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1. Introduction

In [16] and [17] Spitzer investigated recurrent random walks on the integers
or integral points in the plane from a potential theoretical point of view. Spitzer
proved the existence of a potential kernel A (x, y) and found its asymptotic
behavior as well as limits of hitting probabilities of finite sets. These results
were extended by Spitzer and the author to random walks on countable abelian
groups in [13], and the present paper considers recurrent random walks on
arbitrary countable groups.
The author is obliged to Professor Spitzer for several discussions on the subject

matter of this paper.
An outline of the results follows. The existence of the potential kernel and

its simplest properties still hold in the general case, but the asymptotic behavior
of the potential kernel was successfully studied only for special groups. More
specifically, let () be a countable, infinite group with identity !element e. A
random walk, abbreviated as r.w. in the sequel, on @ is a (homogeneous) Markov
chain Xo, X1, * with state space (M and transition probabilities
(1.1) P(X, y) = P{Xn+1 = yjXn = x} = p(x-ly), X, y E @5
where
(1.2) P(Z) .0, x, p(z) = 1.

(The letters x, y, z always denote elements of @ and x-1 is the inverse of x in @,
and xy the product of x and y in (i.) In other words, X.+, is obtained from X.
by right multiplication with the random group element X;-'X,,+, which has the
distribution

(1.3) pfx^+l = Z} P(z)
As usual,

(1.4) Pk(x, y) = P{X.+k = yIX. = X} = Pk(e, x1ly)
is the x, y entry of the k-th power of P, if k> 1 and
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(1.5) Po(x,y) = O(x,y) = t if x = y.
Throughout this paper we assume that the r.w. is recurrent (also called persistent)

and aperiodic in the space variable, that is,

(1.6) E2Pk(x, y) for all x, y E@
k=O

(in particular, Pk(x, y) > 0 for some k).
We discuss this assumption in section 4. The probability measure induced

by the joint probabilities for finite paths starting at Xo = x will be denoted by
P., and the expectation with respect to this measure will be denoted by E,.
The first theorem assures the existence of the potential kernel. In the termi-

nology of Kemeny and Snell, [11] and [12], this states that the Markov chain
is normal.
THEOREM L. The series k'-o [Pk(e, e) - Pk(X, y)] converges for all x, y e 5,

and if this sum is denoted by A (x, y), then

(1.7) A (x, y) 2 0, A(x, x) = 0,
and (using matrix notation)

(1.8) PA-A = AP-A=.
Let B be a subset of (i. Following ([17], definition 10.1), we define the hitting

probabilities for the r.w. {X.} as follows: if x k B, y E B, then

(1.9a) HB(X, y) = PZ [first visit of {X.} to B occurs at y],
and

(1.9b) HB(X, Y) = 6(x, y) if x, y e B,
fo if ~y (~B.

Also, for x, y E B,

(1.10) HB (x, y) = P. [first return of {X.} to B occurs at y]
= P. [for some n 1l X. = y and Xi, B for 1 < i < n].

Note that IlB (x, y) is not 6(x, y), because it only measures the return probabil-
ity after at least one step (compare (1.1) and (1.2) of [16]). Since the stationary
measure for the r.w. is the constant measure, that is,

(1.11) E P(x,y) =1, y EF

one has for B C (,
(1.12) E IB (X, Y) =1 y e B

(see theorem 2.3 of [4] together with its proof, or section 0.4 of [15]).
Finally, define

(1.13) g(x, y) = E. [number of visits by {X.} to y
up to and including the time of the first visit to e].
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In this definition we count the visit made at time zero to the starting point of
the r.w. Hence,

(1.14) g(e, y) = 6(e, y).
Moreover,

(1.15) g(x, e) = P.[{X.} visits e at some time]
= 1, x E 3, and for x, y $ e,

(1.16) 9(x, y) = ge(x, y),
where ge(x, y) is the notation of Spitzer (formula (3.3) of [16] or definition 10.1
of [17]). The formula lim.,, f(x) = a will mean that for every e > 0, there exists
a finite set B C ( such that lf(x) - al < e whenever x e 5 - B. Similarly,
for a sequence {x.} C 3, x. -a o will mean that x. is outside every finite set,
eventually.
Once theorem 1 has been proved, one can copy from [16] or ([17], chapter 7)

the proofs of the following relations:
If C = {e, c}, c E 3 - e, then there exists a constant 0c, such that 0 <

bc < 1 and
(1.17) oc = Hc(x, e) - [A(x, c) - A(x, e)] lIc (c, e) for all x EG .

For y 5d e,
(1.18) g(x, y) = A(x, e) + A(e, y) - A(x, y)-
By (1.6), IIc (c, e) > 0, and hence

(1.19) IA(x, c) - A(x, e)I < IICH (c, e),
since 0 < kc, Hc < 1.

Consequently, 9(X, c) is bounded in x for fixed c and one can introduce the
metric

(1.20) p(x, y) = E [E(C)(X, c) -g(y, c)] + I-(x) - (y)l]
ceo

on (M where e(c) > 0, 71(x) > 0, and
(1.21) E e(c) sup 19(x, c)l < o,ce~ zE~

lim ,q(x) = 0.

If 0 * is the completion of (M under the metric p, the Martin boundary of the
r.w. is defined as i* -(. This is clearly independent of the choice of e and 'i
under the above restrictions. For more details concerning the definition and
significance of the Martin boundary, we refer the reader to [12] and [15].
Here we shall only need a few remarks.
A sequence {x,j C @5 converges to a boundary point if and only if x. -X 0 and

(1.22) lim g(xn, c) exists for all c E @5.
n71 o0
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By (1.15) it suffices to require (1.22) for c $ e and, by (1.18), (1.22) is then equiv-
alent to
(1.23) lim A(x., c) - A(xn, e) exists for all c E ( -e,

which in turn, by (1.17), is equivalent to
(1.24) lim Hte,c)(Xn, e) exists for all c E ( - e.

