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1. Introduction

The traditional economic concept of a set of agents, each of which cannot
influence the outcome of their collective activity but certain coalitions of which
can influence that outcome, has recently received its proper mathematical for-
mulation by means of measure theory. After J. W. Milnor and L. S. Shapley [32]
had considered in 1961 a game with a _measure space of players (see also [39],
[41], [40], [13], [33]), in an article [2] published in 1964, R. J. Aumann showed
how two basic concepts for an economy, namely the set of competitive alloca-
tions and the core, coincide when the set of consumers is an atomless positive
finite measure space. Another solution of this equivalence problem based on
Lyapunov’s theorem [28] was then given by K. Vind [42]. In the light of this
result, measure theory indeed appears as the natural context in which to study
economic competition. (The concept of a continuum of agents has also been
used in economic theory for different purposes by R. G. D. Allen and A. L.
Bowley ([1], pp. 140-141) and H. S. Houthakker [23].)

Now, given a finite set A of agents and a real Banach space S (the commodity
space), 'a standard operation in the analysis of economic equilibrium consists
of associating with every element a of A a nonempty subset ¢(a) of S, that is,
of defining a correspondence ¢ from A to S in Bourbaki’s [9] terminology, and
of taking the sum > ,c4 o(a) = {z € S|z = Y aca f(a) for some function f
from A to S such that, for every a € 4, f(a) € ¢(a)}.

In the new measure-theoretic context, the set A of agents is an arbitrary set;
the set @ of coalitions if a o-field of subsets of 4; a countably additive non-
negative real-valued function v is defined on @ with the interpretation that, for
a coalition E € @, »(E) is the fraction of the totality of agents contained in E.
In this context the sum Y ,c4 ¢(a) must be replaced by the integral [, ¢ dv of
the correspondence ¢. Thus it becomes necessary to define this integral and to
study its properties, in order to be able to reformulate the theory of economic
equilibrium. In [3], Aumann has made to this problem a fundamental con-
tribution which this article proposes to extend in several directions. The first
extension aims at replacing his assumption that the set of agents is an analytic
set by the assumption that it is a measurable space. From the viewpoint of eco-
nomic interpretation, this generalization is important, for the identification of

I wish to thank the National Science Foundation and the Office of Naval Research for
their support of this work.
351



352 FIFTH BERKELEY SYMPOSIUM: DEBREU

cconomic agents with points of an analytic set seems artificial, unlike the assump-
tions that every countable union of coalitions is a coalition and that the comple-
ment of every coalition is a coalition. The second extension consists of introdueing
three criteria for the measurability of a correspondence in addition to the cri-
terion used by Aumann, the four criteria being essentially equivalent. Since in
the various situations encountered in the theory of integration of correspondences
one of these criteria is often far casier to apply than the others, this four-fold
diversity is of great convenience. The third extension attempts to relax the as-
sumption of finite dimensionality of the space S.

Aside from these extensions, this work differs from Aumann’s in its approach
which treats the theory of integration of correspondences as a particular case
of the theory of integration of functions. The reasons that make such a treatment
possible can be outlined here.

Assume that for every a € A, ¢(a) is compact and convex. The correspondence
¢ from A to S can be considered as a funetion from A to the set £ of nonempty,
compact, convex subsets of S. As Price [34] (a reference for which I thank L. Le
Cam) has remarked, the properties of the set £ endowed with the Hausdorff
metric are such that the theory of integration of funections from A {o a real
Banach space can casily be transposed into a theory of integration of functions
from A to £. Actually, one can go further and, following Radstréom [35], embed
£ in a real Banach space £. The transposition then becomes unnecessary.

The preceding program requires the set ¢(a) to be compact and convex for
every a € A. However, if the space 8 is finite-dimensional, the convexity assump-
tion 1s inessential, and a theory of integration of compact-valued correspondences
is actually obtained. Given the needs of the analysis of economie equilibrium
for which the present theory of integration of correspondences is developed, the
two restrictions of finite-dimensionality of S and of compactness of ¢(a) for
every a € A do not seem to be severe.

This article is organized in the following manner. In section 2, S is assumed
to be an arbitrary metrie space; the Hausdorff distance on the family of non-
empty subsets of § is studied. Section 3 reviews certain generalities about meas-
ure theory ranging from the universally known (in which case our purpose is to
dispel ambiguities in terminology and notation) to the almost unknown. Section 4
is devoted to the question of measurability of compaect-valued correspondences
from A to S; among its main results are propositions establishing connections
between three of the measurability criteria for correspondences mentioned
carlier, and a measurability theorem of central importance for equilibrium anal-
ysis. In section 5, S is restricted to be a normed real vector space; the family £
of its nonempty, compact, convex subsets endowed with the Hausdorff metric
and with the operations of addition of two elements and of multiplication of an
element by a nonnegative real number is then embedded in a real Banach space
£; the fourth measurability criterion for correspondences, specially designed for
convex-compact-valued correspondences, is discussed. Section 6 further restricts
S to be a real Banach space; it is concerned with the problem of integrating
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convex-compact-valued correspondences from A to S. Section 7 puts the final
restriction of finite-dimensionality on S and studies the integration of compact-
valued correspondences from A to S.

Fxtensive work has been done in statistics by Blackwell [7], [8], Chernoff [12],
Dvoretzky, Wald, Wolfowitz [17], [18], [19], Karlin [24], Kudo [25], and
Richter [36], [37] (I owe these two references to K. Vind) on mathematical
problems closely related to those with which this article deals. With the excep-
tion of the references made below to certain points of these contributions, no
attempt will be made to compare in detail the mathematical results that were
obtained in the two lines of development, the statistical one and the economic
one. Tt may be noted that among the propositions required by the economic
theory appear generalizations of several results of the statistical theory.

