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1. Introduction

The main purpose of this note is to discuss the ergodic properties of a certain
class of strictly ergodic dynamical systems which appear as subsystems of the
shift dynamical system defined on the power space X = A%, where Z is the set
of all integers. We discuss only the cases when the base space 4 is a finite set.
We are particularly interested in two examples of strictly ergodic dynamical
systems which are constructed by using certain number-theoretic functions.
Among other things it will be shown that there exist a continuum number of
strictly ergodic dynamical systems, no two of which are spectrally isomorphie.

2. Strictly ergodic dynamical systems

Let X = {2} be a nonempty compact metrizable space, and let ¢ be a homeo-
morphism of X onto itself. The pair (X, ¢) is called a dynamical system. A subset
X, of X is said to be g-invariant if ¢(X,) = X,. If X, is a nonempty closed -
invariant subset of X, then (Xy, ¢) may be considered as a dynamical system,
and is called a dynamical subsystem of (X, ¢). A dynamical system (X, ¢) is said
to be minimal if there is no dynamical subsystem of (X, ¢) except (X, ¢) itself,
that is if there is no nonempty closed ¢-invariant subset of X except X itself.

Let

1) Z={nln=0, £1, £2, .-}
be the set of all integers. For any point z, € X, the set
(2) Orb (z0) = {¢"(z)|n € Z}

is called the orbst of xo, and its closure Orb (zy) is called the orbit closure of .

Obviously, Orb (z) is a closed g-invariant subset of X, and hence (Orb (), ¢)
is a dynamical subsystem of (X, ¢). It is clear that a dynamical system (X, ¢)
is minimal if and only if Orb (o) is dense in X for any z, € X.

Let ® = {B} be the o-field of all Borel subsets B of X. It was proved by N. Kry-
loff and N. Bogoliouboff [6] that, for any dynamical system (X, ¢), there exists
a normalized, ecountably additive, nonnegative measure y defined on ® which is
invariant under ¢; that is, u(¢(B)) = u(B) for any B € ®. Such a measure p is
not necessarily unique. A dynamical system (X, ¢) is said to be uniquely ergodic
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if such a measure p is unique. A dynamical system is said to be sirictly ergodic
if it is mininal and uniquely ergodic at the same time.

Let (X, ¢) be a dynamical system, and let 2, be a point of X. It was proved
by W. H. Gottschalk [1] that (Orb (z,), ¢) is minimal if and only if, for any
neighborhood W of z, there exists a positive integer n such that, for any integer
m € Z, at least one of the points ¢*(zp), k = m + 1, --- , m 4+ n, belongs to W.
On the other hand, it was proved by J. C. Oxtoby [10] that (Orb (x), ¢) is
uniquely ergodic if and only if the limit

3) tim L5 k) = e
n—ew I k=m41

exists uniformly in m € Z for any real-valued continuous function f defined on X.

By combining these two results, we see that (Orb (z,), ¢) is strictly ergodic if
and only if (i) the limit (3) exists uniformly in m € Z for any real-valued con-
tinuous function f defined on X, and if (i) f(z0) > 0 for any nonnegative con-
tinuous function defined on X such that f(x) > 0.

3. Shift dynamical systems
Let A = {a} be a finite set containing more than one element. Let
4 X =47 = ng"; A, =Aforalln € Z,

be the set of all A-valued functions z defined on Z, or equivalently, the set of all
two-sided infinite sequences

(5) T = {a.\n € Z}; a, € AforallneZ,
The mapping
(6) Tul T— Ap = wa()

is called the n-th projection of the power space X = AZ onto the base space A, and
a, is called the n-th coordinate of z.

The space X is a totally disconnected compact metrizable space with respect
to the usual direct product topology in which a defining neighborhood of a point
x, of X is given by

Y] W"""""t(xo) = {x“’rm(x) = mn(%0), 2 =1, -, t}’
where {n;, --- , ng} is a finite subset of Z. ,

A subset P of X is called a premitive set if it is of the form
(8) P=P™QE) = {z| 7opi (@) = byt =1,---, ¢},

where 8 = (by, -+ ,b); b€ A,s=1,---,¢ and n € Z. In this expression 8
is called a block of length £. We do not assume that by, - - -, by are all different.
As a special case, we also consider a block 8 of length 0. In this case, we put
P®™(B) = X for any n € Z.

