ERGODIC THEORY OF SHIFT TRANSFORMATIONS

SHIZUO KAKUTANI YALE UNIVERSITY

1. Introduction

The main purpose of this note is to discuss the ergodic properties of a certain class of strictly ergodic dynamical systems which appear as subsystems of the shift dynamical system defined on the power space $X = A^z$, where Z is the set of all integers. We discuss only the cases when the base space A is a finite set. We are particularly interested in two examples of strictly ergodic dynamical systems which are constructed by using certain number-theoretic functions. Among other things it will be shown that there exist a continuum number of strictly ergodic dynamical systems, no two of which are spectrally isomorphic.

2. Strictly ergodic dynamical systems

Let $X = \{x\}$ be a nonempty compact metrizable space, and let φ be a homeomorphism of X onto itself. The pair (X, φ) is called a *dynamical system*. A subset X_0 of X is said to be φ -invariant if $\varphi(X_0) = X_0$. If X_0 is a nonempty closed φ -invariant subset of X, then (X_0, φ) may be considered as a dynamical system, and is called a *dynamical subsystem* of (X, φ) . A dynamical system (X, φ) is said to be *minimal* if there is no dynamical subsystem of (X, φ) except (X, φ) itself, that is if there is no nonempty closed φ -invariant subset of X except X itself. Let

(1)
$$Z = \{n | n = 0, \pm 1, \pm 2, \cdots\}$$

be the set of all integers. For any point $x_0 \in X$, the set

(2) Orb
$$(x_0) = \{ \varphi^n(x) | n \in \mathbb{Z} \}$$

is called the *orbit* of x_0 , and its closure $\overline{\text{Orb}}$ (x_0) is called the *orbit closure* of x_0 . Obviously, $\overline{\text{Orb}}$ (x_0) is a closed φ -invariant subset of X, and hence $(\overline{\text{Orb}}$ (x_0) , φ) is a dynamical subsystem of (X, φ) . It is clear that a dynamical system (X, φ) is minimal if and only if $\overline{\text{Orb}}$ (x_0) is dense in X for any $x_0 \in X$.

Let $\mathfrak{B} = \{B\}$ be the σ -field of all Borel subsets B of X. It was proved by N. Kryloff and N. Bogoliouboff [6] that, for any dynamical system (X, φ) , there exists a normalized, countably additive, nonnegative measure μ defined on \mathfrak{B} which is invariant under φ ; that is, $\mu(\varphi(B)) = \mu(B)$ for any $B \in \mathfrak{B}$. Such a measure μ is not necessarily unique. A dynamical system (X, φ) is said to be uniquely ergodic

if such a measure μ is unique. A dynamical system is said to be strictly ergodic if it is minimal and uniquely ergodic at the same time.

Let (X, φ) be a dynamical system, and let x_0 be a point of X. It was proved by W. H. Gottschalk [1] that $(\overline{\operatorname{Orb}}(x_0), \varphi)$ is minimal if and only if, for any neighborhood W of x_0 , there exists a positive integer n such that, for any integer $m \in Z$, at least one of the points $\varphi^k(x_0)$, $k = m + 1, \dots, m + n$, belongs to W. On the other hand, it was proved by J. C. Oxtoby [10] that $(\overline{\operatorname{Orb}}(x_0), \varphi)$ is uniquely ergodic if and only if the limit

(3)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=m+1}^{m+n} f(\varphi^k(x_0)) = \bar{f}(x_0)$$

exists uniformly in $m \in Z$ for any real-valued continuous function f defined on X. By combining these two results, we see that $(\overline{\text{Orb}}(x_0), \varphi)$ is strictly ergodic if and only if (i) the limit (3) exists uniformly in $m \in Z$ for any real-valued continuous function f defined on X, and if (ii) $\overline{f}(x_0) > 0$ for any nonnegative continuous function defined on X such that $f(x_0) > 0$.