This paper represents a laying up of many strands, as the bibliography alone
indicates, and it could not have achieved its present form without the conversa-
tions I had with economists, mathematicians, and statisticians over the last
year, and particularly, with R. J. Aumann, S. Kakutani, R. Radner and K.
Vind during the summer of 1964. I also wish to acknowledge certain specific
debts of this article to Aumann [3]. Several of the arguments below that appeal
to his criterion for the measurability of a correspondence, namely the meas-
urability of its graph, have been suggested by [3] or by himself. On the other
hand, the proofs of propositions (6.5) and (7.2) use ideas of the proofs of the
corresponding propositions in [3].

2. Hausdorff distance

Throughout this article, S denotes a fixed set with a metric s and X denotes the
family of the nonempty, compact subsets of S, and § denotes the Borel o-field of S,
that is, the o-field generated by the open subsels of S.

The terminology and the notation of N. Dunford and J. T. Schwartz [16]
will be followed as closely as possible.

Tor two nonempty subsets X and ¥ of S and a point x of S, we define

(1) p(x, ¥) = inf s(@,y), p(X,Y) = sup p(x, }).
yeyY ze€X

The number p(X, Y) is called the Hausdorff semidistance [22] of X and Y.
It enjoys the following two properties (¥ denotes the elosure of 1):

(2.1) (X, )=0XCY7T,;

(2.2 p(X, Z) < (X, ¥) + p(V, Z).
The Hausdor(] distance of X and Y is defined by

(2) (X, V) = max {p(X, V), p(Y, X)].

It satisties

(2.1) (X, )=0=X=7;

(2.2) 8(X, 7Z) < 8(X, Y) 4 8(Y, Z).
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Theréfore, 8 s a metric on X which is henceforth endowed with the corresponding
metric space structure. o
The continuity of p is established by the inequality

(2.3) lo(X, ¥) — p(X', Y')| < 8(X, X') + 8(Y, ¥').
Proor. According to (2.2),

(3) p(X,Y) < p(X, X') + p(X, Y') + p(Y', 1).

Therefore,

@) (X, Y) = p(X, V') < p(X, X') 4+ p(Y', V) < 8(X, X') + 6(Y, ¥').
Similarly for p(X’, Y') — p(X, Y), Q.E.D.
The next three results assert that the properties of completeness, compactness,

and separability carry over from S to X ((2.6) is a particular case of proposition
4.5.1 of E. Michael [31]).

(2.4) If S is complete, then X is complete.

Proor. Let {X,} be a Cauchy sequence of elements of X. There is a non-
empty, closed subset X of S such that 8(X, X,) — 0 (for example, [27], pp.
314-315). We have to check that X is compact.

To this end it suffices to prove that X is totally bounded. Therefore let e be
a strietly positive real number. For some p, one has (X, X,) < ¢/2. Since X,
is compact, it can be covered with a finite family of open balls with radius /2.
The finite family of open balls with the same centers and radius e covers X,
Q.E.D.

(2.5) If S is compact, then X is compact.
This is a result of Hausdorff ([22], p. 172, proposition VI).

(2.6) If S is separable, then there is a countable family § of finite subsets of S
dense 1n X.

Proor. Let {r,} be a countable densc subsct of S and let § be the family
of the nonempty finite subsets of {r,}. Clearly, & is countable, and we now
prove that, given X in & and e > 0, there is ¥ in § such that §(X, ¥) < e

Consider the open balls in S with centers in {x,}, radius e and whose intersecc-
tion with X is not empty. They form a covering of the compact set X. Take a
finite subcovering and let 1" be the set of the centers of the open balls in that
subcovering. The set 1" belongs to &.

Given y € Y, the open ball with center y, radius ¢ has a nonempty intersection
with X. Therefore p(y, X) < ¢, and hence p(Y, X) < e

Givenz € X, thereisy € Y such that z belongs to the open ball with center y,
radius e. Therefore p(z, ¥) < ¢; hence p(X, V) < ¢ Q.E.D.

3. Concepts and results of measure theory

Let M be a set, 9 be a o-ficld of subsets of 3, 7 be a metric space, and 3
be the o-field generated by the open sets of 7. A function f from M to T is said
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to be measurable with respect to M or to be N-measurable, if, for every E € 3,
the inverse image f~!(E) of E by f belongs to 9.

Let M be a set, 91 be a o-field of subsets of M, and F be a set. A function f
from M to F is said to be NM-stmple if there is a finite partition of M into sets
belonging to 91 such that f is constant in each set of the partition.

Since [16] will be used as a standard reference, it must be pointed out that
these two definitions differ slightly from those of Dunford and Schwartz.

For the statement and the proof of the next result we need the following
notations:

gwenasubset X of S, X* = {Y e X|Y CX}and X» = {Y e X|]Y N X = &};

& 1s the o-field generaled by the open sets of X;

&* 1s the o-field generated by the sets X* where X is open in S;

8¥ is the o-field generated by the sets X where X is open in S;

E\F denotes the set of elements belonging to E but not to F.

According to an unpublished theorem of Dubins and Ornstein,

3.1) & C & and &» C &. If S is separable, then & = &§» = §&.

Proor (Dubins and Ornstein). We first establish that if X is open in S,
then X* and X are open in X.

To see that X* is open in &, consider an arbitrary element Y of X?, namely,
Yexand Y CX. Thus Y N (S\X) = . Exclude the trivial case X = S;
since S\X is closed, every point of Y is at a strictly positive distance from S\X
and the number ¢ = minyey p(y, S\X) is strictly positive. Every Z € X for
which 6(Z, Y) < e satisfies Z N (S\X) = &, hence Z € X".

