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1. Introduction

The main purpose of this note is to discuss the ergodic properties of a certain
class of strictly ergodic dynamical systems which appear as subsystems of the
shift dynamical system defined on the power space X = AZ, where Z is the set
of all integers. We discuss only the cases when the base space A is a finite set.
We are particularly interested in two examples of strictly ergodic dynamical
systems which are constructed by using certain number-theoretic functions.
Among other things it will be shown that there exist a continuum number of
strictly ergodic dynamical systems, no two of which are spectrally isomorphic.

2. Strictly ergodic dynamical systems

Let X = {x} be a nonempty compact metrizable space, and let so be a homeo-
morphism of X onto itself. The pair (X, so) is called a dynamical system. A subset
Xo of X is said to be p-invariant if (o(Xo) = Xo. If X0 is a nonempty closed V-
invariant subset of X, then (X0, so) may be considered as a dynamical system,
and is called a dynamical subsystem of (X, so). A dynamical system (X, so) is said
to be minimal if there is no dynamical subsystem of (X, p) except (X, so) itself,
that is if there is no nonempty closed (p-invariant subset of X except X itself.

Let
(1) Z = {nln = O, 41, 4-2,
be the set of all integers. For any point x0 E X, the set

(2) Orb (xo) = {jon(x)In E Z}
is called the orbit of x0, and its closure r0bi (x0) is called the orbit closure of xo.
Obviously, Or4b (x0) is a closed p-invariant subset of X, and hence (Xrb (x0), (e)
is a dynamical subsystem of (X, so). It is clear that a dynamical system (X, so)
is minimal if and only if Orb (x0) is dense in X for any x0 E X.

Let 6B = {B} be the a-field of all Borel subsets B of X. It was proved by N. Kry-
loff and N. Bogoliouboff [6] that, for any dynamical system (X, so), there exists
a normalized, countably additive, nonnegative measure A defined on c3 which is
invariant under (o; that is, IA(p(B)) = Iu(B) for any B E (B. Such a measure jp is
not necessarily unique. A dynamical system (X, s) is said to be uniquely ergodic
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if such a measure ,u is unique. A dynamical system is said to be strictly ergodic
if it is mininal and uniquely ergodic at the same time.

Let (X, so) be a dynamical system, and let x0 be a point of X. It was proved
by W. H. Gottschalk [1] that (Orb (x0), so) is minimal if and only if, for any
neighborhood W of xo, there exists a positive integer n such that, for any integer
m E Z, at least one of the points cpk(xo), k = m + 1, * * *, m + n, belongs to W.
On the other hand, it was proved by J. C. Oxtoby [10] that (r0b (x0), so) is
uniquely ergodic if and only if the limit

m+n
(3) lim- L f(pk(X0)) = f(xo)

n- n k=m+l

exists uniformly in m e Z for any real-valued continuous functionf defined on X.
By combining these two results, we see that (Orb (x0), p) is strictly ergodic if
and only if (i) the limit (3) exists uniformly in m e Z for any real-valued con-
tinuous function f defined on X, and if (ii) f(xo) > 0 for any nonnegative con-
tinuous function defined on X such that f(xo) > 0.

3. Shift dynamical systems

Let A = {a} be a finite set containing more than one element. Let

(4) X = AZ = II A,,; An = A for all n eZ,
nCZ

be the set of all A-valued functions x defined on Z, or equivalently, the set of all
two-sided infinite sequences
(5) x = {an|n E Z}; anEA for all nE Z.

The mapping
(6) 7r.: x- a. = 7r.(x)
is called the n-th projection of the power space X = AZ onto the base space A, and
an is called the n-th coordinate of x.
The space X is a totally disconnected compact metrizable space with respect

to the usual direct product topology in which a defining neighborhood of a point
x0 of X is given by
(7) Wn,".. .nt(Xo) = {X17rni(X) = 7rni(Xo), i = 1, , t},
where {n,, * , ni} is a finite subset of Z.
A subset P of X is called a primitive set if it is of the form