We observe that a primitive set is a special case of a neighborhood Wh,,... » ()
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of the form (7) in which {n, --- ,n;} is a consecutive set of integers, namely
ni=n+14i=1 .- ,4L

A subset E of X is called an elementary set if it is a union of a finite number of
primitive sets. A neighborhood of the form (7) is clearly an elementary set. It is
easy to see that a subset of X is open and closed at the same time if and only if
it is an elementary set.

The family of all primitive subsets of X is denoted by ®, and the family of all
elementary subsets of X is denoted by &. Clearly, & is a field of subsets of X. The
o-field of subsets of X generated by & is denoted by ®. This ® is nothing but the
o-field of all Borel subsets of X.

Let ¢ be a mapping of X onto itself defined by

9) (X)) = Tnpa(z) forall neZ.

It is clear that ¢ is a homeomorphism of X onto itself. The map ¢ is called the
shift transformation, and the dynamical system (X, o) is called the shift dynamical
system defined on the power space X = AZ. It is clear that ¢ maps each of @, &,
and ® onto itself.

Let u be a normalized, g-invariant, countably additive nonnegative measure
defined on ®. For any block 8 = (by, - - - , by), u(P™(B)) is independent of n € Z,
and hence we may denote it by D(8). It is then clear that the following conditions
are satisfied:

(10) 0 < D(B) < 1 for any block 8, and D(B8) = 1
if 8 is a block of length 0,

(1) D) = T, D(6,1) = T, D((,8)),

where (ﬁ: b) = (bll te ’bl) b) and (by ﬁ) = (bx bl) ’bl) if B = (bI; e 1b()-
Conversely, assume that D(B) is defined for any block 8 and that the conditions
(10) and (11) are satisfied. Then it is easy to see that there exists a normalized,
¢-invariant, countably additive, nonnegative measure u defined on ® such that
w(P™(B)) = D(B) for any block g and n € Z.
Now let x4 be a point of X. From the result stated at the end of section 2 follows

that (Orb (x,), o) is strictly ergodic if and only if (i) the limit

(12) 31_12 % ,:é:l xp(¢*(20)) = w(P)

exists uniformly in m € Z for any primitive set P, where x» is the characteristic
function of P, and if (ii) u(P) > 0 for any primitive set P with zy € P.
For any block 8 = (by, - - - , be), let us put

(13) N(ﬂ, xo) B {'nlﬂ',H.i(xo) = bi, 1 = 1, Ty, f}
Then the result above can be restated as follows: (Orb (xo), ¢) is strictly ergodic
if and only if (i) the limit

1 {the number of integers k € N (8, xo)} — D(8)

(14) lim suchthat m +1 <k <m+n

n—ow
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exists uniformly in m € Z for any block 8 = (b, --- , b)) and if (ii) D(8) > 0
for any block g8 for which N (B, zy) is not empty.

It is easy to see that the limit D(B) satisfies the conditions (10) and (11), and
hence there exists a normalized, g-invariant, countably additive, nonnegative
measure u defined on ® such that u(P™(B)) = D(B) for any block 8 and for
any n € Z. This is the same u which appears in the formula (12). It is easy to

see that Orb (x,) is the carrier of this measure g, and that u is nothing but the
unique normalized, ¢-invariant, countably additive, nonnegative measure for

the strictly ergodic dynamical system (Orb (x), ¢).

4, Example 1

We consider the shift dynamical system (X, ¢) defined on the power space
X = A%, where the base space A is a finite set consisting of two elements:

A ={-1,+1}.
We define a number-theoretic function p(n) by
(15) p(n) = (_1)n1+m+-~+nk, n = ()’ 1, 2’ e
where
(16) n=q+n2+ -+ g2k

is an expansion of a nonnegative integer n» with base 2. This means that 9, = 0
orlfors =1, .-,k Itiseasy tosee that {p(n)ln = 0,1,2, ---} is completely
determined by the relations

17) p(0) =1;  p@2™ !+ k) = —p(k),
k=0,1,--+,2" 1 —1;n=12 .