To see that X* is open in X, consider an arbitrary element Y of X», that is,
YeX and Y N X = . Select a point x € Y N X. There is in S an open
ball with center z, radius ¢ > 0 that is contained in X. Every Z € & for which
(Y, Z) < e intersects that ball, hence Z N X # & and Z € X».

Thus for every X open in S, one has X* € & and X» € &. Consequently,

(i) & Cé& and &* 6.

Having established the first assertion, we now assume that S is separable.
Given a nonempty subset X of S and ¢ > 0, we denote by (X;¢) the open set
{zx € 8|p(z, X) < ¢ and by [X, €] the closed set {x € Slp(z, X) < ¢}.

If Y belongs to X, then

(5) YCX;dop/,X)<e and YC[X;e]epY,X)<Le
Given X € X and e > 0, we introduce the further notation

X;9u={Y eX|X C(Y;9} ={YV € X[p(X,Y) < ¢},

[X;elo={Y e XX C[V;e]} ={Y € X[p(X,Y) < ¢}.

We will also need the remark that
(i1) for every subset X of S, ¥\X* = (S\X)* and JC\X v = (S\X)e.
Proor or (ii). The following relations hold:

(6)
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NNX'={Yex|lYZX, ={YexlYy N\X) = &} = (S\X)~,
K\NXe={VexlYNX =g =}V ex|V CE\X) = (S\X),
Q.E.D.
The space S is separable; therefore, according to (2.6), & is separable. Con-

sequently, the open balls of & generate the o-field . However, in X, the open
ball with center X, radius € is

(8) Y exp(X,V)<e and p(),X) <¢e = (X;0.,N (X; e
Thus, in order to complete the proof of the theorem, it suffices to establish
(i) X; €0 €8, (X; et €8, (X;6. €8" (X; e € 8",

for this implies that every open ball in X belongs to &' and to §¢, which implies
in turn

I

@)

(iv) §C & and & C &

The proof of (iii) consists of the series of assertions (v)—(x):
(v) (X;e €8
because (X; €) is open;
(vi) [X;e]" € 6"
because, by (ii), K\[X; e]* = (S\[X;e])“ and [X; €] is closed;
(vii) [X;e] €8
because, by (i), K\[X;e]* = (S\[X; €])* and [X; €] is closed;
(viii) [X;e]vegn

because if {e,} is a strictly decreasing sequence converging to e, one has [X; e]” =
Y exrlYN[X;e # ) = {¥ € X|there is y € ¥ such that p(y, X) < €.
By an immediate compactness argument on Y, the last set is seen to equal
{Y € Xx|for every p, there is y € ¥ such that p(y, X) < ¢,} which, in turn,
equals MN,{Y € K|there is ¥y € ¥ such that p(y, X) < e,) = Np(X;ep)©. How-
ever, every (X;e,) is open. Therefore, every (X;¢,)* belongs to &° and so does
their countable intersection. The following assertion also holds:

(ix) [X;elw €8 and [X;el, €87

To prove (ix), consider a countable dense subset {x,} of X. GGiven a nonempty
subsel Y of 8, one has [p(x, ¥) <€ for every x € X] & [p(x,, V) < e for
cvery pl.

Therefore, [X;el, = {} € X|p(X, V) < ¢ = YV € X|for every p, p(xy, V)
< 6): = P{Y € :K'P('rm Y) < 6} = mp[-'rr; f]w'- However, [-rp; e]w = [IP; e]w
which belongs to & by (vii) and to &* by (viii).

(x) If {e&, s a strictly increasing sequence converging lo e, then (X;e)* =

UL[X; ep]* and (X; 60w = Us[X; €]
heecause (X; €)' = (¥ € K[p(Y, X) < ¢} = {1 € Kifor somep, p(}, X) <, =
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UplY € Xlp(Y, X) < &) = UslX; rand (X;0u = {} € K[p(X, }) < ¢ =
{Y e x|forsome p, p(X, ¥) < ¢} = Up{Y € K[p(X, Y) < ¢} = Up[X; ¢p)u

The assertions (x) and (vi) establish that (X;e)* € &¥; (x) and (ix) establish
that (X; €}, € & and (X;¢€), € &v; (v) asserts that (X;¢)* € &, QE.D.

Let M be a set, 91 be a o-field of subsets of M, and L be a finite-dimensional
topological real vector space. A measure u defined on 9 with values in L is a
function from M to L such that, for every sequence {E.} of pairwise disjoint
elements of 9N, one has > r-1 u(¥,) = u(Ur-1 E.). Again this differs slightly
from the terminology of [16].

A set £ in 9 is an atom for the measure u if u(k) = 0and [F e M, F C E] =
[u(F) = 0or u(E\F) = 0]. The following theorem is due to Lyapunov [28], [29]
(see also [21] and [15]).

(3.2) The range of u 1s compact. If u has no atom, then its range is also convex.

Note: in the remainder of this section the values of u are assumed to be real and
nonnegative.

We have the result (see, for instance [6]) that
(3.3) M can be partitioned into a countable family of atoms and an atomless part.

(The set of atoms and/or the atomless part may be empty).

A subset K of M is said to be null if there is F € M such that u(F) = 0 and
E C F. An assertion about the elements of A/ is said to be true almost everywhere,
or for almost every element of M, if it is true except for the elements of a null
set. The Lebesgue extension of 9N is the family 9* of the sets of the form K U F
where K belongs to 97 and F is a null subset of M.

