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1. Introduction

The real purpose of epidemic theory is not to develop interesting and elegant
mathematics, though this may be a delightful incidental byproduct, but is to
facilitate the practical prevention or control of actual outbreaks of serious
contagious disease. This purpose is still a long way from being achieved to any
appreciable extent. The developed countries are today free from disasters of the
magnitude of the Black Death in the 14th century when perhaps as much as
25 per cent of the population in Europe perished. Nevertheless, widespread
epidemics on a massive scale are still common in Africa and the Far East. As
the volume and speed of modern travel continue to increase there is an ever
growing risk of the transmission of virulent infections to regions where natural
immunity may be low though public health control is, for ordinary purposes,
more or less adequate. Even within a developed country there are possible
dangers from such factors as the appearance of new strains of infectious organ-
isms resistant to standard drugs and antibiotics, or increases in the contact
rate between individuals due to greater population densities or changes in
social behavior. The current increase in venereal infections in many countries
could be a case in point. It follows therefore that it is eminently worth consider-
ing in what directions research should proceed in order to have an improved
chance of attaining its object.
As with applications to many other fields in biology and medicine, the attempt

to develop mathematical theories of epidemics exhibits the usual conflict between
insight and realism. Epidemic theory falls into two distinct, though complemen-
tary, parts. On the one hand, there is the study of small groups like individual
families. From these it is possible, though not often done, to collect detailed
data to which relatively realistic models can be fitted, yielding information
about such biological or clinical entities as contact rate, length of latent and
infectious periods and so forth. However, little can be deduced from this about
the spread of infection through a community. The latter requires the special
theory of large groups. This provides some insight into the behavior of popula-
tion outbreaks, with regard to such features as threshold phenomena or the
general graphical appearance of "epidemic curves." Unfortunately, even the
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simplest mathematical models, especially if they are stochastic formulations,
present formidable problems of analysis. AIIy insights obtained therefore are
liable to be most true of highly oversimplified models. As soon as an appreciable
degree of realism is iiitroduced, especially whein geographical spread is involved,
the treatment becomes largely intra(table. The simplified mathematical theory
is worth pursuing because of the hints anid leads it may produce, but its limita-
tions should not be forgotteni.

It is within this context that mole serious consideratioii should be given to
the potentialities of simulatinig epidemic processes, particularly as the power and
availability of automatic electroniic computers are constantly increasing.

AMost real communiities entail the spatial distribution of individuals as an
essential ingredienit, with suseeptibles in the "neighborhood" of an infective
being more likely to contract his disease than those that are distanit. "Neighbor-
hoods" may, however, be very complex and hard to define, while various forms
of complicated social and geographical stratification may also exist. With the
aid of moderln computer methods of data processiing and numerical analysis it
seems just within the bounds of possibility that a highly diversified community
could be represented by a moderately realistic model and subjected to inves-
tigations of a simulation of Monte Carlo type.
We shall look briefly at existing theory, first for deterministic spatial models,

and then for the corresponding stochastic versions. Next, we shall examine
some new simulation studies of stochastic epidemics in two dimensions, using
models which so far are highly oversimplified, but are easily capable of consider-
able modification and extension. Lastly, we shall discuss the general implications
of this type of work to the practical problems facing public health aluthorities.

2. Deterministic theory

It is always worth examining a deterministic model first, even when we are
sure that a stochastic formulation is essential to adequate realism, provided
that the inherent limitations are not lost sight of. Stochastic models are in-
variably harder to handle, and this is specially true of epidemic processes.
Approximate treatments may be facilitated if we know in advance what kind
of features to look for, and important indications may be provided by an analysis
of the corresponding deterministic process.
There are various ways in which spatial or topographical elements can be

incorporated in an epidemic model. Consider, for example, the following formu-
lation due to D. G. Kendall (see discussion in Bartlett [3]). We assume the
existence of an infinite two dimensional continiuum of population with a density
of a individuals per unit area. Take any point P surrounided by a small areal
element dS. Let the numbers of individuals in this area who are susceptible,
infectious or removed be axdS, a-ydS arid a-zdS, respectively, where the qjuan-
tities x, y arid z are proportions wlhielh sum to unlity tlhough they may be func-
tioIis of time and positioii. Let the contact rate be d anid the removal rate be y.
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Now the basic differential equations definling the process cain be writtenl in
the form