This sequence {p(n)ln = 0, 1,2, ---} has been discussed by many mathemati-
cians [2], [3], [4], [56], [7], [8], [9], [11], [12] in connection with various problems
in different parts of mathematics.

We now define a class of more general sequences as follows: let (0 < a < 1)
be a real number, and let

_ala) | el ()
(18) o=yttt

be a dyadic expansion of «, where e,(a) = 0or1,n = 1,2, - --. This expansion
is unique if we require that there are infinitely many n for which e,(a) = 1.
Let us put

(19) Pa(n) = (_l)m-en(a)+nz-ee(a)+---+m=-e»(a)’ n = 0’ 1, 2’ cee

where (i1, - - - , nx) is determined by (16) and (e(a), - - - , e&(a)) is determined by
(18). It is easy to see that {p.(n)in =0, 1,2, ---} is completely determined by
the relations



SHIFT TRANSFORMATIONS 409

(20) pa0) = 1;  pa(2n1 + k) = (—1)=@p,(k),

k=0,1,---,271—1;n=1,2 ---.
By comparing (17) with (20), we see that p(n) defined by (15) corresponds to the
case of p.(n) defined by (19) when ¢,(@) = 1 for n = 1,2, --- , that is when
a=1.

We now define p,(n) forn = —1, —2, ... by
(21) pa(n) = p(—n — 1), n=—1,-2 -
Thus the point z, = {p.(n)|n € Z} € X is defined for each real number
a(0 < a < 1). It is possible to show that, for any block 8 = (b, --- by), the
uniform density D,.(g) exists for the point 2, = {p(n)|n € Z} and that D,(8) > 0
for any block for which N (8, z.) is not empty. We see easily that D,(8) = 1 if 8
is a block of length 1, but it is in general not true that D.(8) = 4¢if 8 is a block
of length 4.

TaeoREM 1. For each real number a(0 < a < 1), (Orb (x.), ¢) is a strictly
ergodic dynamzical system.

Let ®, be the o-field of all Borel subsets of Orb (z.) and let u, be the unique,
normalized, ¢g-invariant, countably additive, nonnegative measure defined on ®,.
It is clear that ¢ is an ergodic measure preserving transformation on the measure
space (Orb (.), Ba, pa)-

Let 7 be a mapping of X onto itself defined by

(22) ma(7(2)) = —ma(x) forall neZ.

It is easy to see that 7 is a homeomorphism of X onto itself with period 2 (that is,
2(x) = z for any z € X), and that 7 commutes with ¢ (that is, 7o(z) = ¢r(x)

for any z € X). It is also easy to show that r is a homeomorphism of Orb (z,)
onto itself and that 7 is a measure preserving transformation on the measure
space (Orb (2.), ey pa).

Let 3¢, = L*(Orb (z.), ®a, ra) be the complex L-space over the measure space
(Orb (xa), ®Ba, ta). Let VE, V7 be the unitary operators defined on 3¢, by VEf(z) =
fle(x)), Vif(z) = f(r(x)), respectively. Further, let 91}, 915 be the closed linear
subspaces of 3C. consisting of all f € 3C, such that Vif = f, Vif = —f, respec-
tively. It is easy to see that 9m; and 9;! are orthogonal to each other and to-
gether span the space 3C,. It is also easy to see that both 9m} and 91" are in-
variant under V.

TueorREM 2. For each real number a(0 < a < 1), V¢ has a pure point spec-
trum on ME, and a continuous singular spectrum on M;'. Further, for any two
real numbers a and o/ (0 < a < o < 1), V& on ML, is spectrally isomorphic with
V& on ML, while V& on 9Mz* and VE on MG are not spectrally isomorphic if
o — a1s a dyadically irrational number.

Thus we obtained a concrete example of a continuum number of strictly
ergodic dynamical systems, no two of which are spectrally isomorphic.
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5. Example 2

We now consider the shift dynamical system (X, ¢) defined on the power space
X = AZ, where the base space A is a finite set consisting of four elements:
A = {2,4,6,8}.