Given n sets My, --- , M, and for every j = 1, - - -, n a family 9; of subsets
of M;, we denote by 91; X - - - X 9, the family of the subsets of f; X --+ X M,
of the form E;, X --- X E, where E; € 9; for every j = 1, --- , n. This is still
another slight departure from the notation of [16]. Given a set M and a family
M of subsets of M, we denote by ®(9M) the o-field generated by M. l'inally,
we denote the projection on M of a subset £ of M X S by projsy E. The last
result of this section is a generalization by D. A. Freedman of a lemma of D.
Bierlein [5]. The proof that we give is due to D. A, I'reedman and J. Neveu.

(3.4) If S is complele and separable, then E € ®(M* X 8) implies
projy If € om*,

Proor. (1) Assume first that S is compact. Then 8 is the o-field generated
by the compact subsets of S. According to the theorem of L. Marezewski and
C. Ryll-Nardzewski [30], if E belongs to the Suslin class generated by on* X 8,
then projy E belongs to the Suslin class generated by 9n*. However, this class
coincides with 91* by a classie result (for example, [38], chapter 2, section 5).
Therefore there only remains to prove that B(91* X §) is contained in the Suslin
class generated by 9* X 8. This fact is established in lemma 2.a of [5] for the
case in which S is the real line. It can be established for the present case of a
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compact S by the trivial substitution of the family of compact subsets-of S for
the family g of compact real intervals in Bierlein’s proof.

(2) Consider now the case of a complete, separable S. Let H be the Hilbert
cube and let 3¢ be its Borel o-field. By ([27], p. 119), the space S is homeomorphic
to a subspace S’ of H. Let 8’ be the Borel o-field of S’. By ([27], p. 337), S’ is a
countable intersection of open sets of H, and hence belongs to 3¢. Thus 8’ C 3¢,
and consequently, £’ € ®(9M* X §') implies E’ € ®(M* X ). Finally, since H
is compact (for instance, [27], p. 91), E’ € ®(9M* X 3¢) imples projy E' € M*
by (1), Q.E.D.

4, Measurable compact-valued correspondences

Throughout this article, A denotes a given set endowed with a o-field @ of subsets
and a nonnegative real measure v on Q.

Given two sets E and F, a correspondence ¢ from E to F associates with every
element z of E a nonempty subset o(z) of F. Its graph is

9) G(p) = {(z,y) € E X Fly € ¢(x)}.

The correspondence ¢ can alternatively be considered as a function from E
to the set of nonempty subsets of F. The ability to study ¢ from either point
of view is very valuable and will often be called upon. But one must guard
against the confusion that would arise if at any time the point of view from
which ¢ is considered were not explicit. For instance, the graph of the correspond-
ence ¢ from E to F is the subset of E X F defined above, whereas the graph of
the function ¢ from E to ®@(F), the set of subsets of F, is a subset of £ X ®(F),
namely, {(z, Y) € E X ®(F)|Y = o(z)}.

The inverse ¢! of the function ¢ is defined as usual: let § be a family of
subsets of F, then

(10) ¢ (%) = {z € Ele(x) €5}

The strong-inverse ¢* of the correspondence ¢ is defined as follows: let Y be
a subset of F; then

(11) ¢'(Y) = {z € Elp(z) C T}.

The weak-inverse o of the correspondence ¢ is defined as follows: let Y be a
subset of F; then

(12) e(Y) = {z € Ele(x) N Y # &}

Let P be an attribute defined for the subsets of F. The correspondence ¢
from E to F is said to be P-valued if, for every z € E, ¢(z) is P.

Let T be a metric space and ¢ be a compact-valued correspondence from 7’
to S. We follow Kuratowski [26] in saying that the correspondence ¢ is upper
semicontinuous at a point z, of T if, for every sequence {z.} of points of T
converging to xo, ple(x.), ¢(xs)] converges to zero; ¢ is lower semicontinuous at
zo if z. — zo implies p[e(x0), ¢(x,)] — 0; and ¢ is continuous at xo if T, — 2o
implies 8[¢(x0), ¢(xa)] — 0.
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A compact-valued correspondence ¢ from A to S is said to be @-measurable (resp.
@*-measurable) if the function ¢ from A to X is @-measurable (resp. @*-meas-
urable). Propositions (4.2)—(4.4) will study the relationship between three criteria
for the measurability of the correspondence ¢, the first one being the definition
of measurability adopted here, and the third one being the generalization of
Aumann’s [3] definition of measurability to the present situation:

(a) for every I € &, ¢ '(I) belongs to @ [or to @*];

_(b) for every X €8, ¢*(X) @nd)e"(X) belong to @ [or to @*];

(¢) G(p) belongs to B(@ X 8) [or to B(@* X §)].

By trivial transpositions of the proofs of classic theorems about functions from
A, endowed with its measure space structure, to a Banach space (see [16],
lemma 9, p. 147, and corollary 13, p. 150) to the present case of functions from
A to a metric space, one can establish that, for a separable S, (a) [¢ is @*-meas-
urable] s equivalent to (a’) [there is a sequence {¢,} of @*-simple functions from A
to X converging almost everywhere to ¢] which is equivalent to (a'") [there is a
sequence {¢,} of @*-sitmple functions from A to X converging in measure to ¢].
Thus two standard additional measurability criteria are immediately obtained.

This remark permits an easy proof of a result on which we will call in section 7.

(4.1) If S is separable, ¢ is an @-measurable function from A to X and E s
an atom for v, then E contains an atom E' for v on which ¢ is constant.

Proor. There are a null set A, € @ and a sequence {¢, ¢z, - - -} of @-simple
funetions from A to X converging to ¢ outside of Ay Choose for ¢, some constant
function from A to X.