Boundary points are therefore in a one-to-one correspondence with the different
limiting functions (of the variable c) which can be obtained in (1.23) or (1.24),
and the only aspect of the boundary investigated in this paper is the number
of boundary points. In view of the above remarks, this boils down to a partial
investigation of the asymptotic behavior of the potential kernel A(x, y). As
pointed out by Spitzer [16], one may regard statements about the limits in
(1.23) as analogues of the renewal theorem for transient random walk.
The boundary defined here is usually called the entrance boundary. There is

no need to consider the exit boundary separately since this coincides with the
entrance boundary of the reversed random walk. This is the r.w. with transition
probabilities
(1.25) P*(x, y) = P(y, x) = p(y-'x)
If A * is the corresponding potential kernel, then
(1.26) A*(x, y) = A (y, x),
and, in obvious notation, by (1.18),
(1.27) g*(x, y) = g(y, x), x, y e (D-e.
The main results of sections 3 and 4 state that if 3 belongs to certain classes

of groups, every recurrent r.w. on 5 has one boundary point only. This is by
far the neatest situation, because it means that for any recurrent r.w. on
and all c # e,
(1.28) lim A (x, c) -A (x, e) and lim H(e,c) (x, e)

both exist. It will turn out that in this case necessarily
(1.29) lim A (x, c) -A (x, e) = 0, c $ e,

and hence, by (1.18) and (1.15),
(1.30) lim g(x, y) = A(e, y) + a(e, y).

:-1:

It then also follows from the Doob-Hunt representation theorem, which we
use in the form of section 5 of [12], especially formula (5.3), that A is the unique
solution of
(1.31) AP-A =A ,
which satisfies (1.7). (The uniqueness of the solutions to (1.31) is also consid-
ered by Spitzer in section 5 of [16] and section 31 of [17], but those proofs
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require a knowledge of the possible sets of zeros of A (x, e).) If one prefers, one
can also say that A* is the unique solution of (1.7) and P*A* - A* = 5, which
is equivalent to (1.31). As a matter of fact, in [16] and [17] this is the form in
which the results occur, because Spitzer considers the exit boundary rather
than the entrance boundary.
The case of two boundary points is settled by the following theorem.
THEOREM 4. The r.w. {Xn} on (M has two boundary points if and only if 3

has an infinite cyclic subgroup fd of finite index such that the imbedded r.w. on p
has finite variance (see section 2 for definitions).
The quoted results show that the boundary consists of one or two points,

among others, for all solvable groups, or all direct sums of two infinite groups,
or groups of finite permutations of the integers (see section 4). We conjecture
that this is true in general, but so far the only result we proved for all groups
is theorem 5, which states that the boundary always has 1, 2, or infinitely many
points.
We end the paper with some open questions.

2. The existence of the potential kernel

If p is any subgroup of 5, we define the imbedded r.w. on 5 as in [13]. The
times of the successive visits by X. to & are denoted by (O <)T1 < T2 < * - - .
Thus XT, E , but X. ( Xi when n > 1 and n F# Ti for any i. The notation
(2.1) Y. = XT.) n = 1, 2, * *
will be used throughout for the imbedded r.w., on ii, even though may vary
from occasion to occasion.
The distribution of Y1 depends on XO, but for n > 1, the Y; 'Y.+, are inde-

pendent, identically distributed random variables, taking values in ii. If XO = e,
then also Y, has the same distribution. In particular, if is an infinite cyclic
group (definitions of group theoretical terms can be found in [14]), generated by c,
say, then Yn = ckn for some integer kn and kn+1- kn, n = 1, 2, ..* is a sequence
of independent, identically distributed integer valued random variables. If Xn
is a recurrent r.w., so is Yn, and in this case kn+1 - kn must either have zero
expectation or its first absolute moment is infinite. We shall only talk about the
variance of the imbedded r.w. if ! is infinite cyclic, and in this case it is de-
fined as

(2.2) 02(y) = a2(kn+1 - k.).
The hitting probabilities for the imbedded r.w. are defined as in (1.9) with

{X"} replaced by {Yn} and denoted by 7HB(-, *). Since {Yn} is just {Xn} ob-
served only when in I, one has
(2.3) HB(X, y) = HB(X, y) whenever x, y E &, B C .
Another very useful relation between H and H is given in

(2.4) HB(X, y) = E, Ho(x, Z)HB(Z, y),zEO'
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valid for y e B C '. Equation (2.4) follows immediately from the fact that
the random walk cannot enter B before it enters D.

If is infinite cyclic with generator c, it is isomorphic to the additive group
of integers, so that theorem B of [16] and sections 29 and 30 of [17] apply to
{Y.}. In our notation the results state for any finite set B C & that

(2.5) lim HB(Ck, y) = lim HB(Ck, y)
lkl d xo jkj w

exists for y E B if a2(Y) = cc. If o2(y) < o, then

(2.6) lim HB(ck, y) = lim 7IB(Ck, y)
k--*oo

and
(2.7) lim HB(Ck, y) = lim HB(Ck, y)

k-e1 k-X-

both exist and are different for some finite B and y.
As in [17], we introduce

n
(2.8) A.(x, y) = , [Pk(e, e) - Pk(X, y)].

k=O

No change is needed in the proof of proposition 11.3 in [17] to derive for any
subset B C 3 and all x, y E 3,
(2.9) E Pn+1(x, t)HB(t, y) = HB(X, y) - AAn(x, t)[HIIB (t, y) - 6(t, y)].

tE~ tEE-

Note that (1.12) is needed in the proof. In particular, for C = {e, c}, c 0 e and
y =e,
(2.10) E P.+i(x, t)Hc(t, e) = Hc(x, e) - [An(x, c) - An(x, e)] Hec (c, e)

tEos

(again (1.12) is used).
For the time being, fix c 0 e and let

(2.11) : k = 0, 4-1,
be the subgroup generated by c. In the future we shall abbreviate (2.11) to

(2.12) != (c).
The number of elements in a set B shall be denoted by IBI.
The proof of theorem 1 breaks down in three cases:

I. I&1 = h < -,
II. LI = Xc and a2(Y) = cc,

III. 1 = Xc and cr2(Y) <c.
(a2 in cases II and III is defined in (2.2)). In all cases we use (2.4) to reduce the
problem to a problem about 77 whose behavior is known from (2.5)-(2.7).
LEMMA 1. Let y E B C- . Then

(2.13) H.B(ZX, zy) = HB(x, y) for all x, z E (3.
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If ni < n2 < ...*is a sequence of integers such that
(2.14) lim E_ P,,i+i(xo, t)HB(t, y)

i x t E
exists for some xo e @, then

(2.15) lim E Pi,+j(x, t)HB(t, y)
i-.*co tEi

exists for all integers j and all x E @5 and is independent of x.
PROOF. Equation (2.13) follows from the one-to-one correspondence between

the paths xo, xi, - -, x, and zxo, zx1, - - *, zx and the relation

(2.16) PZo{Xi = xi, 1 < i < n} = PzfXi = zxi, 1 < i < n}
n-I

= I p(xy-x±i+).i =O

The proof of (2.15) is essentially in ([17], pp. 347-348). From (2.9) one has

(2.17) L P.+j(x, t)HB(t, y) - E_ P.+1(x, t)HB(t, y)I
tGE tE-,

< lAn+j(x, t) - An+l(x, t) IIIB (t, y) - O(t, Y)j
But, from (2.8) one has

(2.18) JAn+j(x, t) - A.+,(x, t)| < , Pk(e, e) + Pk(x, t) < 2|1j + 1.
k=n-lil

Since P is double stochastic (see (1.11)),
(2.19) lim Pk(X, t) = 0

k--+

(see [7], p. 358), and from (2.18), (2.19), and (1.12) it follows that the right-
hand side of (2.17) tends to zero as n - oo. Thus the limit in (2.14) exists when
ni + 1 is replaced by ni + j. From any subsequence of the ni we can select a
further subsequence {n'} such that

