordinate) at

various times (abscissa).
Dashed lines are for R = 0.01, and solid lines for R = 0.234.
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tion to the problem of how many stable equilibria are possible with a given set
of fitnesses in multilocus models, and, second, an exact general relationship
between the fitnesses and the degree of departure of gametic frequencies at
equilibrium from random combination.
For kinetic studies, Felsenstein has achieved some important general results,

but these are mostly in terms of the direction in which D will change. The
magnitude of changes in D can be specified as complex functions of the fitnesses
and the gene frequencies, but at the moment we have few formulations that
give insight into the relation between fitnesses and their magnitudes [5]. We
know even less about how drastic are retardations or increases in the speed of
selection as a result of linkage.
Another important problem in kinetics arises when different groups of genes

have different linkage relations. We have some preliminary information that a
tightly linked system will accelerate the change in gene frequencies in another
more loosely linked system of genes controlling the same character.
Some studies have been made on changes in gene frequencies when these are

near fixation, by Bodmer and Parsons [1] and by Kojima and Schaeffer [7].
These results have important implication for the role of linkage in helping or
preventing the incorporation of new variation from mutation. A general attack
on the rate of fixation of genes as influenced by linkage has not yet been made.
A union of linkage studies with stochastic theory would be a long step toward
a realistic theory of population genetics.
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