Let E, = E\A,. Obviously Eq is an atom, ¢, is constant on Ey, and {¢.} con-
verges to ¢ on E,. Construct the sequence {E,} inductively as follows. Make
the induction hypothesis (satisfied for ¢ = 0) that FE, is an atom contained in
E, for every p < ¢, and that ¢, is constant on E,. Consider a finite partition
of E, into @-sets associated with the @-simple function ¢.41. One of these sets,
denote it by K., is an atom; all the others are null. Therefore, the inductive
construction can be carried out. Let now L' = N7_ £, The sets I/, are non-
increasing. For every ¢, one has »(E,) = v(¥). Hence v(£’') = v(¥). Thus E’
is an atom. On I’ every ¢, is constant and {¢,} converges to ¢. Therefore, ¢
is constant on E’, Q.E.D.

The next result concerns the connection between criteria (a) and (b).

(4.2) Consider a compact-valued correspondence ¢ from A to S and the following
three assertions:

(o) ¢ 18 G-measurable;
(8) for every X open in S, ¢*(X) belongs to Q;
(") for every X open in S, ¢*(X) belongs to @;
> (a) implies (B) and (B').
If, in addition, S is separable, then the three assertions (&), (8), and (8)
are equivalent.
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Proor. For any subset X of S, one has ¢'(X) = {a € Al¢(a) C X} =
¢~Y(X*®). Moreover, according to (3.1), the o-field & generated by the sets X*
where X is open in S is contained in 8. Therefore («) implies (8) since [X open
in 8] implies [X* € &(C &)], whereas ¢*(X) = ¢ 1(X*).

Assume now that S is separable. According to (3.1), & = &. Therefore (8)
implies (@) since [for every X open in S, ¢*(X) € @] is equivalent to [for every
X open in 8, ¢~'(X?*) € @] which implies [for every § € & (= 8), ¢ 1(F) € @].

The implications relating («) and (8’) are established in a similar manner,
Q.E.D.

The connection between criteria (a) and (c) is dealt with in two separate
propositions.

(4.3) If 8 is separable and ¢ is an G-measurable compact-valued correspondence
from A to S, then G(¢) belongs to B(R X 8).

Proor. Let Y be a countable dense subset of S and denote by B(z, r) the
open ball in 8 with center € S and positive radius r. Define the sequence {¢,,
of correspondences from A to S by ¢.(a) = {x € S| there is y € Y such that
o(y, ¢(a)) < (1/n) and s(z, y) < (1/n)} for every a € A. Clearly, for every a,
¢(a) = Ny-1¢a(a). Hence G(p) = Ni-1G(¢.). Morcover, G(¢,) = U,er {a € 4]
p(y, ¢(a)) < (1/n)} X {z € Sls(z, y) < (I/n)} = Uyer ¢"(B(y, (1/n))) X
B(y, (1/n)). In thislast product the first set belongs to @, by (4.2), and the second
set belongs to 8. Since G/(¢,,) is the union of a countable family of sets belonging
to @ X 8, it belongs to B(@ X §). So does ((¢), Q.15.D.

(4.4) If 8 is complete and separable and ¢ is a correspondence from A to S such
that G(p) belongs to B(Q* X §), then for every X € 8, ¢"(X) and ¢*(X)
belong to G*.

Proor. We have ¢o"(X) = {a € A|pla) N X = &} = proju [G(e) N (A X
X)]. Since A X X belongs to @* X 8, the set G(¢) M (4 X X) belongs to
®(@* X 8). By (3.4), ¢*(X) belongs to @* We also have ¢*(X) = {a € Ajp(a) C
X} = {a € dle(a) N (S\X) = &} = A\e"(S\X). Since S\X belongs to 8§,
¢”(S\X) belongs to @*. So does A\¢"“(S\.Y), Q.E.D.

We now prove a theorem that is basic to the theory of cconomie equilibrium.
This proposition generalizes some of the results of ([14], scetion 2.16) and of
([4], lemma 5.6 and end of proof of lemma 5.10).

(4.5) Given an Q@*-measurable compact-valued correspondence ¢ from A to S
and a function w from G(¢) lo the real line R, measurable with respect to
®(@* X 8) and upper semicontinuous on ¢(a) for every a € A, letv(a) =
max; s u(a, ) and Y(a) = {x € ¢(a)|ula, x) = v(a)}. If Siscomplete
and separable then the function v from A to R and the function ¢ from A
to X are @*-measurable.

Proor. According to (4.3), G(¢) belongs to B(@* X 8). Let ¢ be a real number.
The set {a € Alv(a) = c} is the projection on A of the set {(a, x) € G(¢)|u(a, ) =
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¢} which belongs to ®(@* X 8). By (3.4), {a € 4|v(a) = c} belongs to @*. There-
fore v is @*-measurable.

The graph G'(¥) of the correspondence ¢ from 4 to S is the set {(a,2) €
G(¢)|u(a, ) = v(a)}, which belongs to ®(@* X 8). By (4.4) and (4.2), ¢ is
@*-measurable, Q.E.D.

6. Embedding operations

Henceforth, S is a normed real vector space. The norm of an element x of S is
denoted by |x| and O denotes the origin of S. Also 0 denotes the one-element set {0}
and £ denoles the family of the nonempty, compact, convex subsets of S.