(2.20) f(x) = lim L P't+1(x, t)HB(t, y)
i-* tGL3

exists for all x. As in ([17], pp. 347-348) f must be a nonnegative solution of
Pf = f, and hence a constant. Since this can be done for any subsequence of the
ni, (2.15) follows.
LEMMA 2. For every integer k and any x e @

(2.21) lim E2 Pn+1(x, t)H.S,(t, Ck) = 1 in case I,

and
(2.22) lim E Pn+i(x, t)HV,(t, ck) = 0 in cases II and III.

n-- tE

PROOF. By (2.13) and (1.1),
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1 h-1
(2.23) P,+1(x, t)HD(t, c*) = E E Pn+I(cnx, emt)Ht(cmt, Cm+)

1h-i
= E E P +l(CoX, t)H.O(t, Cm+k).h m=o t(=-

Any sequence of integers contains a subsequence ni for which the limits (2.15),
with B replaced by I and y by Cm+k, exist. Then, by lemma 1 and (2.23),

(2.24) lim Y2 Pi,+i(x, t)Ho(t, ck) = lim E P+(Ix 1 C+k).
i-e tFAIi j-oix tE@5 h m=o

However, in case I,
h-1

(2.25) L2 Ho(t, Cm+k) = E HO(t, y) = 1,
m=0 GO

since C= {cm+k, 0 < m < h - 1} for every k. Thus (2.21) follows. Similarly,
one proves (2.22) from (2.23), (2.24), and the fact that in cases II and III,

h-1
(2.26) L HO(t, Cm+k) < 1

m=0

for arbitrarily large h.
Cases I and II can now be finished as in [13]. In fact, by (2.4) with B replaced

by C = {e, c}, one has in case I
(2.27) lim E Pn+l(x, t)Ho(t, e)= lim E Pn+l(X, t) E Ho(t, ck)Hc(ck, e)

n e tE ~~~~~n--+xtE.@ cIES

1 h-i
=-E 1HC(Ck, e).

Similarly, in case II (compare the argument immediately following (3.9) of
[13]),
(2.28) lim L2 Pn+1(x, t)Hc(t, e) = lim Hc(ck, e)

n-.cotE(3 Ikl -++o

(the right-hand side exists by (2.5)). In both cases, therefore,

(2.29) rkc = lim E Pn+l(x, t)Hc(t, e)
n--+o tE~

exists, is independent of x by lemma 1, and, since 0 < HC < 1, satisfies 0 <
0C < 1.

It follows from (2.10) with x = c that

(2.30) rc = IHo (c, e) lim An(c, e),

since An(c, c) = 0 and Hc (c, e) = 0. This proves the existence of

(2.31) A (c, e) = E [Pk(e, e) - Pk(c, e)].
k=

Case III was treated in [13] by first establishing that the index of p in (M is
finite (lemma 3.4 in [13]). We believe this to be true even if 5 is not abelian,
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but we only have a partial result in this direction (lemma 5 below). This difficulty
is circumvented by the use of the following theorem.
THEOREM 2. (Central limit theorem with a random number of summands.) Let

(Uk, Vk), k > 1, be a sequence of independent, identically distributed 2-vectors for
which

(2.32) P{Vk > 0} = 1, P{Vk = 0} < 1,
EUk = 0, 02 = C2(Uk) <O.

Put

(2.33) R(n) = min{ E Vk > n}.

Then
r R(n)

(2.34) lim P k=1 < t/22dt.
n- V/R_(n) - = : 2

Even though we believe this theorem to be new, we shall not give its proof
here since it is unrelated to the boundary theory. We apply this theorem in
case III with Un = kn- kn1, Vn = Tn - Tn1, n > 1 where we take XO = e,
ko = 0, To = 0 (see beginning of this section for definitions). The conditions of
the theorem are fulfilled for these variables and U2 is just as in (2.2). Moreover,
in the notation of theorem 2,

(2.35) Z7 E Pn+l(e, t)H,(t, Ck)
k<K tCjS

Pe {first entrance to ii after the n-th step occurs at some ck with k < K}

=P{ EUk < K.
tk=1

Since R(n) - oo in probability as n -÷ oo, it follows that the limit as n -> 0

of the left-hand side of (2.35) equals 2 for each fixed K. This takes the place
of (3.25) and (3.26) in [13], and as in [13], one obtains from the first equality
in (2.27), (2.22), (2.6), and (2.7),
(2.36) lim E P±+i(e, t)Hc(t, e) = a lim [HiC(Ck, e) + Hc(c-k, e)] = c, say.

As in cases I and II, this establishes the existence of cc in (2.29), independent
of x by lemma 1, and the existence of A(c, e).
The existence of A (x, y) for general x, y now follows from

(2.37) A.(x, y) = A.(e, x-ly) = An(y-lx, e)

(see (2.8)) by taking limits as n - oo. Similarly, (1.17) follows from (2.10). The
proof of (1.7) and PA - A = 6 as given in [16] or ([17], propositions 1.3 and
13.3) need only trivial changes. Finally, when this is applied to the reversed
r.w., one obtains P*A* - A* = a which is the same as AP - A = S. The proof
of theorem 1 is therefore complete.
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We end this section with the following remark.
REMARK 1. If {x.} C 5 converges to a boundary point, then

(2.38) lim HB(Xn,, y) exists
n-

for all finite sets B C 0 and y e B. The proof is the same as in theorem 30.1
of [17]. One takes limits as n -oo in (2.9). The right-hand side has a limit, and
thus the left-hand side has a limit, which by lemma 1 is independent of x. Using
(1.12) one has therefore, for a suitable 4 = OB(y),
(2.39) kB(y) = HB(X, y) - E [A(x, t) - A(x, e)[IIB (t, Y) - 6(Y,Y)].

tEB

If one substitutes x. for x and uses (1.23), one obtains (2.38).