ax
at

(2.1) ay
= ,f3xr yy,

az
at = ?J,

where 7 is a spatially weighted average of y given by

(2.2) V(P, t) = ffX(PQ)y(Q, t) (is,

in which dS is an areal element at Q and X(P'Q) is an appropriate nonnegative
weighting coefficient. Equations (2.1) are an obvious spatial extension of the
usual deterministic general epidemic equations (for example, Bailey [1] equa-
tions (4.5)), in which the rate of new infections is made to depend on y rather
than y.
A suitable initial conditioii in the present case is to assume a focus of infection

uniformly spread over some small circle centered at the origin. An appreciable
amount of mathematical discussion is possible, though the development is not
without difficulty. So far as any practical reference is concerned the main
result available is the followinig. Subject to certain condition-s, it can be shown
that a pandemic affectiiig every part of the plane will ensue if and only if the
population density of susceptibles eexceeds the familiar threshold p= -y/O.
Nloreover, if there is a pandemic, its severity r is the uniqtuc positive root of

(2.3) v = 1 - exp (- Wp),
meaninig that the fraction of individuals eventually contractinig the disease will
be at least v in any area of the plane, no matter how far from the initial focus.
We thus have a paiidemic threshold theorem correspondiiig to the well known
nonspatial versioii of Kermack and McKendrick [7].

AIn alterInative model, that is in some ways more specific, has becn used by
Bartlett [2] to discuss the behavior of recurrent epidemics. Bartlett's treatment
is fairly general and involves terms representing the migration of both suscep-
tibles and infectives, as well as the appearance of new infectives. All three of
these features can be eliminated for the purpose of the present discussion, and
the following simple argument results. Writing x and y for the actual spatial
densities of susceptibles and infectives, we assume that the action of infection
is local and isotropic. This allows us to write the first two differential e(quations
in the form

ax=
aX _ Ox(y + aV2y),

(2.4)
a

ay = Ix(y + aV2y) - yat
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where x = x(%, -, t), y - y(Q, -q, t) and (, 7 are the spatial coordinates them-
selves, while V2 _ a2/042 + a2/a92.
In the initial stages of an epidemic x will be approximately constant. The

second equation in (2.4) can then be writteni as

(2.5) ay = Ay + BV2y,

where A = Ox- -y, B = afx. E,quation (2.5) is of couirse a standard diffusion
equation with solution

(2.6) Y=2= t exp (At 4Bt)

the constant C being determined by the initial conditions.
If we consider the total volume of infection outside a circle of radius R, this

may be calculated as

(2.7) YR = L2+,72>R2y di d?7

= 2rC exp (At- 4B)-
Thus,

(2.8) R = 2(AB)l2t [I - log (YR/27C)j'2

As t x so R -* 2(AB)"12t. From this it follows that the circle of radius R cor-
responding to any arbitrary value of yR grows, for sufficiently large t, at the
constant rate R/t = 2(AB)1/2. This ean be interpreted as the velocity of propaga-
tion of the disease from the initial focus.
So far as practical consequences are concerned, Kendall's model raises the

important issue of pandemic thresholds, and is in fact a first step forward
towards a more exact understanding of this type of phenomenon. Bartlett's
model, on the other hand, allows one to look more closely at the actual rate of
spread of infection. The approximation derived above is, however, only of
limited application since we have assumed that the epidemic is still in its early
stages with roughly constant x.
More recently, Kendall [6] iinvestigated the deterministic theory of epidemic

spread for linear communities in one spatial dimension, and discussed the forms
of epidemic waves traveling out from a focus. The existence of such waves
required the density of suseeptibles to be above a certain threshold value.
Similar results might be expected for the twvo dimensiotial case, but an exact
analysis is not yet available.
No doubt the more thorough examination of deterministic models will in due

course reveal further important properties. The main point of such work is,
however, to see what light may be shed on the behavior of more realistic sto-
chastic versions.
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3. Stochastic theory