We define a number-theoretic function A(n) by

(23) A(n) = the last nonzero digit in the decimal expansion of n!,
n=23, - --.

For example, A(2) = 2, A(3) = 6, \4) =4, N5) =2,\6) =2, ---.
If we denote by y(n) the number of consecutive zeros at the right end of the
decimal expansion of n!, then we may write

(24) n! = 0 (mod 107®); n!/10"™ = X(n) (mod 10).

We observe that A(n) is even, and hence A(n) € 4 forn = 2, 3, - - -. This follows
from the fact that if n! = 2235574 - . - pe is a representation of n as the product
of powers of a finite number of different prime numbers, then a > ¢, and hence
v(n) = ¢, and consequently, v(n) = 2%-:3%74 - . . p¢ (mod 10).

We now want to find a general rule to compute the values of A(n). For this
purpose, we introduce a cyclic permutation T of the base space A = {2, 4, 6, 8}
of order 4 defined by

(1Y)

We also consider the set B = {1, 2, 3, 4}.

First, let n =b € B (mod 5), n > 3. In this case, A(n) is obtained from
A(n — 1) by the relation

(26) A(n) = b-A(n — 1) (mod 10),

or equivalently, by

27 An) = T"O\(n — 1),

where T is a permutation defined by (25), and 7 is a function defined on B by
(28) 721) =0, 2@)=1, 28)=3, 14 =2.

If we put A(0) = A(1) = 6, then the relations (26) and (27) hold for n = 1
and n = 2. For this reason, we use these values of A(0) and A(1) even though they
do not satisfy (23). Thus the relations (26) and (27) are valid forn = 1,2, - --
if n # 0 (mod 5). If n = 0 (mod 5), then the situation is a little more compli-
cated.

Next, let n =0 (mod 5) and n/5 = b € B (mod 5). In this case, we have
A(n) = AMn — 1) + 1, and hence 2\(n) = b-A(n — 1) (mod 10). From this fol-
lows that T-A(n) = T"®X(n — 1), or equivalently,

(29) An) = Tr®+3)\(n — 1).
For example, we can compute the value of A(15) if we know that A(14) = 2.
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Since 15 = 0 (mod 5) and 15/5 = 3 (mod 5), we have A(15) = T®+3)\(14) =
T332 = T22 = 8.
Finally, we discuss the general case:

(30) n =0 (mod 5¥), n/5* =b € B (mod 5); k=012, ---.

In this case, we have y(n) = y(n — 1) + k, and hence 2*A(n) = b-A(n — 1)
(mod 10). From this follows that T*A(n) = T*®x(n — 1), or equivalently,

(31) A(n) = T\ (n — 1),
where £(n) takes one of the four values 0, 1, 2, 3, such that
(32) £(n) = 9(b) + 3k (mod 4)

and 7(b) is defined by (28).

Equation (31) is a general formula by which we can compute the value of
Mn) from that of A(n — 1) forn = 1,2, - --. We now want a formula by which
we can compute the value of A(n) from that of A(0).

From (31) follows that

(33) A(n) = TE™N(0),

where ¢(n) takes one of the four values 0, 1, 2, 3, such that

(34) ¢(n) = &(1) + £2) + -+ + £(n) (mod 4).
Let now

(35) n=c+ b+ - + ¢ 51

be the expansion of a nonnegative integer n in base 5, where ¢; = 0,1, 2,3, or 4
fori =1,2,--- k. Then

66)  tm =% fm="% tm+ L tm+ a5

4o +m§=il £m + 5+ -+ + 6 57) (mod 4).
If we observe that
(37) Em 4+ 57V 4+ i 5P+ - F a5 = E(m)
form =1,2, ... ,5"1 — 1, then (36) becomes

(3%) sy =" tm) + "L ) + o+ 5 em)
= £(0 50) + $eis ) + - + £(e)
= {rler) + tulcr—r) + <+ 4 filer) (mod 4)
where

(39) g'k(c) = 3'(65""1), c = 07 1:2; 3y4;k =1, 2’ v
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We calculate the values of ¢:(c) for e =0,1,2,3,4and k = 1,2, 3, 4, and
obtain the following table:

c , 01 2 3 4

(40) &i(e) 0 01 0 2

§2(c) 013 3 2.