3. The number of boundary points

The general form of the results of this section is that the boundary of {Xn}
has one or two points whenever there exists an infinite normal subgroup of 0
such that the boundary of the imbedded r.w. { Yn} has one or two points.

Throughout the remainder of this paper we shall use the following notation.
If & is a subgroup of (M, [O : I] = index of b in (M, and t < ( shall mean that
! is a normal subgroup of (M. For a subgroup I, we shall always use zo = e,
zl, * - - for a set of representatives of its cosets, such that each x E ® has a unique
representation
(3.1) x = hzi
with
(3.2) h = h(x)eS and i = i(x).
From now on zi and i(x) will only be used in this sense.
LEMMA 3. If {Xn} has one boundary point only, then

(3.3) lim A(x, c) -A (x, e) = 0, c E @5.
X-40

Moreover, if B1, B2, * is an increasing sequence of finite subsets of @5 such that
@ = UB,, then for each fixed y e (E and E > 0 there is a jo such that y E B, and

(3.4) lim HBi(x, y) < e

for all j > jo. If @5 is an infinite cyclic group, then (3.4) holds without the condition
that {X.} has one boundary point only.

PROOF. If {Xn} has one boundary point only, then with C = {e, c},
(3.5) lim Hc(x, e)

exists (see (1.24)), and it follows from (2.29) and (2.19) that Cc must have the
same value as (3.5) (see [13], beginning of proof of theorem 3.1). Equation (3.3)
follows, therefore, from (1.17) by taking limits (lxl -X 00). As remarked in the
introduction (1.18) was proved in lemma 3.1 of [16] for x, y #= e (see (1.16)), and
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for x = e, y -$ e both sides of (1.18) are zero (see (1.14) and (1.7)). We there-
fore conclude from (1.18), (3.3), (1.7), and (1.15), that

(3.6) lim g(x, y) = A(e, y) + 3(e, y).
z-

On the other hand, for x $6 e, e,y E B C (,
(3.7) g(x, y) > HB(X, Y) + E 9(x, t)P(t, y).

teB-e

In fact, the left-hand side represents the expected number of visits to y, up
to and including the first visit to e when the r.w. starts at x. In the right-hand
side of (3.7), HB(X, y) is the expected number of visits to y at the first entrance
to B, and E g(x, t)P(t, y) represents the expected number of visits to y, coming
in one step from a point of B, but without having visited e. Because e E B,
both terms in the right-hand side count only visits up to and including the first
visit to e. If one takes limits as xi -+ oo in (3.7) and uses (3.6), (1.7), and (1.8),
one obtains
(3.8) lim sup HB(X, y) < (e, y) + A(e, y)

- A(e, t)P(t, y) = E A(e, t)P(t, y).
tGB t(ZB

Since A > 0 and, again by (1.8), _Ee A(e, t)P(t, y) < oo, one can make the
last member of (3.8) small by taking B large. This proves (3.4).

If (i = (c) is infinite cyclic, {X.} has either one boundary point or, if its
variance a2 (in the sense of (2.2)) is finite, {X.j has two boundary points and
(3.6) has to be replaced by

(3.9) lim g(ck, cm) = A(e, Cm) i= m + (e, cm)

(see theorem B of [16] or section 29 of [17]). Only the last case has to be consid-
ered. But because a recurrent r.w. on the integers with finite variance has zero
mean, one has then

+X ~~~+0
(3.10) Z mP(c", Ct) = mP(c-t' C-) = t

m=- m=-X

This allows us to repeat the proof of (3.4) with a few trivial changes, even when
U2 < 0c.
The following simple remark will be useful in some of the proofs.
REMARK 2 (Compare lemma 3.1 of [13]). If B C 5 and u e (M, then

(3.11) HB(X, y) > HBUXU(X, XU)HB(XU, Y)
= HX-IBUU(e, u)HB(xu, y),

since the right-hand side represents the probability of going from x to xu before
entering B, and then to enter B at y. In the last step, (2.13) was used. If one
replaces x by xu and u by u-1 in (3.11), a similar inequality is obtained which,
together with (3.11), leads to

(3.12) IHB(x, Y) - HB(XU, Y)| < 1 - Hx-IBUU(e, u) + 1 - Hx-1BU6(u, e).
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In applications of (3.12), we will have a sequence {x.} C ® such that for
every finite set D C (,
(3.13) xn1BnB D = 0 for sufficiently large n.
The right-hand side of (3.12) with x. instead of x will then tend to zero so that
(3.14) lim IHB(X., y) - HB(xnU, Y)| = 0-

LEMMA4. If ID< ®and = h < oo, then

(3.15) lim Ho(x, Y) 1 YX'

Assume now that I is an arbitrary infinite subgroup of ® and let go = e, g1, * be
a numbering of the elements of ®. If there exist (possibly finite) sequences Mi = {mf}
of indices such that
(3.16) ml < m2 <

(3.17) ZigmZt1 EC whenever me Mi

(see (3.1) and (3.2) for notation), and such that
(3.18) lim 1Mil = , whereas lim sup mn < oo

i-*o i-xo
for each fixed n, then

(3.19) lim Ho(x, y) = 0, y E !.

In particular, (3.19) holds if 1j1 = oo and ! < ®, or [®:,] < oo.
PROOF. This is an imitation of the proofs of lemmas 3.2 and 3.3 in [13].

By remark 2,
(3.20) lim sup IHV(hzi, y) - Hm,(hziu, y)I

i-x hEt

< limsup [1-Hz-1Ouu(e,u) + 1-Hzi-loue(u, e)] 0

for y E and u E®(. Thus, for fixed ul, * Uk

1k(3.21) lim H,(hzj, y) = lim E H(hziur, y).
i-*oa i b k=,

If < ®and 1I < o, we take k = t I and {ul, **, Uk} = ,. Then, using
(2.13),

(3.22) E HD(hziu,, y) = L HO(uzi, y) = L H(zi, u) = 1,

since h, y e and is a normal subgroup.
For the second part of the lemma, we take uj = gt. Equation (3.20) remains

valid, even though uj now depends on i, because of (3.18). Instead of (3.22),
we now obtain from (3.16) and (3.17),

k

(3.23) E _ HOi(hzig,rf y) <
N

H(zi, u) < 1-



MARTIN BOUNDARY 63

If 1 <0, then x-:oo if and only if i(x) --oo so that (3.15) follows from
(3.21) and (3.22). To prove (3.19) under the assumptions (3.16)-(3.18), one
only needs to observe that for any k, by (3.21)-(3.23),

(3.24) lim sup HO,(hzi, y) <k.ij-co hEt,

whereas for each fixed i,
(3.25) lim H (hz , y) = lim H(zi, h-ly) = 0.

h-i- h Et h--+o,hEt

Finally, if 1,1 = X0 but [(i&] <0, then there are only finitely many pos-
sible values for zi and (3.18) is vacuous, but (3.19) follows from (3.25). If 1i = 00
and ID <I , we can take Mi independent of i. In fact, if
(3.26) = f9mlag.. .}, ml < m2 < *
we take m = m.. With this choice, (3.17) and (3.18) hold automatically.
THEOREM 3. If there exists an infinite subgroup I of ® such that

(3.27) lim Ho(x, y) = 0 for all y E ID
zX-*

and such that {Yn}, the imbedded r.w. on &, has only one boundary point, then the
r.w. on ( has only one boundary point.