We have already appealed to a transposition of results established for functions
from a measure space to a real Banach space to the context of functions from
a measure space to the metric space X. In the sequel a similar transposition
from the case of a real Banach space to the case of the metric space £ endowed
with a certain algebraic structure would be necessary on many more occasions.
While there is little doubt that these transpositions can be carried out in a
trivial fashion, a complete solution requires that this long and tedious work be
actually performed. An alternative approach will be followed here. The metric
space £ with its algebraic structure will be embedded in a real Banach space.
The theorems of the standard theory of integration (for example, [16]) will
then be directly applicable. In the same manner the operation of transposition
could be dispensed with in section 4 if one consented to work with the set £
(instead of with the set &), which presupposes that one had introduced a vector
space structure on S. However, it has seemed worth emphasizing that the meas-
urability results of section 4 depend only on the metric space structure of S.

The sum X + Y of two subsets X, Y of S is defined by

) X+Y=1{2e8z=2z+ yforsome (z,y) in X X Y}.
This addition has the properties (X, Y, Z are arbitrary subsets of S)
o) X+T¥+2)=X+V+Z;, X+Y=Y+4+X; X+6=X.
The product o X of a nonnegative real number « and a subset X of S is defined by
om) aX = {z € S|z = az for some z in X}.

This multiplication has the properties (a, 8 are arbitrary nonnegative real
numbers; X, Y are arbitrary subsets of S)
(omn a(BX) = (eB)X; 1X =X; a(X + YY) = aX + aY; if X is convex,
then (a + 8)X = aoX + BX.
In the present more special context the Hausdorff semidistance p and the -
Hausdorff distance & have additional properties. In (5.1)-(5.4), (5.1’), and

(5.2) capital letters are arbitrary nonempty subsets of S, a is an arbitrary
nonnegative real number (properties (5.2) and (5.4) are given by Price [34]:

(5.1) p(aX, a¥) = ap(X, Y);
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(5.2) . p(X:+ Xy, Vi + To) < p(Xy, V1) + p(Xy, Vo).

Proor oF (5.2). Let z, xs, 31, 32 be arbitrary points of X, X5, Y1, Y, respec-
tively. One has :

(13) |21+ 22) — 1+ )| = (&1 — 1) + (@2 — y2)] < |2 — o] + |22 — w2l

Therefore p(x; + 2, Y1 + Y3) < p(x1, Y1) + p(xs, Y3). Hence the result.
From (5.1) and (5.2), one obtains the following assertion.

(5.3) On the set of pairs of nonemply, convex subsets of S, the function p is
convex.

Denoting by X the convex hull of X, one has
(5.4) p(X,Y) < (X, V).

Proor. For every z € X, p(x, Y) < p(X, Y). According to (5.3), p(z, Y) is
a convex function of z on 8. Thus for every z € X, one also has p(z, ¥) <
p(X, Y). Therefore p(X,Y) < p(X,¥). Finally ¥ CY implies p(X,¥) <
(X, Y), QE.D.

Assertions (5.1)-(5.4) obviously remain true if p is replaced by & therein.
We make explicit for future reference

(5.1 8(aX, aY) = ad(X, Y);
(5.2") X1+ Xo, Y14 Yy) < 6(Xy, Vi) + 8(Xs, V).

Since the sum of two elements of £, as well as the product of a nonnegative
real number and an element of £, belong to £, the set £ is endowed with an
algebraic structure satisfying (') and (9%') and with a metric § satisfying (5.1")
and (5.2"). According to a theorem of Radstrom [35],

(5.5) £ can be embedded as a convex cone with vertex 6 in a normed real vector
space £ in such a way that
(i) the embedding is isometric,
(i1) addition in £ induces addition in £,
(iii) multiplication by nonnegative real numbers in £ induces the cor-
responding operation in £,
(iv) £ spans L.

The norm of an element X of £ will be denoted by |X|. To prevent confusion
with a widespread usage, one must emphasize that, given an element X of £,
— X denotes its negative, namely, the element of £ which, if added to X, gives 6.
Tor an element X of £, —X coincides with the set {z € S|z = —z for some =
in X} if and only if X is a one-element subset of S. We can also say that an
element X and its negative — X both belong to the cone £ if and only if X is
a one-element subset of S. Therefore, the greatest vector subspace of £ con-
tained in the cone £ is the set £, of the one-element subsets of S, which can be
identified with S.

(5.6) If S is complete, then £ ts complete.
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Proor. Let {X,} be a Cauchy sequence of elements of £. According to
(2.4), there is a nonempty, compact subset X of S such that §(X, X,) — 0. We
have to check that X is convex.

Notice that, by (2.2), for every p, p(X, X) < o(X, X,) + p(X,, X). One also
has by (5.4), since X, is convex, p(X, X,) < p(X, X,) for every p. Therefore
p(X, X) < 25(X, X,) for every p. Consequently, p(X, X) = 0 and, by (2.1),
X C X. Hence, X = X, Q.E.D.

(5.7 If S s separable, then £ is separable.

Proor. The space £ is a subspace of the metric space X. Since the latter is
separable by (2.6), so is the former. Let then {X,} be a countable dense subset of
£. Tt will be shown that the countable set of the ¥,, = X, — X, is dense in £.
Consider an arbitrary element ¥ of £ and an arbitrary ¢ > 0. Since £ spans £, ¥’
can be written in the form ¥’ = X' — X? with X! and X? belonging to £. There
are X,, X, belonging to {X,} such that §(X', X,) < ¢/2 and §(X2, X,) < ¢/2.
Therefore, |¥ — V,,| = [(X' — X?) — (X, — X,)| = |(X! — X,) + X, — X?)|
<IX'— X, |+ 1X2— X,] <¢ QED.