3. Shift dynamical systems

Let $A = \{a\}$ be a finite set containing more than one element. Let

(4)
$$X = A^{Z} = \prod_{n \in Z} A_{n}; \qquad A_{n} = A \text{ for all } n \in Z,$$

be the set of all A-valued functions x defined on Z, or equivalently, the set of all two-sided infinite sequences

(5)
$$x = \{a_n | n \in Z\}; \qquad a_n \in A \text{ for all } n \in Z.$$

The mapping

(6)
$$\pi_n \colon x \to a_n = \pi_n(x)$$

is called the *n*-th projection of the power space $X = A^z$ onto the base space A, and a_n is called the *n*-th coordinate of x.

The space X is a totally disconnected compact metrizable space with respect to the usual direct product topology in which a defining neighborhood of a point x_0 of X is given by

(7)
$$W_{n_1,\dots,n_{\ell}}(x_0) = \{x | \pi_{n_i}(x) = \pi_{n_i}(x_0), i = 1, \dots, \ell\},$$

where $\{n_1, \dots, n_\ell\}$ is a finite subset of Z.

A subset P of X is called a primitive set if it is of the form

(8)
$$P = P^{(n)}(\beta) = \{x | \pi_{n+i}(x) = b_i, i = 1, \dots, \ell\},$$

where $\beta = (b_1, \dots, b_\ell)$; $b_i \in A$, $i = 1, \dots, \ell$; and $n \in Z$. In this expression β is called a *block* of *length* ℓ . We do not assume that b_1, \dots, b_ℓ are all different. As a special case, we also consider a block β of length 0. In this case, we put $P^{(n)}(\beta) = X$ for any $n \in Z$.

We observe that a primitive set is a special case of a neighborhood $W_{n_1,\dots,n}(x_0)$

of the form (7) in which $\{n_1, \dots, n_\ell\}$ is a consecutive set of integers, namely $n_i = n + i, i = 1, \dots, \ell$.

A subset E of X is called an *elementary* set if it is a union of a finite number of primitive sets. A neighborhood of the form (7) is clearly an elementary set. It is easy to see that a subset of X is open and closed at the same time if and only if it is an elementary set.

The family of all primitive subsets of X is denoted by \mathfrak{E} , and the family of all elementary subsets of X is denoted by \mathfrak{E} . Clearly, \mathfrak{E} is a field of subsets of X. The σ -field of subsets of X generated by \mathfrak{E} is denoted by \mathfrak{E} . This \mathfrak{E} is nothing but the σ -field of all Borel subsets of X.

Let φ be a mapping of X onto itself defined by

(9)
$$\pi_n(\varphi(x)) = \pi_{n+1}(x) \qquad \text{for all} \quad n \in \mathbb{Z}.$$

It is clear that φ is a homeomorphism of X onto itself. The map φ is called the shift transformation, and the dynamical system (X, φ) is called the shift dynamical system defined on the power space $X = A^Z$. It is clear that φ maps each of \mathcal{O} , \mathcal{E} , and \mathcal{O} onto itself.

Let μ be a normalized, φ -invariant, countably additive nonnegative measure defined on \mathfrak{B} . For any block $\beta = (b_1, \dots, b_\ell), \mu(P^{(n)}(\beta))$ is independent of $n \in \mathbb{Z}$, and hence we may denote it by $D(\beta)$. It is then clear that the following conditions are satisfied:

(10)
$$0 \le D(\beta) \le 1$$
 for any block β , and $D(\beta) = 1$

if β is a block of length 0,

(11)
$$D(\beta) = \sum_{b \in A} D((\beta, b)) = \sum_{b \in A} D((b, \beta)),$$

where $(\beta, b) = (b_1, \dots, b_l, b)$ and $(b, \beta) = (b, b_1, \dots, b_l)$ if $\beta = (b_1, \dots, b_l)$. Conversely, assume that $D(\beta)$ is defined for any block β and that the conditions (10) and (11) are satisfied. Then it is easy to see that there exists a normalized, φ -invariant, countably additive, nonnegative measure μ defined on \mathfrak{B} such that $\mu(P^{(n)}(\beta)) = D(\beta)$ for any block β and $n \in \mathbb{Z}$.