(Note that lemma 4 is useful in checking condition (3.27). Some applications
appear in section 4.)

PROOF. As remarked in the introduction, we have to show that for every
c E ( -e,
(3.28) lim Hc(x, e) exists,

whereas before C = {e, c}. Let satisfy the assumptions of the theorem and
let c E 3 - e be fixed. Pick a yo E ID such that Hg,(c, yo) > 0. Just as in (3.11),
one has

(3.29) Ht(x, yo) 2 HCu.(x, c)HO(c, yo),

and thus, by (3.27),
(3.30) lim Hou,(x, c) = 0.

Choose an increasing sequence of finite sets B, C & such that U= I B,.
Again as in (3.11),

(3.31) HB,(x, yo) 2 HBiUC(X, c)HB2(c, yO)
> HBULJC(X, c)HO(c, yo), if yo e By.

By lemma 3, applied to {Yn}, we can for any given e > 0 find a jo such that
e, yo e Bj, and

(3.32) . rlim HBj(t, yo) < EHIi,(C, yo),
tg-,tE*o,g
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and thus by (3.31) and (2.3),
(3.33) lim sup HBIOUC(t, c) < e.

t-4O,tE0

Consequently, there is a ji such that for j 2 ji,
(3.34) HBoU,C(t, c) < 2e for t E -Bj.
Now (3.30) states that when the starting point x is far out, X. will hit ID

before c with a probability close to one. By (3.27), the point where ID is entered
first will be outside Bj with a probability close to one, and by (3.26), X. will
then enter Bj1 before c except for a set of probability at most 2e.

Formally, this argument runs as follows. For some joil < 1,

(3.35) Hc(x, e) = E Hu&(X, t)Hc(t, e)
tEouc

= , Ho,(x, t)Hc(t, e) + 01Houc(x, c)
tet~

= , H,(x, t)Hc(t, e) + 0iHe,uc(x, c)
tGED-B;

+ 02 E, Ho(x, t)

= _ H.V(x, t) ,_ HB,.(t, z)Hc(z, e)
t Et,1-B; z EBio

+ 0iHt,uc(x, c) + 02 _X Ho(x, t)

+ 03 sup HB3,u.(t, c).

For j > jl and x sufficiently far out, the last three terms of (3.35) are together
at most 3e (by (3.30), (3.27), and (3.34)). Since {Y.} has one boundary point
only,
(3.36) lim HBJO(U, Z) = lim HBi,(U, z) exists,

(see remark 1 and (2.3)). One can therefore choose j 2 j1 so large that

(3.37) | 2 HBjO(t, z)Hc(z, e)
zEEBi,

- lim , HBi,(U, z)Hc(z, e)| . e for t E -Bj.
u-ox,u Et zEBi,,

With such a choice of j one concludes from (3.35) and (3.27) that for x sufficiently
far out,
(3.38) IHc(x, e) - lim E HBJ,(U, z)Hc(z, e)I

u-*),uE-, zEBi.
< 4e + ED H,(x, t) < 5e.

t(=-i

Since e > 0 was arbitrary, (3.28) follows.
THEOREM 4. The r.w. {X.} on (M has two boundary points if and only if there

exists an infinite cyclic subgroup ID = (c), such that [(:,I] < oo and 02(Y) < 00,
where a,2(Y) is the variance of the imbedded r.w. {Yn} on (see (2.1) and 2.2)).
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Note. If a subgroup gi as specified exists, but with a2(Y) = co, then {Yn}
has only one boundary point by (2.5), and then {X.} has only one boundary
point by theorem 3 and lemma 4. Thus the condition o2(Y) < 0o turns out to
be independent of the choice of '.

PROOF. First assume that there exists an = (c) as specified in the theorem.
Let zo = e, zi, * * *, z-l be representatives of its cosets where X = [(M:,&] < 00
(see (3.1) and (3.2)). Every x e 5 can now be written uniquely as
(3.39) X = CkZi, k = k(x) integer, 0 < i = i(x) < X - 1.
Since X < co, x -X00 if and only if Ik(x)I oo, and by remark 2,
(3.40) lim IHB(ckzi, e) - HB(ck, e) I = 0

Jkloo

for B = {e, b}, b E 6 - e fixed. Thus, if we show that for each b e -e,
(3.41) lim HB(Ck, e) and lim HB(C-k, e)

k--- k-x)

exist, then {Xn} has at most two boundary points. Since for a-2(Y) < X there also
are at least two boundary points by (2.6), (2.7), (2.3), and remark 1, this will
prove one implication of the theorem. However, if one takes B = {ck: Iki < j},
then, by (2.6), (2.7), and (2.3),
(3.42) lim HBi(Ck, z) and lim HB,(Ck, Z)

k-co k -

both exist for z E B,. The proof of the existence of the limits in (3.41) is now
exactly the same as that of (3.28) (starting immediately after 3.30).
To prove the converse we assume that 6 has an element c of infinite order.

The case where no such element exists will be postponed to the proof of theorem 5
below. Let then

(3.43) =(c) C (2, 00=.
As before, {Y.} will be the imbedded r.w. on !. We distinguish two cases. First,
(3.44) lim Ho(x, y) = 0 for all y E p.

We may then assume that a2(Y) < , for otherwise {Y.} and {X.} have one
boundary point only by (2.5) and theorem 3. By the part of the theorem which
has been proved already, we may also assume

(3.45) [6M: ] = 0o

Second, there exists a sequence {x.} e (Msuch that xn -Xco (n -+ oo), and for
some yo EF ,

(3.46) lim H&(x., yo) > 7 > 0.