Proposition (5.6) asserts that if S is complete, then £ is complete. One
naturally wonders whether, in that case, £ is also complete. The following
example due to Aumann and Kakutani answers the question negatively. Let S
be the Euclidean plane R?. Let {a;} be a deecrcasing sequence of positive real
numbers such that oy < 7/2 and > 21 sin a; < 4. Given an angle «, denote
by FE, the closed straight line segment whose extremities have coordinates (0, 0)
and(cos a, sin ). Let X, = > 71 E,, Y, = pEyand ,Z = X, — Y. It is casy
to see that {Z,} is a Cauchy scquence in £. And one can prove that there is
no Z € £ to which {Z,} converges.

However, £ can be embedded as a dense subspace of a real Banach space £ by
a standard operation ([16], p. 89). (I thank K. Vind for this reference.)

When the correspondence ¢ from A to S is compact-convex-valued, the
measurability criterion (d) introduced by Kudd [25] in the case of a finite-
dimensional S (see also Richter [36]) is available.

Criterion (d): for every continuous linear form f on S, the function w,; defined
for every a € A by ps(a) = max,c,@) f(x) is @-measurable (or @*-measurable).

(5.8) If ¢ is an @-measurable function from A to X, then, for every continuous
linear form f on S, u; is @-measurable.

Proor. Consider a continuous linear form f on S. Let ¢ be a real number,
and let X be the open set {r € S|f(z) < ¢}. Onc has {a € Alus(a) < ¢} =
{a € Alp(a) C X} = ¢*(X) which belongs to @ by (4.2). Therefore, u; is @-meas-
urable, Q.E.D.

In order to prove a converse of (5.8), we need the following.

(5.9) Let S be separable. Then there is a countable set C of continuous linear
forms on S such that if X is a nonempty, compact, convex subset of S
and B is a closed ball in S disjoint from X, then there is f € C' for which
max f(X) < inf f(B).
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Proor. Let § = {X,} be the countable family of proposition (2.6). Let {y.}
be a countable dense subset of S. Let {B,} be the countable family of closed
balls with centers in {y;} and positive rational radii. The set of pairs (X,, B,)
is countable, and whenever X, N B, = &, there is, by ([16], p. 417), a contin-
uous linear form f,, with norm 1 strictly separating the compact, convex set X,
and the closed, convex set B,. We define C as the set of all the f,, and the —f,,
s0 obtained.

Let X and B be as in the statement of the proposition. Denote by e the
positive number min,ex p(z, B).

According to (2.6), there is X’ € § such that 6(X, X') < ¢/6. A fortiori, by
(5.4), 8(X, X") < ¢/6. Thus

@) x €X' implies p(zx, X) < %

Let y and r be the center and the radius of the ball B. Select 3’ in {y.} such
that |y — ¥’| < ¢/6. Consider now the closed ball B’ with center 3’ and rational
radiusg ' so chosen that r + ¢/3 < v’ < r + 2/3e. One has §(B, B") = |y’ — y| +
|r" — r}. Therefore, §(B, B’) < 5/6¢. Consequently,

(ii) z € B’ implies p(x, B) <je.

From (i) and (ii) one obtains X’ N B’ = &, for if  were in this intersection,
there would be z! in X and z? in B such that |z! — 22| < ¢, a contradiction of
the definition of e. Therefore, there is f € C' such that max f(X’) < inf f(B’).
However, since the norm of f is unity, 5(X, X’) < ¢/6 implies max f(X) <
max f(X’) + ¢/6 while inf f(B) = f(y) — r and inf f(B") = f(y') — r’. More-
over, [y — ¥'| < ¢/6 implies f(y’) — f(y) < ¢/6 <’ — r — ¢/6; hence inf f(B") +
¢/6 < inf f(B). Consequently, max f(X) < max f(X’) + ¢/6 < inf f(B") + ¢/6 <
inf f(B), Q.E.D.

(5.10) Let S be separable and let ¢ be a compact-convex-valued correspondence

Sfrom A o 8. If for every continuous linear form f on S, us is @-measurable,
then ¢ 1s @-measurable.

Proor. Given a closed ball B in S, let Ez = {(f, r)|f € C and r is a rational
number less than inf f(B)}. According to (5.9), one has {a € A|¢(a) N B = &}
= Uynees {¢ € Ajus(a) < r}. Since Ep is countable and y, is ®@-measurable,
this union belongs to Q.

Let now X be an open set in S. The set X is the union of a sequence {B.}
of closed balls. Moreover, A\e¥(X) = {a € Ale(a) N\ (Uren B:) = &} =
Nren {a € Ale(a) N B, = &}. According to the last paragraph, each set in
this intersection belongs to @. Therefore, so does A\¢*(X), hence also ¢*(X).
By (4.2), ¢ is @-measurable, Q.E.D.

6. Integrable compact-convex-valued correspondences

Henceforth S is a real Banach space.
For two @-simple functions ¢, ¥ from A to £, let
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(19 Ao, ) = [ le(@) = ¥(@)| do(a).

A sequence {p,} of @-simple functions from 4 to £ is said to be A-Cauchy if
App, ¢o) — 0 as p and ¢ — +. A function ¢ from A to £ is said to be integrable
if there is a A-Cauchy sequence of G-simple {¢,} from A to £ (which is said to
determine ¢) converging in measure to ¢. Its integral is [ ¢ dv = limy—w [ o, dv.
According to ([16], lemma 16, p. 111), this limit exists and is independent of
the sequence chosen to determine ¢. For two integrable functions ¢, ¥ from 4
to £, let Ap, ¥) = f |‘P(a) - lﬁ(a)l dv(a).

Actually we will study integrable functions from A to £, and it is essential
to know whether such a function can be determined by a sequence of @-simple
functions from A to £ (rather than from A to £). The answer is given by the
following assertion.