No general theoretical treatment is yet available for any stochastic analogue
of the two dimensional deterministic models described in the previous section,
though Morgan and Welsh [8] have recently discussed a rather special kind of
stochastic infection process on a lattice. Bartlett [2] has obtained an appropriate
partial differential equation for the probability generating functional of a suit-
able "point" process, but this has so far proved intractable to a general analysis.
Some progress was, however, possible with the initial stages of an epidemic
when the numbers of susceptibles could be regarded as approximately constant.
Bartlett showed that in this special case the behavior of the average number of
infectives at any time entailed the propagation of a wave of infection similar
to that found in the deterministic situation. No information has been obtained
on the general form of the epidemic spread as the stock of susceptibles becomes
appreciably depleted.
More recently Neyman and Scott [9] have obtained some very interesting

results for a two dimensional model that incorporates a number of realistic
features previously neglected. In particular, the number of susceptibles infected
by an infective is made to depend on the latter's location, and also an individual
infected at any point is allowed to move away and become infectious elsewhere.
On the other hand, it is a salient feature of epidemic processes that each new
infection diminishes the number of susceptibles at risk. Neyman and Scott's
model does not include this aspect, and though approximately valid at the start
of an epidemic would become progressively less so as the outbreak built up.
How serious the limitation is for the conclusions reached is hard to say. For
example, one result, under fairly broad conditions, is that the probability of
an epidemic building up in a small community is the same as the probability
of an explosive outbreak over the whole of a much larger area. (Compare
Kendall's pandemic threshold theorem described in section 2.) This result cor-
responds with the usual public health view that neglect of sanitary conditions
in any part of a country may expose the whole country to danger. One might
expect the limitation referred to above to have less effect on this conclusion
since in a nonspatial general epidemic we can approximate the early stages by
a birth and death process for the population of infectives, ignoring the depletion
of susceptibles. And the probability of only a small outbreak is roughly the
probability of this process suffering extinction. Another result that needs more
careful consideration in relation to certain assumptions made concerns the effect
of an immunization campaign on the total size of epidemic. Subject to certain
conditions, it appears that the immunization of a random proportion 0 of the
population would reduce the expected size of epidemic to a value less than
(1 - 0)/0. This result certainly seems optimistic (as remarked by Neyman and
Scott), since it implies that if only ten per cent of the population were immunized
the average outbreak would be less than niine, a circumstainee that looks im-
probable if a disease were highly contagious with a small relative removal rate.
As a complementary alternative to theoretical studies, simulation investiga-
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tions can bc undertaken. Little has been done so far for models incorporatinig
spatial elements. One Monte Carlo study by Bartlett [3] used a 6 X 6 grid of
cells. Standard nonspatial continuous time or discrete time processes were
assumed withini each cell, while a stochastic movement of infectives between
cells with a common boundary was adopted. Thus, the spatial element was
introduced to a certain extent, though the model was primarily concerned with
the behavior of recurrent epidemics in situations where there was a constant
accession of new susceptibles.

It was therefore thought worthwhile carrying out a simulation study of a
population of individuals all of whom were spread out spatially. This is de-
scribed in the following section.

4. Simulated epidemics in two dimensions

In this section we describe one of the simplest possible models for a two
dimensional epidemic and present a number of results obtained by straight-
forward Monte Carlo simulations carried out on ain electronic computer. As
emphasized againi later, although this model is very much oversimplified, con-
siderable modificatioiis arid extensioins could be made with only relatively minor
changes in the computer plogram. Precisely what further work is worth doing
is a matter for discussion.

Let us envisage a sqluare lattice of points each occupied by a susceptible
individual. It is convenient to regard this community as having finite size. For
the present investigation a square boundary was chosen, centered on the origin,
given by the lines x = 4 k, y = i k. The total population size n is thus n =
(2k + 1)2. Most calculations were performed with k = 5, though some were
done for n = 10. Large populations would iieed to be explored on a bigger
computer thani the one actually used, an Elliott 803.

In the present study it was supposed that an epidemic was initiated by the
susceptible at the origin becoming infected. This involves a certain amount of
symmetry, which is convenient in a first investigation, but not of course essen-
tial. We could thus examine the way in which the epidemic spread out from the
focus without edge effects due to the boundaries occurring in the initial stages,
and ensuring that their influence was symmetrical when they did occur.
A discrete time model of chain binomial type (see Bailey [1] for general

discussion arid references) was adopted involving two forms, one represenitinig
a simple epidemic with no recovery anid one a general epidemic with infectives
undergoing removal. W1e first describe the simple epidemic.