Now let x_0 be a point of X. From the result stated at the end of section 2 follows that $(\overline{\text{Orb}}(x_0), \varphi)$ is strictly ergodic if and only if (i) the limit

(12)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=m+1}^{m+n} \chi_P(\varphi^k(x_0)) = \mu(P)$$

exists uniformly in $m \in \mathbb{Z}$ for any primitive set P, where χ_P is the characteristic function of P, and if (ii) $\mu(P) > 0$ for any primitive set P with $x_0 \in P$.

For any block $\beta = (b_1, \dots, b_\ell)$, let us put

(13)
$$N(\beta, x_0) = \{n | \pi_{n+i}(x_0) = b_i, i = 1, \dots, \ell\}.$$

Then the result above can be restated as follows: $(\overline{\text{Orb}}(x_0), \varphi)$ is strictly ergodic if and only if (i) the limit

(14)
$$\lim_{n\to\infty} \frac{1}{n} \left\{ \text{the number of integers } k \in N(\beta, x_0) \\ \text{such that } m+1 \le k \le m+n \right\} = D(\beta)$$

exists uniformly in $m \in Z$ for any block $\beta = (b_1, \dots, b_\ell)$ and if (ii) $D(\beta) > 0$ for any block β for which $N(\beta, x_0)$ is not empty.

It is easy to see that the limit $D(\beta)$ satisfies the conditions (10) and (11), and hence there exists a normalized, φ -invariant, countably additive, nonnegative measure μ defined on \mathfrak{B} such that $\mu(P^{(n)}(\beta)) = D(\beta)$ for any block β and for any $n \in \mathbb{Z}$. This is the same μ which appears in the formula (12). It is easy to see that $\overline{\text{Orb}}(x_0)$ is the carrier of this measure μ , and that μ is nothing but the unique normalized, φ -invariant, countably additive, nonnegative measure for the strictly ergodic dynamical system $(\overline{\text{Orb}}(x_0), \varphi)$.

4. Example 1

We consider the shift dynamical system (X, φ) defined on the power space $X = A^z$, where the base space A is a finite set consisting of two elements: $A = \{-1, +1\}$.

We define a number-theoretic function $\rho(n)$ by

(15)
$$\rho(n) = (-1)^{\eta_1 + \eta_2 + \cdots + \eta_k}, \qquad n = 0, 1, 2, \cdots$$

where

(16)
$$n = \eta_1 + \eta_2 \cdot 2 + \cdots + \eta_k \cdot 2^{k-1}$$

is an expansion of a nonnegative integer n with base 2. This means that $\eta_i = 0$ or 1 for $i = 1, \dots, k$. It is easy to see that $\{\rho(n)|n = 0, 1, 2, \dots\}$ is completely determined by the relations

(17)
$$\rho(0) = 1; \qquad \rho(2^{n-1} + k) = -\rho(k), \\ k = 0, 1, \dots, 2^{n-1} - 1; n = 1, 2, \dots.$$

This sequence $\{\rho(n)|n=0,1,2,\cdots\}$ has been discussed by many mathematicians [2], [3], [4], [5], [7], [8], [9], [11], [12] in connection with various problems in different parts of mathematics.

We now define a class of more general sequences as follows: let $\alpha(0 < \alpha \le 1)$ be a real number, and let

(18)
$$\alpha = \frac{\epsilon_1(\alpha)}{2} + \frac{\epsilon_2(\alpha)}{2^2} + \cdots + \frac{\epsilon_n(\alpha)}{2^n} + \cdots$$

be a dyadic expansion of α , where $\epsilon_n(\alpha) = 0$ or 1, $n = 1, 2, \dots$. This expansion is unique if we require that there are infinitely many n for which $\epsilon_n(\alpha) = 1$. Let us put

(19)
$$\rho_{\alpha}(n) = (-1)^{\eta_1 \cdot \epsilon_1(\alpha) + \eta_2 \cdot \epsilon_2(\alpha) + \cdots + \eta_k \cdot \epsilon_k(\alpha)}, \qquad n = 0, 1, 2, \cdots,$$

where (η_1, \dots, η_k) is determined by (16) and $(\epsilon_1(\alpha), \dots, \epsilon_k(\alpha))$ is determined by (18). It is easy to see that $\{\rho_{\alpha}(n)|n=0, 1, 2, \dots\}$ is completely determined by the relations