(8) P = P(n)(#) = {xl 7r,,+i (x) = bi, i = 1, * * -, ,

where /3 = (b1, *, bt); bi c A, i = 1, * -. f,; and n e Z. In this expression 13
is called a block of length t. We do not assume that b1, * * *, b, are all different.
As a special case, we also consider a block ,B of length 0. In this case, we put
p(n) (g) = X for any n E Z.
We observe that a primitive set is a special case of a neighborhood W,,n...(X)
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of the form (7) in which {ni, * , nt} is a consecutive set of integers, namely
ni = n + i, i = 1, * * *, t.
A subset E of X is called an elementary set if it is a union of a finite number of

primitive sets. A neighborhood of the form (7) is clearly an elementary set. It is
easy to see that a subset of X is open and closed at the same time if and only if
it is an elementary set.
The family of all primitive subsets of X is denoted by P, and the family of all

elementary subsets of X is denoted by E. Clearly, £ is a field of subsets of X. The
a-field of subsets of X generated by g is denoted by (B. This (B is nothing but the
a-field of all Borel subsets of X.

Let so be a mapping of X onto itself defined by

(9) 7r,(so(x)) = 7rn+i(x) for all n E Z.
It is clear that so is a homeomorphism of X onto itself. The map (p is called the
shift transformation, and the dynamical system (X, s) is called the shift dynamical
system defined on the power space X = AZ. It is clear that sp maps each of (P, 8,
and (B onto itself.

Let ,u be a normalized, p-invariant, countably additive nonnegative measure
defined on 63. For any block ,B = (b1, *, be), M(P( f)(I0)) is independent of n E Z,
and hence we may denote it by D(,B). It is then clear that the following conditions
are satisfied:
(10) 0 < D(,B) < 1 for any block ,B, and D(,B) = 1

if ,3 is a block of length 0,

(11) D(:) = D((, b)) = D((b, )),
bEA bEA

where (3, b) = (b1, bi, b) and (b,1) = (b, b,, ,be) if ,B = (b,, * b).
Conversely, assume that D(j3) is defined for any block fa and that the conditions

(10) and (11) are satisfied. Then it is easy to see that there exists a normalized,
v-invariant, countably additive, nonnegative measure ,u defined on 63 such that
lA(p(nf)(B)) = D(,3) for any block i3 and n E Z.
Now let x0 be a point of X. From the result stated at the end of section 2 follows

that (Orib (x0), y) is strictly ergodic if and only if (i) the limit
1 m+n

(12) lim - E xp('Po(X0)) = M4(P)
n-2)n n k=m+1

exists uniformly in m e Z for any primitive set P, where xlp is the characteristic
function of P, and if (ii) ,u(P) > 0 for any primitive set P with xo E P.
For any block ,B = (b1, * , be), let us put

(13) N(,B, xo) = {nl7rn+i(x0) = bi, i = 1, **.,

Then the result above can be restated as follows: (Orb (x0), so) is strictly ergodic
if and only if (i) the limit

(14) lim 1 rthe number of integers k e N((3, xo) D(p)
n n Isuchthatm+ 1 < k < m+ n j

=
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exists uniformly in m e Z for any block ,B = (b1, ** *, be) and if (ii) D(,B) > 0
for any block ,3 for which N(0, x0) is not empty.

It is easy to see that the limit D($) satisfies the conditions (10) and (11), and
hence there exists a normalized, p-invariant, countably additive, nonnegative
measure jI defined on s such that p (p(n) (()) = D(A) for any block A and for
any n E Z. This is the same ,u which appears in the formula (12). It is easy to
see that Or4b (x0) is the carrier of this measure ,u, and that ,u is nothing but the
unique normalized, s-invariant, countably additive, nonnegative measure for
the strictly ergodic dynamical system (Orb (x0), so)-

4. Example 1

We consider the shift dynamical system (X, s) defined on the power space
X = AZ, where the base space A is a finite set consisting of two elements:
A= {-1, +1}.
We define a number-theoretic function p(n) by

(15) p(n) (-1)rn+82+ +k n = 0,1, 2,
where
(16) n = r1l + ?72 *2 + + ?lk*2k-1
is an expansion of a nonnegative integer n with base 2. This means that tq = 0
or 1 for i = 1, , k. It is easy to see that {p(n)In = 0, 1, 2, } is completely
determined by the relations