4.1. Simple epidemic wit/h no removal. Let us suppose, as in ordiniary chaill
binomial theory, that after infectioln there is a fixed latent period following
which the infective becomes highly infectious for a very short period of time.
During this infectious phase, ideally contracted to a point, there is probability
p of any susceptible at r-isk contracting the disease from the infective in questioln.
But a given susceptible may be exposed to several infectives. If the latter are r



SIMU'LATION OF STOCHASTIC EPIDEMICS 243

in number, the probability of the susceptible becoming infected is 1 - (1 -p)r.
In the chain binomial theory of Greenwood or Reed-Frost type an infective is
assumed to recover, or at least be removed, immediately after the point of
infectiousness. But since in the simple epidemic we have no removal, a conven-
ient assumption is that the infective again becomes highly infectious after a
further interval equal to the original latent period, and so on indefinitely. In
short, each infective has a series of infectious points, following the initial infec-
tion, all separated by intervals equal to the latent period. The epidemic will
therefore spread in a series of discrete stages or generations.
Now we also have to decide what individuals are potentially at risk from any

given infective. As we have deliberately introduced a spatial element by spread-
ing out the population over a lattice some restriction is evidently needed, other-
wise we should simply be returning to a nonspatial model. The most obvious
assumption would be to regard only the four nearest neighbors as being at risk
(unless already infected). This type of assumption is often used in various kinds
of random walk models, and might well turn out to be mathematically trac-
table. However, there are certain disadvantages. One is that such a restriction
might be thought unduly strong, though this is perhaps a small poinlt in a
preliminary study. More serious is the limitations involved in usiiig a small
computer.

It is easy to see that if the disease is so infectious that p = 1, thell it will
spread in a deterministic manner coverinig at the gth generation a complete
square whose corners are at the four poiInts (4g, ±g). As this square has its
diagonals along the main x and y axes, the edge effects which start occurring
when g = k + 1 are more elaborate than they would be if the square had its
sides parallel to the main axes so as to be similarly situated to the population
boundaries. Of course we could change the latter by turning the population
square through 450, but this makes the computer program much more compli-
cated if we are fully to utilize a given square array, the elements of which repre-
sent the positions of the individuals in the population.

Accordingly, it seemed simpler to assume that the eight nearest neighbors to
any infective were at risk (unless already infected), as shown in figure 1. With
this arrangement, the deterministic spread occurring when p = 1 means that
at the gth generation a complete square is infected whose sides are given by the
lines x = +g, y = ig. Thus at generation k the population square is com-
pletely covered, whereas at geneiatioil k - 1 noine of the susceptibles on the
boundary is infected. The edge effects are Inow very simple in form. The epi-
demic simply spreads steadily from the focus until the boundary is reached,
when it ceases.
Of course we are not specially interested in the case p = 1, but for smaller

values of p we may expect a probability spread of disease in which some degree
of symmetry is retained vis-d-vis the boundaries.
The computed simulations were programmed in ALGOL and carried out on

the small Elliott 803 computer in the l'nit of Biometry, Oxford. The general
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scheme of the computations may be briefly outlinied as follows. An array .aij'-
with i, j = -/t k- + 1,X 0, * - 1, k, is used to represent the l)opula-
tion of individuals. If the individual at the point (i, j) is susceptible aij = 0,
if infectious aij = 1. And, initially, g = 0 with ao0 = 1, all other aij being
zero. At the gth generation all parts of the array that could have been reached
by the epidemic, that is, anywhere in, or on the boundaries of, the square formed
by the lines x = f4g, y = 4g, are systematically inspected. If any aij = 1, no
change is possible. But if a2j = 0, we have a susceptible who may be at risk.
All the eight nearest positions must be examined and the sum of the values of

0 ~~~~~~0

FIGURE 1

Individuals at risk from a given infection.

the relevant aij formed. Let this be r. If r = 0 there are no adjacent infectives.
If X > 0 then aij must be changed from 0 to 1 with probability 1 - (1 - p)r.
An appropriate pseudorandom number is calculated, and the relevant transition
performed. The random number algorithm xn+1 = 5x.(mod 235) based oii
Behrenz [4] was used. This is very quick to compute though not entirely satis-
factory from a statistical poinit of view because of appreciable serial correlations
between successive terms. It was however considered to be sufficiently accurate
for the purpose in hand. We proceed in this way for some arbitrary, but suffi-
ciently large number of generations, in order to complete a sinlgle simulation.