(20)
$$\rho_{\alpha}(0) = 1; \qquad \rho_{\alpha}(2^{n-1} + k) = (-1)^{\epsilon_{n}(\alpha)}\rho_{\alpha}(k), \\ k = 0, 1, \dots, 2^{n-1} - 1; n = 1, 2, \dots.$$

By comparing (17) with (20), we see that $\rho(n)$ defined by (15) corresponds to the case of $\rho_{\alpha}(n)$ defined by (19) when $\epsilon_{n}(\alpha) = 1$ for $n = 1, 2, \dots$, that is when $\alpha = 1$.

We now define $\rho_{\alpha}(n)$ for $n=-1, -2, \cdots$ by

(21)
$$\rho_{\alpha}(n) = \rho(-n-1), \qquad n = -1, -2, \cdots.$$

Thus the point $x_{\alpha} = \{\rho_{\alpha}(n) | n \in Z\} \in X$ is defined for each real number $\alpha(0 < \alpha \le 1)$. It is possible to show that, for any block $\beta = (b_1, \dots, b_\ell)$, the uniform density $D_{\alpha}(\beta)$ exists for the point $x_{\alpha} = \{\rho_{\alpha}(n) | n \in Z\}$ and that $D_{\alpha}(\beta) > 0$ for any block for which $N(\beta, x_{\alpha})$ is not empty. We see easily that $D_{\alpha}(\beta) = \frac{1}{2}$ if β is a block of length 1, but it is in general not true that $D_{\alpha}(\beta) = \frac{1}{2}^{\ell}$ if β is a block of length ℓ .

Theorem 1. For each real number $\alpha(0 < \alpha \le 1)$, $(\overline{\text{Orb}}(x_{\alpha}), \varphi)$ is a strictly ergodic dynamical system.

Let \mathfrak{G}_{α} be the σ -field of all Borel subsets of $\overline{\text{Orb}}$ (x_{α}) and let μ_{α} be the unique, normalized, φ -invariant, countably additive, nonnegative measure defined on \mathfrak{G}_{α} . It is clear that φ is an ergodic measure preserving transformation on the measure space $(\overline{\text{Orb}})$ (x_{α}) , \mathfrak{G}_{α} , μ_{α} .

Let τ be a mapping of X onto itself defined by

(22)
$$\pi_n(\tau(x)) = -\pi_n(x) \qquad \text{for all} \quad n \in \mathbb{Z}.$$

It is easy to see that τ is a homeomorphism of X onto itself with period 2 (that is, $\tau^2(x) = x$ for any $x \in X$), and that τ commutes with φ (that is, $\tau\varphi(x) = \varphi\tau(x)$ for any $x \in X$). It is also easy to show that τ is a homeomorphism of $\overline{\text{Orb}}(x_{\alpha})$ onto itself and that τ is a measure preserving transformation on the measure space $(\overline{\text{Orb}}(x_{\alpha}), \mathcal{B}_{\alpha}, \mu_{\alpha})$.

Let $\mathfrak{R}_{\alpha} = L^2(\overline{\operatorname{Orb}}(x_{\alpha}), \mathfrak{B}_{\alpha}, \mu_{\alpha})$ be the complex L^2 -space over the measure space $(\overline{\operatorname{Orb}}(x_{\alpha}), \mathfrak{B}_{\alpha}, \mu_{\alpha})$. Let $V_{\alpha}^{\varphi}, V_{\alpha}^{\tau}$ be the unitary operators defined on \mathfrak{R}_{α} by $V_{\alpha}^{\varphi}f(x) = f(\varphi(x)), V_{\alpha}^{\tau}f(x) = f(\tau(x))$, respectively. Further, let $\mathfrak{M}_{\alpha}^1, \mathfrak{M}_{\alpha}^{-1}$ be the closed linear subspaces of \mathfrak{R}_{α} consisting of all $f \in \mathfrak{R}_{\alpha}$ such that $V_{\alpha}^{\tau}f = f$, $V_{\alpha}^{\tau}f = -f$, respectively. It is easy to see that \mathfrak{M}_{α}^1 and $\mathfrak{M}_{\alpha}^{-1}$ are orthogonal to each other and together span the space \mathfrak{R}_{α} . It is also easy to see that both \mathfrak{M}_{α}^1 and $\mathfrak{M}_{\alpha}^{-1}$ are invariant under V_{α}^{φ} .