(17) p(0) = 1; p(2n-f + k) =-p(k),
k = 0,1, *-- 2 - 1; n = 1,2,

This sequence {p(n) In = 0,1, 2, * } has been discussed by many mathemati-
cians [2], [3], [4], [5], [7], [8], [9], [11], [12] in connection with various problems
in different parts of mathematics.
We now define a class of more general sequences as follows: let a(0 < ca 1)

be a real number, and let

(18) a 2i(a) + E2(a) + + E(a) + *

be a dyadic expansion of a, where e. (a) = 0 or 1, n = 1, 2, * .. This expansion
is unique if we require that there are infinitely many n for which e((a) = 1.
Let us put

(19) pa(n) = (J)7n1-l(a)+)2-e2(a)+ +*+k-Ek(a) n = Oy l, 2,

where (X1,, 7* k,7) is determined by (16) and (e,(a), * * *, ek(a)) is determined by
(18). It is easy to see that {pa(n)In = 0, 1, 2, * } is completely determined by
the relations
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(20) Pa(O) = 1; pa(2n-' + k) = (-l)-(a)pa(k),
k = 0, l, ..- , 2n-1 -1; n = 1, 2 * - -.

By comparing (17) with (20), we see that p(n) defined by (15) corresponds to the
case of pa(n) defined by (19) when en(a) = 1 for n = 1, 2, * , that is when
a = 1.
We now define pa(ln) for n = 1,-2, by

(21) pa(n) = p(-n - 1), n =-1, -2,
Thus the point xa = {pa(n)Iln e Z} E X is defined for each real number
a(O < a < 1). It is possible to show that, for any block ,B/ (b1, * be), the
uniform density Da(13) exists for the point xa = {pa(n) In E Z} and that Da(/3) > 0
for any block for which N(/3, xa) is not empty. We see easily that Da(13) = 2 if /3
is a block of length 1, but it is in general not true that Da(/3) = 1t if / is a block
of length t.
THEOREM 1. For each real number a(O < a < 1), (Orb (xa), o) is a strictly

ergodic dynamical system.
Let (Ba be the a-field of all Borel subsets of Orb (xa) and let gua be the unique,

normalized, so-invariant, countably additive, nonnegative measure defined on (Ba.
It is clear that (p is an ergodic measure preserving transformation on the measure
space (Orb (Xa), CBa, a).

Let r be a mapping of X onto itself defined by
(22) 7r.(T(x)) = -7r.(x) for all n E Z.

It is easy to see that T is a homeomorphism of X onto itself with period 2 (that is,
72(x) = x for any x e X), and that r commutes with sp (that is, r(p(x) = pT(x)
for any x E X). It is also easy to show that r is a homeomorphism of Orb (xa)
onto itself and that T is a measure preserving transformation on the measure
space (Orb (xa), (Ba,,a).

Let 3Ca = L2(Orib (xa), (Ba, Ma) be the complex L2-space over the measure space
(Orb (xa), (Ba, Aa). Let Va<, Vat be the unitary operators defined on 3Ca by Vaff(x) =
f(,p(x)), V.Tf(x) = f(T(x)), respectively. Further, let M1, sit;' be the closed linear
subspaces of 3Ca consisting of all f e 3ac such that VaTf = f, Vaf = -f, respec-
tively. It is easy to see that .1' and m3la'; are orthogonal to each other and to-
gether span the space 3Ca. It is also easy to see that both on,', and Onl; are in-
variant under Va.
THEOREM 2. For each real number a(O < a < 1), V§aP has a pure point spec-

trum on M,, and a continuous singular spectrum on M;'-. Further, for any two
real numbers a and a' (O < a < a' < 1), V*a on M,W' is spectrally isomorphic with
Vafj on i4e, while VI', on M;'1 and Vcf, on M,l' are not spectrally isomorphic if
a' - a is a dyadically irrational number.
Thus we obtained a concrete example of a continuum number of strictly

ergodic dynamical systems, no two of which are spectrally isomorphic.
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5. Example 2

We now consider the shift dynamical system (X, so) defined on the power space
X = AZ, where the base space A is a finite set consisting of four elements:
A = {2,4,6,8}.
We define a number-theoretic function X(n) by