) 1 021 2 2

tlc) | 0 331 2
We also observe (by computation) that
(41) (5% = ¢(5%) = 0.
On the other hand, from (32) it follows that
(42) £(c 5% = E(c ), c=1,2,3,4;k=0,1,2,---
From (41) and (42) it is easy to show, by mathematical induction, that
(43) Crrale) = Gilo), ¢=0,1,2,34,k=0,1,2, ---.
Thus, (40) and (43) together give all the values of {x(c) forc = 0, 1, 2, 3, 4 and
k=0,1,2, . Combined with (33) and (38), we have now a falrly simple

method to calculate the values of A(n) forn =10,1,2, ---
We can restate the above result in the following form. If

(44) n=ct+ i 625 + ¢ (625)2 + - -- + ¢ (625)F1

is the expansion of a nonnegative integer n with base 625 = 5¢, where ¢f =
0,1,2 -.-,624forz = 1,2, ---, k, then there exists a function {*(c*) defined
fore* =0,1,2, -+, 624 and taking the values 0, 1, 2, 3, such that

(45) ¢(n) = £*et) + ¢*(@) + -+ + $*(ck) (mod 4).

In fact, if

(46) c*=c1+ b5+ ¢35+ 5

is an expansion of ¢* with base 5, where ¢; = 0, 1,2, 3,4 for 7 = 1, 2, 3, 4, then
(47) §*(c*) = file) + $alee) + $3(es) + $ales) (mod 4).

We observe that there is some similarity in the properties of two sequences
{p(n)ln =0,1,2, ---} and (A(n)|n =0, 1,2, ---}. For example, formulas (15)
and (45) are similar to each other. Instead of the expansion of » with base 2 in
(16), we use the expansion with base 625 in (44), and instead of the involution
of the set A = {—1, 41} which interchanges —1 and +1, we use the cyclic
permutation 7' of order 4 of our set A = {2 4,6, 8}.

We now define A(n) for n = —1, by

(48) An) = >\(-—n -1, n=—1,-2 -

and consider the point x, in X € AZ defined by x, = {A(n)|n € Z}. It is possible
to show that, for any block 8 = (by, - - - , by), the uniform density D(B) exists
for the point zy = {A(n)|n € Z} and that D(8) > 0 for any block 8 for which
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N(B, x,) is not empty. We see easily that D(8) = % for any block of length 1,
and that D(8) = % for any block 8 of length 2, but it is in general not true that
D(B) = ¥ for any block of length £.

Turorem 3. (Orb (w), ¢) is a strictly ergodic dynamical system.

Let ® be the o-field of all Borel subsets of Orb (x;) and let u, be the unique,
normalized, g-invariant, countably additive, nonnegative measure defined on ®,.
It is clear that ¢ is an ergodic measure preserving transformation on the measure
space (Orb (2q), e, o).

Let 7 be a mapping of X onto itself defined by

(49) ma(7(x)) = Tma(z) forall neZ.

It is easy to see that r is a homeomorphism of X onto itself with period 4 (that is,
4(z) = z for any z € X), and that 7 commutes with ¢ (that is, r¢(x) = er(z)
for any z € X). It is also easy to see that 7 is a homeomorphism of Orb (x;) onto
itself, and that 7 is a measure-preserving transformation on the measure space
(Orb (o), ®o, o).

Let 3¢, = L2(Orb (20), ®o, m) be the complex L2-space over the measure space
(Orb (z0), ®o, mo). Let V§, Vi be the unitary operators defined on 3¢, by VEf(x) =
fle(x)), Vif(x) = f(z(x)), respectively. Further, let 9% be the closed linear sub-
space of 3¢y consisting of all f € 3¢, such that V§f = e¥#/¢f, k = 0, 1, 2, 3.
It is easy to see that 9§, & = 0, 1, 2, 3, are mutually orthogonal and together
span the space 3Co. It is also easy to see that each 9§ is invariant under V§.

THEOREM 4. The operator V§ has a pure point spectrum on Y, and continuous
singular spectra on G, k =1, 2, 3.
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