THEOREM 2. For each real number $\alpha(0 < \alpha \le 1)$, V_{α}^{φ} has a pure point spectrum on $\mathfrak{M}_{\alpha}^{-1}$, and a continuous singular spectrum on $\mathfrak{M}_{\alpha}^{-1}$. Further, for any two real numbers α and α' ($0 < \alpha < \alpha' \le 1$), V_{α}^{φ} on $\mathfrak{M}_{\alpha}^{-1}$ is spectrally isomorphic with V_{α}^{φ} on $\mathfrak{M}_{\alpha'}^{-1}$, while V_{α}^{φ} on $\mathfrak{M}_{\alpha'}^{-1}$ and $V_{\alpha'}^{\varphi}$ on $\mathfrak{M}_{\alpha'}^{-1}$ are not spectrally isomorphic if $\alpha' - \alpha$ is a dyadically irrational number.

Thus we obtained a concrete example of a continuum number of strictly ergodic dynamical systems, no two of which are spectrally isomorphic.

5. Example 2

We now consider the shift dynamical system (X, φ) defined on the power space $X = A^z$, where the base space A is a finite set consisting of four elements: $A = \{2, 4, 6, 8\}$.

We define a number-theoretic function $\lambda(n)$ by

(23)
$$\lambda(n) = \text{the last nonzero digit in the decimal expansion of } n!,$$
 $n = 2, 3, \cdots$

For example, $\lambda(2) = 2$, $\lambda(3) = 6$, $\lambda(4) = 4$, $\lambda(5) = 2$, $\lambda(6) = 2$, ...

If we denote by $\gamma(n)$ the number of consecutive zeros at the right end of the decimal expansion of n!, then we may write

(24)
$$n! \equiv 0 \pmod{10^{\gamma(n)}}; \quad n!/10^{\gamma(n)} \equiv \lambda(n) \pmod{10}.$$

We observe that $\lambda(n)$ is even, and hence $\lambda(n) \in A$ for $n = 2, 3, \dots$. This follows from the fact that if $n! = 2^a 3^b 5^c 7^d \cdots p^e$ is a representation of n as the product of powers of a finite number of different prime numbers, then $a \geq c$, and hence $\gamma(n) = c$, and consequently, $\gamma(n) \equiv 2^{a-c} 3^b 7^d \cdots p^e \pmod{10}$.

We now want to find a general rule to compute the values of $\lambda(n)$. For this purpose, we introduce a cyclic permutation T of the base space $A = \{2, 4, 6, 8\}$ of order 4 defined by

$$(25) T = \begin{pmatrix} 2 & 4 & 6 & 8 \\ 4 & 8 & 2 & 6 \end{pmatrix}.$$

We also consider the set $B = \{1, 2, 3, 4\}$.

First, let $n \equiv b \in B \pmod{5}$, $n \geq 3$. In this case, $\lambda(n)$ is obtained from $\lambda(n-1)$ by the relation

(26)
$$\lambda(n) \equiv b \cdot \lambda(n-1) \pmod{10},$$

or equivalently, by

(27)
$$\lambda(n) \equiv T^{\eta(b)}\lambda(n-1),$$

where T is a permutation defined by (25), and η is a function defined on B by

(28)
$$\eta(1) = 0, \quad \eta(2) = 1, \quad \eta(3) = 3, \quad \eta(4) = 2$$

If we put $\lambda(0) = \lambda(1) = 6$, then the relations (26) and (27) hold for n = 1 and n = 2. For this reason, we use these values of $\lambda(0)$ and $\lambda(1)$ even though they do not satisfy (23). Thus the relations (26) and (27) are valid for $n = 1, 2, \cdots$ if $n \neq 0 \pmod{5}$. If $n \equiv 0 \pmod{5}$, then the situation is a little more complicated.