These cases clearly exhaust the situations in which the boundary may have
more than two points. It therefore suffices to show that in these cases {X,,} has
infinitely many boundary points.
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Case (1). Choose ko such that with B = {e, cko},
(3.47) lim IIB(Ck, e) $ lim 7B(Ck, e).

k--+ k-oo

Such a ko exists since {Yn} has two boundary points (see (2.6) and (2.7)). Define
(i) aN(x) = P. [first entrance of {X.} to ii is at c6 with k 2 N],
(ii) 13N(x) = P. [first entrance of {X.} to is at ck with-k < -N].

Let {x,} C 5 be a sequence for which
(3.48) a = lim aN(x.) and A = lim 3N(Xn)

exist and such that (see (3.2) for notation)

(3-49) i(Xn) ->°° (noo)
By (3.44), these limits are independent of N and a + B = 1. From (2.4) it

follows that
(3.50) lim HB(xn, e) = a lim H7B(Ck, e) + (1a-) lim HB(Ck, e)

n--x k-++" k-X)--

(cf. the argument following (3.9) in [13]). We now construct other sequences
{x'} for which the corresponding a' takes any value in [0, 1]. This is done as
follows. By (2.13),
(3.51) aN(C X%) = aN+,(Xn),
and for fixed N, n,
(3.52) lim aN+7(X.) = 0, lim aN+r(X,) = 1.

r- r-o

Moreover, by (2.13), (3.49), and (3.44),

(3.53) 0 <aN+,(xn) - aN+,+1(X.) = HO(xn, CN+9)
= HO(cN x., e) = o(l), (n oo ).

From (3.51)-(3.53), one sees that one can choose rn such that

(3.54) lim axN(c--xn) = a'
n--+

for any given a' e [0, 1]. Moreover, by (3.49), C-rXn -X oo as n mo. In view of
(3.47) and (3.50), different values of a' correspond to different boundary points
(see remark 1) so that {X.} must have infinitely many boundary points.
Case (2). We may assume that {xn} has been chosen (by use of the diagonal

procedure) such that in addition to (3.46),
(3.55) lim HB(X., y) exists,

n--0o

for all finite sets B C ® and all y e B. Let Bo C I be any set of at least 2m/j
points and such that yo E Bo. Inequality (3.46) implies
(3.56) lim HBO(Xn, YO) > 7n-

n-4



MARTIN BOUNDARY 67

But

(3.57) lim HB0(X_, Y) >

can hold for at most 2/1q points y E BO, since for any x and B,

(3.58) E HB(X, Y) = 1.

Thus we can find at least (m -1)2/X7 points yi E BO for which

3.59) lim HB,(Xn, Y1) < X7-
n-- 2

Fix y, E BO such that (3.59) holds. On the other hand, by (2.13) and (3.46),
(3.60) lim inf HBO(YlYO 1x,n Y1) 2 lim HO(yjy6j1xn, Yi)

= lim HO(Xn, YO) 2 71.

Again we may assume, after selecting a subsequence if necessary, that also for
all finite sets B and y c B,
(3.61) lim HB(yjyOlxn, y) exists.

From remark 1, (3.59), and (3.60), it follows that {xn} and {yly lXn} converge
to different boundary points. Still, there are at most 2-2/1 points y E BO for
which either (3.57) or

(3.62) lim HBO(Y1YO&1Xn, Y) 2 2
n--+- 2

holds. There are, therefore, at least (m - 2)2/XX possible choices for Y2 satisfying

(3.63) lim HBO(Xn, Y2) < 2r and lim HBO(y1yO 1Xn, Y2) < 2/X
n--+.-2 n-- 2

and as above we find that, perhaps after selecting a subsequence once more,
{Y2Yo 1Xn} converges to a boundary point which differs from the limits of both
{xn} and {yiyo 1xn}. Proceeding in this manner we find m sequences {yty 1x`n},
i = 0, * * *, m - 1, converging to different boundary points. Sincem is arbitrary,
{Xn} must have infinitely many boundary points in case (2) as well.
REMARK 3. It will be apparent from the applications how to combine the

results of this section if one has a chain of subgroups

(3.64) 5=®OD hD ... DO. = {e},

such that at each step Oi and @j+1 form a group and a subgroup to which one
of these results applies. Particularly useful is the fact that

(3.65) lim Hoi,+2(x, y) = 0, Y E i+2
x-: ,zE@;

whenever
(3.66) lim Hii+,(x, z) = 0, z E ij+i,

z-+ XEZi
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as well as

(3.67) lim H@i,+,(z, y) = 0, y E (Mi+2,
z X ,Z G@i+i

hold. This is an immediate consequence of (2.4) and (2.3) with & =
B = i+2.
THEOREM 5. Any recurrent random walk {Xn,} on a group (D has 1, 2, or

infinitely many boundary points.
PROOF. In theorem 4 and its proof all cases were covered where (5 has an

element of infinite order. We may therefore assume that all elements of (5 have
finite order. We shall prove this theorem and, at the same time, complete the
proof of theorem 4 by showing that (M must have an infinite subgroup such
that {YI}, the imbedded r.w. on I, has one or infinitely many boundary points.
This will indeed be sufficient, for if {Yn} has infinitely many boundary points,
then a fortiori this is true for {X"} by (2.3), and if {Yn} has one boundary point
and (3.44) holds, then {X.} has one boundary point by theorem 3. Finally, if
{ Y.} has one boundary point but (3.44) does not hold, then the proof of case (2)
in theorem 4 goes through without any change, and {Xn} must have infinitely
many boundary points.

If 5 is locally finite, that is (see [14]) if every finite subset generates a finite
group, it is known, [9] or [10], to have an infinite abelian subgroup t. More-
over, any r.w. on t has one boundary point only by [13]. This leaves only one
case to investigate, namely where (M has an infinite subgroup .&, generated by
the finite set {c,, * * -,c), c1 l, * - *, c- 1} and such that {Yn} has at least two
boundary points. In this case let {xn}, {Yn} C be two sequences for which
Xn -xc, yn -X o as n X-+ and such that

(3.68) lim HC(xn, e) $! lim 77c(yn, e)
n-x- n-

for some C = {e, c} C ,. If I is any interval between lim Hc(xn, e) and
lim H7c(Yn, e), we shall find a sequence {zn} C 1Jfor which zn-* oo as n -+ cc, and
(3.69) H7c(zn, e) E I.

This will of course show that {Yn} must have infinitely many boundary points,
since one can choose infinitely many disjoint intervals I between lim 7C(xn, e)
and lim 77C(Yn, e). In order to prove (3.69), we choose an increasing sequence
{Bj} of subsets of t such that = UBj and determine jo such that

(3.70) 1lIc(z, e) - 7J'c(zd, e)| < = I-length of I

whenever

(3.71) z ¢ Bj, and d e {ci, * *C*,c11, , cT'}.