In the investigations whose results are described below 25 separate simula-
tions were performed for each epidemic set up with a different value of p. While
a larger number of repetitions is desirable, say 100, the results seemed generally
useful with many coefficients of variation being of the order of 10 per cent or

less. It would be very easy to run much larger numbers of simulations on a big
computer usilng the same ALGOL programs. Also, a more satisfactory random
number generator could be inserted in the program.
Now it would be tedious to interpret and wasteful of computer storage
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capacity, to try to keep records of the stochastic behavior of the process at eaclh
point of the lattice. We may conjecture that some of the symmetry present
when p = 1 still remains for smaller values of p. In which case it is convenient
to amalgamate results for the boundaries of a square of given size. There is bound
to be some lack of symmetry at the corners since the risk of infection is always
rather less there, but we have chosen to ignore this. When any stage of a partic-
ular simulation has been completed, we record the total sum of the changes in
the ai1 values along the boundaries of each square, and also keep a running
total of these sums and a running total of the squares of these sums for all
simulations to date. At the end of the set of 25 simulations we can calculate
means and standard errors for the quantity in question. This quantity is in fact
an epidemic curve, on the usual definition (see Bailey [1]), for the whole set of
individuals along the boundaries of a given square.

Results are shown for the case k = 5, that is, an 11 X 11 square, in figures
2, 3, 4, and 5, with p = 0.2, 0.4, 0.6 and 0.8, respectively. The figures showvn
against the graphs themselves refer to the five available squares. The upper-
most graphs (a) in each figure record the average epidemic curve for each
square as a whole, while the middle graphs (b) show the average per individual
in each square. This latter quantity is therefore the epidemic curve relating to
the average position in a given square. Finally, the lower graphs (c) give the
epidemic curve for the whole population of 121 individuals, and the graphs (d)
show the distribution of the completion time, that is, the number of generations
it takes for the disease first to infect everyone. The material for a given value
of p was produced during a single set of computations, each involving 25 rep-
etitions, averaging about three hours computing time in all.
Although it might have been statistically more satisfactory to exhibit these

results in the form of histograms, it would then have been impossible to super-
impose the several curves without confusion. The frequency polygon method
was therefore preferred.
The (a) curves in each figure show how the epidemic spreads more rapidly

as p increases, and how the magnitude of the epidemic's effect is greater at
greater distances from the focus, though of course more time is required for a
build up the further out we go. When p is small the curves are relatively flatter
and the build up takes longer than when p is large.
Of more immediate interest are perhaps the (b) graphs which, as already

mentioned, show in effect the epidemic curves relating to an average individual
on a given s(quare. The curves can also be regarded as frequency distributions
since the areas under them must all be unity. These distributions are therefore
more directly comparable with one another and constitute one way of represent-
ing the advancing epidemic wave. It will be seen that the wave appears, in
general terms, to progress at a more or less steady rate, though its effect is more
spread as wve move further from the focus, at least for small p. When p is laIge,
for example, 0.8, the waves are almost identical in form irrespective of the
distanee from the origin. And, of course, wlheni p = 1 the spread is entirely
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deterministic with exactly one new case appearing per point at precisely the gth
generation for all points on the square x = 4g, y = 4tg.
The more or less linear spread of disease can also be seen in the lower (c)

15-
average
new cases (a)
per square

10-

4
5- 3

2

0*
1 0 Is generation 20

.5

average
new cases (b)
per point

.3

5 10 IS generation 20

30 - 0.6
average completion
total no. (c) (d) time 0.5
of new cases distribution

20- - 0.4

0.3

I0 -0.2
- 0.

0- 0.
5 10 I5 generation 20

FIGURE 2

Simple epidemic on an 11 X 11 square with p = 0.2.

graphs which show epidemic curves for the whole population. At least, the
average growth is linear until about the sixth generation when edge effects
begin to appear. As p increases the epidemic curve drops more sharply. When
p = 0.2 the fall is slower thaii the rise, but with p = 0.8 the cutoff becomes
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quite steep, due to the epidemic's reaching the outer boundary with a higher
degree of probability. Again, with p = 1 the cutoff would be completely vertical.
The reason for the linear rise is presumably that in the rather restricted model
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FIGURtE 4

Simple epidemic on ani 11 X 11 square with p = 0.6.

time graphs at (d). Since the whole of each curve is based on only 25 observa-
tions, sampling fluctuation is large. But it can be seen that completion time
beco'mes shorter and less variable as the disease becomes more infectious.
A number of simulations were also run for a 21 X 21 square with k = 10.
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FIGURE 5

Simple epidemic on an 11 X 11 square with p = 0.8.