Next, let $n \equiv 0 \pmod{5}$ and $n/5 \equiv b \in B \pmod{5}$. In this case, we have $\lambda(n) = \lambda(n-1) + 1$, and hence $2\lambda(n) \equiv b \cdot \lambda(n-1) \pmod{10}$. From this follows that $T \cdot \lambda(n) = T^{\eta(b)}\lambda(n-1)$, or equivalently,

(29)
$$\lambda(n) = T^{\eta(b)+3}\lambda(n-1).$$

For example, we can compute the value of $\lambda(15)$ if we know that $\lambda(14) = 2$.

Since $15 \equiv 0 \pmod{5}$ and $15/5 \equiv 3 \pmod{5}$, we have $\lambda(15) = T^{\eta(3)+3}\lambda(14) = T^{3+3}2 = T^22 = 8$.

Finally, we discuss the general case:

(30)
$$n \equiv 0 \pmod{5^k}, \quad n/5^k \equiv b \in B \pmod{5}; \quad k = 0, 1, 2, \cdots$$

In this case, we have $\gamma(n) = \gamma(n-1) + k$, and hence $2^k \lambda(n) \equiv b \cdot \lambda(n-1)$ (mod 10). From this follows that $T^k \lambda(n) = T^{\eta(b)} \lambda(n-1)$, or equivalently,

(31)
$$\lambda(n) = T^{\xi(n)}\lambda(n-1),$$

where $\xi(n)$ takes one of the four values 0, 1, 2, 3, such that

(32)
$$\xi(n) \equiv \eta(b) + 3k \pmod{4}$$

and $\eta(b)$ is defined by (28).

Equation (31) is a general formula by which we can compute the value of $\lambda(n)$ from that of $\lambda(n-1)$ for $n=1,2,\cdots$. We now want a formula by which we can compute the value of $\lambda(n)$ from that of $\lambda(0)$.

From (31) follows that

(33)
$$\lambda(n) = T^{\zeta(n)}\lambda(0),$$

where $\zeta(n)$ takes one of the four values 0, 1, 2, 3, such that

(34)
$$\zeta(n) \equiv \xi(1) + \xi(2) + \cdots + \xi(n) \pmod{4}.$$

Let now

$$(35) n = c_1 + c_2 5 + \cdots + c_k 5^{k-1}$$

be the expansion of a nonnegative integer n in base 5, where $c_i = 0, 1, 2, 3$, or 4 for $i = 1, 2, \dots, k$. Then

(36)
$$\zeta(n) \equiv \sum_{m=1}^{n} \xi(m) \equiv \sum_{m=1}^{c_k \cdot 5^{k-1}} \xi(m) + \sum_{m=1}^{c_{k-1} \cdot 5^{k-2}} \xi(m + c_k 5^{k-1}) + \dots + \sum_{m=1}^{c_1} \xi(m + c_2 5 + \dots + c_k 5^{k-1}) \pmod{4}.$$

If we observe that

(37)
$$\xi(m+c_i\,5^{i-1}+c_{i+1}\,5^i+\cdots+c_k\,5^{k-1})=\,\xi(m)$$

for $m = 1, 2, \dots, 5^{i-1} - 1$, then (36) becomes

(38)
$$\zeta(n) \equiv \sum_{m=1}^{c_k \cdot 5^{k-1}} \xi(m) + \sum_{m=1}^{c_{k-1} \cdot 5^{k-2}} \xi(m) + \dots + \sum_{m=1}^{c_1} \xi(m)$$
$$\equiv \zeta(c_k \cdot 5^{k-1}) + \zeta(c_{k-1} \cdot 5^{k-2}) + \dots + \zeta(c_1)$$
$$\equiv \zeta_k(c_k) + \zeta_k(c_{k-1}) + \dots + \zeta_1(c_1) \pmod{4}$$

where

(39)
$$\zeta_k(c) = \zeta(c \, 5^{k-1}), \qquad c = 0, 1, 2, 3, 4; k = 1, 2, \cdots$$