Such a jo can be found by remark 2. Since , is finitely generated and has
no elements of infinite order, it has only one end point, in the terminology of
Freudenthal ([8], especially section 7.6). This means that for each j and suffi-
ciently large n thore exists a "path" from x. to yn outside Bj. Here we mean by
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a path from x. to yn outside Bj, a finite sequence u0 = X., Ul, U2, U m*, Ur = Yn
of elements of such that
(3.72) Ui+j = uidi for some di e {cl, * * C",C', cr ,
and
(3.73) ui ¢ Bj.
For j 2 jo we have, therefore,

(3.74) 1Hc(ui, e) -Hc(ui+i, e)I < e, i = O, m - 1,
and hence, for some i,
(3.75) Thc(ui, e) c I.
Choose some ui satisfying (3.73) and (3.75) and denote it by zj. Then zj -X 00
as j -X oo by (3.73), and (3.69) is satisfied because of (3.75). This completes the
proof of theorem 5.

4. Applications
A. Let 5 have a finite normal series (see [14])

(4.1) @= 6oD i D -.. DDn= {e}
(that is, Oi+j < @X), and let r be the highest index for which
(4.2) [5r: (r+J] = -

If any recurrent r.w. on (,r/(3r+i has one boundary point only, then the recurrent
r.w. {X.} on 5 has one boundary point only.

PROOF. By repeated application of lemma 4 and remark 3, one has
(4.3) lim H, (x, y) = 0 for all y E r.

Let {Yn} be the imbedded r.w. on O5r. If r + 1 = n or r+l = {e}, then {Y.}
has only one boundary point by assumption, and the result is then contained
in theorem 3. In general, 65r+i is finite by the definition of r. Let

(4.4) (5r+, = {go = e, g9, *' , gh-1}
and choose representatives z0 = e, z1, * of the cosets of ir+1 in 65r such that each
element x of (, can be written uniquely as

(4.5) x =gkZOi< k = k(x) < h-1 and 0 < i = i(x).
Since (5r+, < 65r, the cosets {@r+lzi} form the group '5r/®r+l under the usual
multiplication. The induced r.w. on (,r/®r+1 is defined as the sequence of random
variables {Z.},,>,, where Z. e 63?/@5?+l and
(4.6) Z. = -r+IZi when Y. E Or+izi.
One easily checks that Z. is indeed a random walk on (5r/(5r+l, and by as-

sumption it has one boundary point only. In other words, if
(4.7) B = 5r+lZo U @3r+lZio, 0 0,
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then for j = 0 or io,
(4.8) lim P [first visit of {Zn} to B is in )r+IzjlZo = r,+iZs}

exists. In the previous notation this means
h-1

(4.9) lim Eh HB(x, gkzj) exists.
i(z)-k=O

(H denotes the hitting probabilities for {Yn}). We also know from lemma 4, that

(4.10) lim be +,(x,9 = 1 0 < k < h - 1.

A proof entirely analogous to that of (4.10), or rather (3.15), shows that 1/h
is the limit

(4.11) lim P {first visit of {Yn} to B is at gkzjlY
Z400 ,z E@,5

= x and first visit of {Y.} to B is in ()r+lZj}
(4.9)-(4.11) combined show that

(4.12) lim 7B(X, gk) and lim HB(X, gkZio)

exist for 0 < k < h - 1. This is even true if io = 0 by (4.10). Thus for c = gkAZ,
io 0 0 and C = {e, c} (compare (2.4)),

(4.13) lim Hc(x, e)
h-1

= lim E [HB(x, gk)7C(gk, e) + HB(x, gkzi0)Hc(gkzi., e)]
z- o,e,z3 k=O

exists, and similarly for io = 0. Thus {Yn} has only one boundary point, and
the result is again included in theorem 3.

B. Let 5 have a normal series as in A and let r be defined as in A. If now
r/A5r+i is abelian, then {X"} has one or two boundary points. The last case

can occur only in the situation described in theorem 4. This example covers all
groups uith a finite solvable normal series.

PROOF. Since J(ir+, is commutative, the results of section 3 of [13] apply.
Therefore, a recurrent r.w. {Znj on @5r/,r+1 has one boundary point only,
unless ,)r/(,r+i has an infinite cyclic subgroup t of finite index, and the imbedded
r.w. {U.} of {Z,n} on p has finite variance. In this last case, {Zn} has two bound-
ary points. As in example A we take for {Z.} the induced r.w. on (,/6)+
(see (4.6)). If {Zn} has only one boundary point, then the same is true for {X.}
as in example A. We may assume, therefore, that {Zn} has two boundary points.
Then there must exist an element c E r, of infinite order such that

(4.14) [@r/@5r+: ] <0,
where 6 is the subgroup of @X/@5r+l generated by @,+lc. Since J1.+11 <0 one
must also have [,r: ,l] < oo, where ,D = (c), the infinite cyclic group gener-
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ated by c. It follows from a familiar group theoretical argument, see ([14],
oTOl. I, pp. 83-84) that ti must contain a subgroup D2 such that

(4.15) (024 5 and [(,:,r 2] <c.
Again, D2 is necessarily an infinite cyclic group, generated by d = c8 for s $ 0.

Thus (5 has the normal series
(4.16) @= 5oD(lD ... D(rD2D {e}.
Let {V.} be the imbedded r.w. on i2* If o2(V) = co, then {V.} has one boundary
point only, and by example A, {Xn} again has one boundary point only. Finally,
if a2(:V) < co, one has necessarily [(M: 2] < Xo (see lemma 5 below), and it
follows from theorem 4 that the boundary for {Xj} consists of two points.
LEMMA 5. Let

(4.17) @ = ~oDiD ... D n-1 {e}

be a normal series such that n-1 is an infinite cyclic group. Let {Xn} be a recur-
rent r.w. on (5 satisfying (1.6), and let {Yn} be the imbedded r.w. on (n-1. Then
a2(y) < 00 implies [®:®n-1] < 00

This lemma generalizes lemma 3.4 of [13]. Its proof consists of a few simple
group theoretical reductions, plus a repetition of the proof given in [13] for
lemma 3.4. We skip the details because, among other reasons, we believe a more
general result to be true (see section 5).