The general conclusions are rather similar to those above, though we can of
course follow the progress of the epidemic for a greater number of genierations
before edge effects predominate. As a single example, let us consider the epi-
demic curve for p = 0.6 shown numerically in table I. It is evident that for thc
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TABLE I

EPIDEMIC CURVE FOR A SIMPLE EPIDEMIC IN A
\R IIOLE POPULATION SPREAD Ou-T OVER A

21 X 21 LATTICE WITII P = 0.6

(Genierationi Average No. of New Cases

I 4.4
2 ~~~~~~~1.8

3; 18.6
4 26.7
5 33.1
6 41.2

48.a
8 56.()
9 63.5
10 72.2
11 40.1
12 18.1
1:3 3 1
14 0.6
15 0.2

first ten generations there is an almost constalit increase of about 7.5 new cases
per genieration, after which the epidemic curve falls away rather sharply as
before.

4.2. General epidemic with removal. The simple epidemic model of the pre-
vious section can readily be extended to cover the morc general case when re-
moval of some kind is envisaged. We merely have to adopt the familiar chaini
binomial assumption that after the first occurrence of infectiousniess, the infec-
tive in (luestion ceases to be infectious and eiiteis a third state, represented in
the simulationls by aij = 2, say. Alterations required to the previous computer
program are minimal. The set of results corresponding to the simple epidemics
described above are shown in figures 6 to 9 for the same range of values of p,
though the distributions of completion time are now omitted and the distribu-
tions of total epidemic size are considered in the separate table II. The total
computing time for each value of p was about six hours.
For p = 0.4, 0.6, and 0.8 it has been possible to use the same scales as for

the simple epidemic, but for p = 0.2 large changes were necessary. This corre-
sponds to some kiind of a threshold between p = 0.2 and p = 0.4.
Comparing figur-e 6(a) with figure 2(a) for inistanice, we see how in the general

case the curves present (1uite a differenit apperall(re. The average ilumber of
new cases per s(quaire itow falls off with distance instead of conversely, and all num-
bers are absolutely much less thain in the simple epidemic. It is clear that we are
now dealing with a small local outbreak only, whose presence is felt less and less
as we go farther from the focus. The point is made even more obvious by com-
paring the "poinit" epidemic curves of figure 6(b) with figure 2(b). In the general



SIMULATION OF STOCHASTIC EPIDEMICS 251
2

average
new cases (a)
per square

l 10 generation Is
.2-

average
new cases (b)
per point

s 10 generation 5
3- average (c)

total no.
of new
cases/

2-

S 10 generation IS

FIGURE 6

General epidemic on an 11 X 11 square with p = 0.2.
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epidemic we have waves traveling from the center that are rapidly damped
out. Similarly, figure 6(c) shows the existence of quite a small outbreak com-
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FIGURE 7

General epidemic on an 11 X 11 square with p = 0.4.

pared with figure 2(c) whern we take into account a tenfold differencee in the
vertical scales.
When we come to look at figure 7 aind figure 3, we find that for p = 0.4 the
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General epidemic oni an 11 X 11 square with p = 0.6.
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General epidemic on an 11 X 11 square with p = 0.8.
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differences are much less marked. The general epidemic is now definitely spread-
ing in an explosive manner, though somewhat more slowly and diffusely than in
the simple epidemic with no recovery. For larger values of p the differences
between the general and simple types of epidemic become progressively less
marked so far as epidemic curves and epidemic waves of advance are concerned.
The range between p = 0.2 and p = 0.4 obviously deserves closer attention,

and a series of simulations were carried out at intervals of 0.04 with special
reference to the distribution of the total size of epidemic. These distributions,
fairly coarsely grouped, are shown in table II. Although the samples are all