We calculate the values of $\zeta_k(c)$ for c = 0, 1, 2, 3, 4 and k = 1, 2, 3, 4, and obtain the following table:

We also observe (by computation) that

$$\xi(5^4) = \zeta(5^4) = 0.$$

On the other hand, from (32) it follows that

(42)
$$\xi(c \, 5^{k+4}) = \xi(c \, 5^k), \qquad c = 1, 2, 3, 4; k = 0, 1, 2, \cdots.$$

From (41) and (42) it is easy to show, by mathematical induction, that

(43)
$$\zeta_{k+4}(c) = \zeta_k(c), \qquad c = 0, 1, 2, 3, 4; k = 0, 1, 2, \cdots.$$

Thus, (40) and (43) together give all the values of $\zeta_k(c)$ for c = 0, 1, 2, 3, 4 and $k = 0, 1, 2, \cdots$. Combined with (33) and (38), we have now a fairly simple method to calculate the values of $\lambda(n)$ for $n = 0, 1, 2, \cdots$.

We can restate the above result in the following form. If

$$(44) n = c_1^* + c_2^* 625 + c_3^* (625)^2 + \dots + c_k^* (625)^{k-1}$$

is the expansion of a nonnegative integer n with base $625 = 5^4$, where $c_i^* = 0, 1, 2, \dots, 624$ for $i = 1, 2, \dots, k$, then there exists a function $\zeta^*(c^*)$ defined for $c^* = 0, 1, 2, \dots, 624$ and taking the values 0, 1, 2, 3, such that

(45)
$$\zeta(n) \equiv \zeta^*(c_1^*) + \zeta^*(c_2^*) + \cdots + \zeta^*(c_k^*) \pmod{4}.$$

In fact, if

$$(46) c^* = c_1 + c_2 \, 5 + c_3 \, 5^2 + c_4 \, 5^3$$

is an expansion of c^* with base 5, where $c_i = 0, 1, 2, 3, 4$ for i = 1, 2, 3, 4, then

$$\zeta^*(c^*) \equiv \zeta_1(c_1) + \zeta_2(c_2) + \zeta_3(c_3) + \zeta_4(c_4) \pmod{4}.$$

We observe that there is some similarity in the properties of two sequences $\{\rho(n)|n=0,1,2,\cdots\}$ and $\{\lambda(n)|n=0,1,2,\cdots\}$. For example, formulas (15) and (45) are similar to each other. Instead of the expansion of n with base 2 in (16), we use the expansion with base 625 in (44), and instead of the involution of the set $A=\{-1,+1\}$ which interchanges -1 and +1, we use the cyclic permutation T of order 4 of our set $A=\{2,4,6,8\}$.

We now define $\lambda(n)$ for $n = -1, -2, \cdots$ by

$$\lambda(n) = \lambda(-n-1), \qquad n = -1, -2, \cdots$$

and consider the point x_0 in $X \in A^Z$ defined by $x_0 = {\lambda(n)|n \in Z}$. It is possible to show that, for any block $\beta = (b_1, \dots, b_\ell)$, the uniform density $D(\beta)$ exists for the point $x_0 = {\lambda(n)|n \in Z}$ and that $D(\beta) > 0$ for any block β for which

 $N(\beta, x_0)$ is not empty. We see easily that $D(\beta) = \frac{1}{4}$ for any block of length 1, and that $D(\beta) = \frac{1}{16}$ for any block β of length 2, but it is in general not true that $D(\beta) = \frac{1}{4}\ell$ for any block of length ℓ .

Theorem 3. $(\overline{\text{Orb}}(x_0), \varphi)$ is a strictly ergodic dynamical system.

Let \mathfrak{G}_0 be the σ -field of all Borel subsets of $\overline{\mathrm{Orb}}$ (x_0) and let μ_0 be the unique, normalized, φ -invariant, countably additive, nonnegative measure defined on \mathfrak{G}_0 . It is clear that φ is an ergodic measure preserving transformation on the measure space $(\overline{\mathrm{Orb}}$ (x_0) , \mathfrak{G}_0 , μ_0).