(23) X(n) = the last nonzero digit in the decimal expansion of n!,
n = 2,3,

For example, X(2) = 2, X(3) = 6, X(4) = 4, X(5) = 2, X(6) = 2, - -

If we denote by -y(n) the number of consecutive zeros at the right end of the
decimal expansion of n!, then we may write
(24) n! 0O (mod 10,(n)); n!/10(n) =_ X(n) (mod 10).
We observe that X(n) is even, and hence X(n) e A for n = 2, 3, * - -. This follows
from the fact that if n! = 2a3b5ld ... pe is a representation of n as the product
of powers of a finite number of different prime numbers, then a > c, and hence
,y(n) = c, and consequently, -y(n) _ 2a-c3b7d . . . pe (mod 10).
We now want to find a general rule to compute the values of X(n). For this

purpose, we introduce a cyclic permutation T of the base space A = {2, 4, 6, 8}
of order 4 defined by

(25) T
(2 4 6 8

(25) T=k(4 8 2 6)
We also consider the set B = {1, 2, 3, 4}.

First, let n a b e B (mod 5), n > 3. In this case, X(n) is obtained from
(n -1) by the relation

(26) X(n)- bX(n - 1) (mod 10),
or equivalently, by
(27) X(n) = T17(b)X(n - 1),
where T is a permutation defined by (25), and 1 is a function defined on B by

(28) q (l) = 0, I (2) = 1, (3) = 3, ? (4) = 2.
If we put X(0) = X(1) .= 6, then the relations (26) and (27) hold for n = 1

and n = 2. For this reason, we use these values of X(0) and X(1) even though they
do not satisfy (23). Thus the relations (26) and (27) are valid for n = 1, 2, - * -

if n 0 0 (mod 5). If n 0_ (mod 5), then the situation is a little more compli-
cated.

Next, let n 0_ (mod 5) and n/5 b e B (mod 5). In this case, we have
X(n) = X(n - 1) + 1, and hence 2X(n) _ b-X(n - 1) (mod 10). From this fol-
lows that T. X(n) = T7(b)X(n - 1), or equivalently,
(29) X(n) = T7(b)+3X(n - 1).
For example, we can compute the value of X(15) if we know that X(14) = 2.
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Since 15 0O (mod 5) and 15/5 a 3 (mod 5), we have X(15) = Tn(3)+3X(14) =
T3+32 = T22 = 8.

Finally, we discuss the general case:

(30) n 0O (mod 5k), n/5k a b E B (mod 5); k =0, 1, 2,..*.
In this case, we have -y(n) = -y(n - 1) + k, and hence 2kX(n) b-X(n - 1)
(mod 10). From this follows that TkX(n) = T,?(b)X(n - 1), or equivalently,
(31) X(n) = TVnX(n - 1),

where t(n) takes one of the four values 0, 1, 2, 3, such that

(32) &(n) 7(b) + 3k (mod 4)
and q(b) is defined by (28).
Equation (31) is a general formula by which we can compute the value of

X(n) from that of X(n - 1) for n = 1, 2, * - -. We now want a formula by which
we can compute the value of )X(n) from that of X(0).
From (31) follows that

(33) X(n) = PWX(O),
where P(n) takes one of the four values 0, 1, 2, 3, such that

(34) ¢(n) a t(1) + t(2) + * + &(n) (mod 4).
Let now

(35) n = ci +c25 + + Ck 5k-1

be the expansion of a nonnegative integer n in base 5, where ci = 0, 1, 2, 3, or 4
for i = 1, 2, , k. Then

n cw * 5 l- Ckl 5k2
(36) t(n) a 2E (M) a (m) + L t(m + ck5k-1)m=1 m=l m=l

+ * * *+ E t(m+ C25 + + Ck 5k1) (mod 4).m=1
If we observe that

(37) t(m + ci 5i-1 + ci+1 5i + * + Ck 5k 1) = t(m)

for m = 1, 2, * * 5i-1 - 1, then (36) becomes
Cki*5)k- ek-l *5k2

(38) t(n) a (m) + Z (m)+ + YE (m)m=l m=l m=1

- t(Ci 5k-1) + t(Ck_1 5k-2) + * + ¢(Cl)

ak(Ck) + rk(Ck-1) + * + r1(Cj) (mod 4)
where

(39) rk(C) = t(C 5k1), c = 0, 1, 2,3, 4; k = 1, 2,
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We calculate the values of rk(C) for c = 0, 1, 2, 3, 4 and k = 1, 2, 3, 4, and
obtain the following table:

c 0 1 2 3 4

(40) p1(c) 0 0 1 0 2
p2(c) 0 1 3 3 2.
p3(c) 0 2 1 2 2
t4(C) 0 3 3 1 2

We also observe (by computation) that

(41) t(54) = (54) = 0.