TABLE II

)ISTRIBUTIONS OF TOTAL EPIDEMIC SIZE FOR D)IFFERENT VALUES OF P

Values of p
Total No. of New Cases .20 .24 .28 .32 .36

0- 2() 13 10 8 2 0
21- 40 6 4 1 1 0
41- 60 5 6 ,3 2 0
61- 80 1 2 8 4 1
81-100 0 3 5 8 3
101-120 0 0 0 8 21

Total 25 25 25 25 25

rather small, the steady shift in distribution with changes in p is immediately
apparent. When p = 0.20, just over half the epidemic sizes were 20 or less in
a total population of 121. At p = 0.24 there are strong indications of a spread
over the whole range, while by p = 0.32 the concentration is building up at the
top end. At p = 0.36, over 80 per cent of epidemics have a total size of more
than 100. It would be interesting to examine the precise form of this change
over from one extreme distribution to another, usinig a much larger number of
simulations for greater accuracy.

5. The role of simulation

Considerable emphasis was placed in the introduction on the importance of
theoretical epidemic studies having some practical relevance. We saw in section
2 how some preliminary insights could be obtained into the behavior of epi-
demics incorporating spatial elements by means of deterministic models. But
when we examined more realistic stochastic models in section 3 it seemed that
these formulations were either intractable, or could be manlaged only when
confined to the opening stages of an epidemic, or could be developed only if
fairly severe simplifications were assumed. Section 4 on the other hand dealt
with simulation of some very simple spatial models, in which the limitations
were of a different kind. It is highly pertinent, therefore, to ask in what way
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such simulationi studies can be regarded as having practical applications, and
as providing useful results that cannot be obtained by purely mathematical
manipulations of the relevant models.
As mentioned at the beginning of section 4, although the models subse(luently

discussed were considerably oversimplified they were readily capable of exten-
sive development and modification by means of comparatively small changes in
the computer programs used. Thus we assumed that individuals were perma-
nently attached to the points of a square lattice, though able to infect any of
their eight nearest neighbors. This might be interpreted as permitting some
degree of movement, at least sufficient to result in a degree of contact with
nearest neighbors. There is no reason why we should not introduce the pos-
sibility of more distant individuals being infected, the chance of infection
diminishing perhaps with distance according to some assumed law. This meanis
that, when at any stage we are inspecting the array {'aj} and find that a partic-
ular aij = 0, that is, the point (i, j) is occupied by a susceptible, we should have
to search a larger area around the point (i, j) for possible infectives thail en-
visaged in the simple study described. More computer time would be required
but no new principle is involved. Indeed, if required, all kinds of heterogeneous
spatial structures could be built into the model. Moreover, additional stages
might be introduced into the fundamental stochastic process so as to relax the
assumptions of constant latent period and point infectiousness.
How far can one go in developing extensions before even the largest existilig

computer is inadequate is difficult to say. Perhaps a more important question
at the present time is what would be practically useful if the computations
could be performed in reasonable periods of time. There are two obvious pos-
sibilities.

First, far more highly structured models could be developed that contained
representations of a very large number of realistic features. The probable coII-
sequences of a variety of public health measures such as immunization cam-
paigns, the use of quarantining and restriction of public movements, and so
forth, could then be ascertained by reference to models that, though hypothet-
ical, were realistic and typical in the sense of incorporating a large number of
actual clinical, biological, social or geographical features. The general insights
obtained from such work might be very much more powerful than the elementary
notions of thresholds at present available. They might also usefully be combinied
with the application of operational gaming methods to public health traininlg
programs. These have been employed, for iiistance, by the Californiia Depart-
ment of Public Health together with the Systems Development Corporationi [5],
and entail the construction of a simulated city called "Epiville."

Secondly, it might be possible to construct models to represent hiighly diver-
sified actual communiities. In this way the epidemiological status of these com-
munities could be tested ill advance of any real outbreak by performing appro-
priate simulations. Alternatively, the models might be used to assess actual
outbreaks of serious disease by facilitatinig the estimation of biologically im-
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p)ortan1t parameters such as contact rates, removal rates, and so forth. Firom
lherc oiie might hope to be able to construct tlle future development of the
outbreak in probability terms, indicating a range of possible consequences if
various alternative steps were taken leading to a reduction of contact rates or an
increase of removal rates, for example. The restults of stuch calculations nighlt
well indicate what kiind of public health inltervenition would be most effective.

These ideas are of course highly speculative, but indicate some of the direc-
tions in which further research might proceed.
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