C. If @5 = I(1@2 with I11 = 16521 = oo, then {X.} has one boundary
point only.

PROOF. The elements of @ are the ordered pairs (g1, g2), gi C @5j. Let c E t
and let

(4.18) D= {(c0, g2):k integer, g2 E 52}.
The set p is a subgroup of (M, and one can choose the representatives zi of its
cosets to be of the form {wi, e2} with wi E @l, and e2 the identity element of 52.
Each of the zi's commutes with every element g C of the form (el, 92) where
el is the identity element of @5 and 92 EC @2. Thus, by lemma 4 (see also end
of proof of lemma 4)

(4.19) lim H,(x, y) = 0, y C D.
Let

(4.20) IN = ((c, e)) = {(ck, e):k integer}.
Then t < t. Assume first that the cyclic group t1 is infinite and let {Y.}
and {Zn} be the imbedded random walks on p and !D respectively. Also {Zn}
is the imbedded r.w. of {Yn} on ,D. By lemma 5 applied with {Yn} and b as
the original r.w. and original group, a2(Z) = xo, since

(4.21) [&: t] = 16521 = ° *

Thus {Zn} has one boundary point only, and by lemma 4 and theorem 3 the
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same is true for {Yn}. From (4.19) and theorem 3, it now follows that {X"} has
one boundary point only.

If, however, I11 = hi <0, then by lemma 4

(4.22) lim Ho.,(y, (c, e)) = h

From (4.19), (4.22), and (2.4), it follows that

(4.23) lim HOI(x, (Ck, e)) = lim E Ho(x, y)Ho,(y, (Ck, e)) = h.
z--+. x- -a YE,!D

If C = {(e, e), (c, e)}, then again by (2.4),
hi-1

(4.24) H,(x, (e, e)) = E He,,(x, (ck, e))Hc((ck, e), (e, e)),
k=O

so that
(4.25) lim Hc(x, (e, e)) exists.

Property (4.25) holds for any c e 6, of finite order. If 651 has any element of
infinite order, we already know by the first part of this proof that {X.} has only
one boundary point. We may assume, therefore, that (4.25) holds for all c E 65,
and, in particular, the imbedded r.w. on

(4.26) 651 = {(gi, e2):91 eE 651}
has one boundary point only. Since 6 1< 6, it follows from one more applica-
tion of lemma 4 and theorem 3 that {X.} has only one boundary point.
D. Let 65 be a group of finite permutations of the integers, namely, if g(n)

represents the image of the integer n under the permutation g E 65, then for
each fixed g, g(n) #- n for finitely many n only. If 1651 = oo, then {X.} has one
boundary point only.

PROOF. Define

(4.27) spt(g) = support of g = {n: g(n) $! n}.
Let c E 65 be fixed and let & = (c) and
(4.28) !, = {g E 6: spt (g) n spt (c) = 0}.
Since c is a finite permutation, 1I = h <0. On the other hand, it is not hard
to show that 1,bj = Xo and that < 2, where D2 is the group generated by
& U !>,. Thus, by lemma 4,
(4.29) lim Ho,(x, Ck) =

Let zo = e, zi, * be representatives of the cosets of t2 in 6. One easily sees
that
(4.30) ZigZf l /i'1 C D2 whenever spt (g) n zh-,(spt (c)) 0.
Since lzrl'(spt (c))l = I(spt (c)l < 00 is independent of i, it is not hard to show
that sequences Mi = {mf} satisfying (3.16)-(3.18) with replaced by t2 exist.
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Hence, by lemma 4,

(4.31) lim Hv,2(x, y) = 0, y E D2.
X-

Equations (4.29) and (4.31) take the place of (4.22) and (4.19), and just as in
the proof of (4.25), it follows that
(4.32) lim Hc(x, e) exists

2x-

for C = {e, c}, c e (M arbitrary. This completes the proof.
D'. Let (M be a group of permutations of the integers and (51 the subgroup

of finite permutations of the integers. If 1,11 = oo then {Xn} has one boundary
point only. This is an immediate consequence of lemma 4, example D, and
theorem 3 because (h < (M.

5. Some open problems

Our main object has been to prove the following conjectures.
Conjecture 1. If {X.} is a recurrent r.w. on a countable infinite group (M

such that (1.6) is satisfied, then {Xn} has one or two boundary points.
The results of this paper are only approximations to this conjecture, and even

the following weaker conjectures have not been proved.
Conjecture 2. The entrance boundary of {X,} is the same as the exit bound-

ary (which equals the entrance boundary of the reversed r.w. (see section 1).
Conjecture 3. Let I C @5 be an infinite cyclic group. If the imbedded r.w. on
has finite variance, then [®:,I] <00.
Conjecture 3 seems the right generalization of lemma 5. The difficulty here

is that we only have a partial answer to the following general question.
Question. Which groups @5 permit a recurrent r.w. {Xn} satisfying (1.6)?
If @ is a free group on two or more generators, it does not have such an r.w.

(see [6] for the proof of a special case; in general, one can show that a group
which permits a recurrent r.w. must be amenable (for example, by means of
corollary e", p. 101 of [3]) and free groups on more than one generator are not
amenable ([2], p. 516). For abelian groups @, the full answer was given by Dud-
ley [5]. A slight variation of his argument (see [5], pp. 448-450) shows that
such an r.w. exists for every countable, locally finite group.

It is amusing to point out a possible relation with the theory of group ends,
discussed in [8] and already used in the proof of theorem 5. Freudenthal proves
in [8] that every finitely generated group has 1, 2, or infinitely many ends. Two
ends occur if and only if (M has an infinite cyclic subgroup of finite index. If
(5.1) (M = @51@ 2, ll = 00,
then @ has only one end. The similarity with theorems 5, 4, and example C is
striking but probably not significant. It is possible to prove that a finitely gen-
erated group with infinitely many ends does not permit a recurrent r.w. satis-
fying (1.6). This is actually a special case of the next conjecture.
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Conjecture 4. Let ® be a finitely generated group. Let {cl, * *, cm} be a set
of generators and let N(L) be the number of different group elements in the set

(5.2) {c; ** ctl:1 < ij < m, r = 1}.
If
(5.3) lim sup N(L) 1IL > 1,
then 3 does not have a recurrent r.w. satisfying (1.6).

If this conjecture is true, then even a group (D generated by {cl, Q2} such that
cl and c2 generate a free semigroup does not allow a recurrent r.w. satisfying
(1.6). (In this case, cl and c2 do not have to be free generators of a free group;
see [1].)
As a final, and seemingly simple, situation, consider a group ® generated by

{C1, C2, C3} such that no nonzero power of ci belongs to the subgroup generated
by cj and Ck, where (i, j, k) is any permutation of (1, 2, 3). Does k permit
a recurrent r.w.? (If 5 is commutative, it is Z @ Z (® Z where Z is the group
of integers, and hence does not allow a recurrent r.w.).
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