Let τ be a mapping of X onto itself defined by

(49)
$$\pi_n(\tau(x)) = T\pi_n(x) \qquad \text{for all} \quad n \in \mathbb{Z}.$$

It is easy to see that τ is a homeomorphism of X onto itself with period 4 (that is, $\tau^4(x) = x$ for any $x \in X$), and that τ commutes with φ (that is, $\tau\varphi(x) = \varphi\tau(x)$ for any $x \in X$). It is also easy to see that τ is a homeomorphism of $\overline{\text{Orb}}(x_0)$ onto itself, and that τ is a measure-preserving transformation on the measure space $(\overline{\text{Orb}}(x_0), \mathfrak{G}_0, \mu_0)$.

Let $\mathcal{K}_0 = L^2(\overline{\mathrm{Orb}}(x_0), \, \mathfrak{C}_0, \, \mu_0)$ be the complex L^2 -space over the measure space $(\overline{\mathrm{Orb}}(x_0), \, \mathfrak{C}_0, \, \mu_0)$. Let V_0^{ε} , V_0^{ε} be the unitary operators defined on \mathcal{K}_0 by $V_0^{\varepsilon}f(x) = f(\varphi(x))$, $V_0^{\varepsilon}f(x) = f(\tau(x))$, respectively. Further, let \mathfrak{M}_0^k be the closed linear subspace of \mathcal{K}_0 consisting of all $f \in \mathcal{K}_0$ such that $V_0^{\varepsilon}f = e^{2\pi i k/4}f$, k = 0, 1, 2, 3. It is easy to see that $\mathfrak{M}_0^{\varepsilon}$, k = 0, 1, 2, 3, are mutually orthogonal and together span the space \mathcal{K}_0 . It is also easy to see that each $\mathfrak{M}_0^{\varepsilon}$ is invariant under V_0^{ε} .

Theorem 4. The operator V_0^k has a pure point spectrum on \mathfrak{M}_0^k , and continuous singular spectra on \mathfrak{M}_0^k , k = 1, 2, 3.

REFERENCES

- W. H. GOTTSCHALK, "Almost periodic points with respect to transformation semigroups," Ann. of Math., Vol. 47 (1946), pp. 762-766.
- [2] ——, "Substitution minimal sets," Trans. Amer. Math. Soc., Vol. 109 (1963), pp. 467-491.
- [3] W. H. GOTTSCHALK and G. A. HEDLUND, "Topological dynamics," Amer. Math. Soc. Colloq. Publ., No. 36 (1955).
- [4] G. A. Hedlund and M. Morse, "Symbolic dynamics," Amer. J. Math., Vol. 60 (1938), pp. 815-866; Vol. 62 (1940), pp. 1-42.
- [5] ———, "Unending chess, symbolic dynamics, and a problem in semi-groups," Duke Math. J., Vol. 11 (1944), pp. 1-7.
- [6] N. KRYLOFF and N. BOGOLIOUBOFF, "La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la méchanique non linéaire," Ann. of Math., Vol. 38 (1937), pp. 65-113.
- [7] K. Mahler, "On the translation properties of a simple class of arithmetical functions," J. Math. Phys. MIT, Vol. 6 (1927), pp. 158-164.
- [8] M. Morse, "Recurrent geodesics on a surface of negative curvature," Trans. Amer. Math. Soc., Vol. 22 (1921), pp. 84-100.
- [9] ——, "Symbolic dynamics," mimeographed lecture notes, Institute for Advanced Study, 1937–1938.

- [10] J. C. Охтову, "Ergodic sets," Eull. Amer. Math. Soc., Vol. 58 (1952), pp. 116–136. [11] A. Thue, "Ueber die gegenseitige Lage gleicher Teile gewisser Zahlreihen," Kristiania Videnskapsselskapets Skrifter, No. 1 (1912), pp. 3-67.
- [12] N. Wiener, "Generalized harmonic analysis," Acta Math., Vol. 55 (1930), pp. 117-258.