On the other hand, from (32) it follows that

(42) (c 5k±4) = (c 5k), c = 1, 2, 3, 4; k = 0, 1, 2, *.
From (41) and (42) it is easy to show, by mathematical induction, that

(43) Pk+4(C) = Pk(C), c = 0, 1, 2, 3, 4; k = 0, 1, 2,
Thus, (40) and (43) together give all the values of rk(C) for c = 0, 1, 2, 3, 4 and
k = 0, 1, 2, * - -. Combined with (33) and (38), we have now a fairly simple
method to calculate the values of X(n) for n = 0, 1, 2, - -.

We can restate the above result in the following form. If

(44) n = cl + c2 625 + c3 (625)2 + * * - + ck (625)k-I
is the expansion of a nonnegative integer n with base 625 = 54, where ci =
0, 1, 2, ... , 624 for i = 1, 2, - * *, k, then there exists a function *(c*) defined
for c* = 0, 1, 2, *. , 624 and taking the values 0, 1, 2, 3, such that

(45) t(n) =- *(c*) + .*(c*) + * + .*(c*) (mod 4).
In fact, if

(46) c* = cl+c25+c352+ C453
is an expansion of c* with base 5, where ci = 0, 1, 2, 3, 4 for i = 1, 2, 3, 4, then

(47) t*(c*) - 1(c1) + t2(C2) + t3(C3) + t4(c4) (mod 4).
We observe that there is some similarity in the properties of two sequences

{p(n)|n = 0, 1, 2, - - *} and {X(n)In = 0, 1, 2, * * *}. For example, formulas (15)
and (45) are similar to each other. Instead of the expansion of n with base 2 in
(16), we use the expansion with base 625 in (44), and instead of the involution
of the set A = {- 1, + 1} which interchanges - 1 and + 1, we use the cyclic
permutation T of order 4 of our set A = {2, 4, 6, 8}.
We now define X(n) for n =-1, -2, * * by

(48) X(n) = X(-n - 1), n = -1, -2,
and consider the point x0 in X E AZ defined by x0 = {X(n)ln E Z}. It is possible
to show that, for any block ,3 = (b1, * * *, bc), the uniform density D(,B) exists
for the point x0 = {X(n)ln E Z} and that D(G) > 0 for any block : for which
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N(f, x0) is not empty. We see easily that D(Q) = 4 for any block of length 1,
and that D(0) = F for any block f3 of length 2, but it is in general not true that
D(,B) = 4 for any block of length C.
THEOREM 3. (Orb (xo), so) is a strictly ergodic dynamical system.
Let 6o be the a-field of all Borel subsets of Orb (x0) and let juo be the unique,

normalized, np-invariant, countably additive, nonnegative measure defined on (Bo.
It is clear that so is an ergodic measure preserving transformation on the measure
space (Orb (x0), (Be, /A).

Let r be a mapping of X onto itself defined by

(49) 7r.(r(x)) = T7rn(x) for all n E Z.

It is easy to see that T is a homeomorphism of X onto itself with period 4 (that is,
r4(X) = x for any x e X), and that T commutes with so (that is, rTO(x) = ST(x)
for any x E X). It is also easy to see that r is a homeomorphism of Orb (x0) onto
itself, and that r is a measure-preserving transformation on the measure space
(Orb (xo), (Bo, A).
Let SCo = L2(Orb (xo), (Bo, Ao) be the complex L2-space over the measure space

(Orb (x0), (B0, Ao). Let VW, Vo be the unitary operators defined on SCo by Vtf(x) =
f(sp(x)), Vof(x) = f(r(x)), respectively. Further, let 5St be the closed linear sub-
space of 3Co consisting of all f e 3Co such that Vgf = e2ri1/4f, k = 0, 1, 2, 3.
It is easy to see that iM, k = 0, 1, 2, 3, are mutually orthogonal and together
span the space No. It is also easy to see that each Mft is invariant under VV.
THEOREM 4. The operator VV has a pure point spectrum on Mio, and continuous

singular spectra on 0O, k = 1, 2, 3.
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