(6.1) If ¢ is an integrable function from A to £, then there is a sequence {p,}
of @-simple functions from A to £ determining ¢.

Proor. Since ¢ is integrable, there is a sequence {,} of @-simple functions
from A to £ determining ¢. According to ([16], corollary 3, p. 145), there is a
subsequence {Y;} of {¥,} converging v-uniformly to ¢. Thus for every p, there
is E, € G contained in E,_; such that »(E,) < 1/pand {¢»} converges uniformly
to ¢ on A\E,. Hence, there is ¢, such that

) le(a) — ¥i(a)| <% on A\E,

Consider a set F of the finite partition of A\E, associated with y;,, denoting
the value of ¥, in F by X,r, which is a point of £ whose distance to the cone £
is, according to (i), smaller than 1/p. Select a point Y,r in £ such that
.. , 1
(i1) |Xpr — Yor| < »

Now define ¢, as the function from A to £ that, on each set ¥ of the finite
partition of A\E,, takes the value Y,r and, on E,, takes the value 8. We will
prove that the sequence {¢,} of @-simple functions from A to £ determines ¢,

Because of (i) and (ii), for every p, one has

(i) lo(@) — ¢2la)] <§ on A\E,.

Therefore, {¢,} converges to ¢ v-uniformly, hence also in measure. Therc
remains to prove that {¢,} is A-Cauchy. Assume that p < ¢. Then

(15)  Alen 0g) = [ | les(@) — ()| dv(a) = f s, [92(0) — eu(a)] dv(a)
+ E\E, lep(a) — @q(a)| dv(a) + /&‘ lep(@) — eq(@)| dv(a).

On A\E,, by (iii), les(a) — ¢y(a)| < 4/p; hence,
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(iv) L " lea(a) — ¢g(a)] dv(a) < %V(A)-

On E\E,, ¢p(a) = 6; therefore, lﬂpp(a) - ?’q(a)l = l‘Pq(a)l < ]‘P(a)l + I‘Pq(a) -
¢(a)| < le(a)| + 2/¢, hence

) /E . Jen(@ = eu(@)| dv(a) < ﬁ . Je(@) dv(a) + j v(4).
On E,, ¢,(a) = ¢4(a) = 6; hence,
(vi) [ len(@ — (@) dv(@) = .

From (iv), (v), and (vi),

(vl Alom 92 < 1) + 20(4) + f lo(a)] dv(a).
Y4 q Ep\E,

When p and ¢ — 4, »(E,\E,), which is less than 1/p, converges to zero.
Therefore, according to ([16], theorem 20.b, p. 114), the last term in (vii) con-
verges to zero. Consequently, so does A(p,, ¢,), Q.E.D.

The next result introduces an important convexity inequality:

(6.2) if ¢, ¥ are integrable functions from A to £, determined by the sequences
{eo}, {¥o} of @-simple functions from A to £, then the function p[¢(a), ¥ (a)]
is integrable and determined by the sequence {p[e,(a), ¥o(a)]} and

olf o dv, [ ¥ dv] < [ ple(a), ¥(a)] dv(a).
Proor. According to (2.3), for every a € A4,

16)  lo[e(a), ¥(@)] — ples(a), ¥2(a)]] < 8[e(a), ¢x(a)] + 8[¥(a), ¥»(a)].

Therefore, given ¢ > 0, {a € 4| |o[¢(a), ¥(a)] — ple,(a), ¥»(a)]| > € is con-
tained in the union of {a € A[8[¢(a), ¢5(a)] > ¢/2}, and {a € A[5[¥(a), ¥»(a)] >
¢/2}. This inclusion relation establishes that p[¢,(a), ¥»(a)] converges in measure
to p[e(a), ¥(a)]. Moreover,

A7) [ loles(@), ¥5@)] = plea(@), ¥4(@)]| dv(@) < Algr 0) + AW ¥,

which establishes that {p[¢,(a), ¢,(a)]} is A-Cauchy.
According to (5.3), for every p,

(18) o[ eran [wodv] < [ olen(@, ¥a@] dr(@).
When p — +, the left-hand side converges to p[f ¢ dv, [ ¥ dv] by continuity
of p, Q.E.D.

It is now possible to obtain exiensions of the Lebesgue dominated convergence
theorem to the case of correspondences.

(6.3) Let ¢ be an integrable function from A to £ and {p,} be a sequence of
integrable functions from A to £ such that ple,(a), ¢(a)] — 0 (resp.
ple(a), ¢p(a)] — 0) almost everywhere. If there is an integrable real-
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valued function f on A such that, for every p, plex(a), 8] < f(a). (resp.
0[6, vx(a)] < f(a)) almost everywhere, then p[[ ¢, dv, [ ¢ dv] — O (resp.

plf ¢ dv, [ ¢pdv] —0).

Proor. According to (6.2), for every p, the functions p[e,(a), ¢(a)] and
ple(a), ¢p(a)] are integrable. By the Lebesgue dominated convergence theorem
([16], p. 151), [ ples(a), ¢(a)] dv(a) — O (resp. [ p[e(a), ¢5(a)] dv(a) — 0). An
application of the convexity inequality of (6.2) completes the proof.

As an immediate corollary of (6.3) we have the following proposition.

(6.4) Let T be a metric space and let Y be a function from A X T to £ that is inte-
grable in a for every x € T. If for almost every a, ¥ is an upper semicontin-
uous (resp. lower semicontinuous) correspondence from T to S at a certain
point xo of T and there is an integrable real-valued function f on A such
that, for every x € T, one has p[Y¥(a, z), 8] < f(a) (resp. p[6, ¥(a, r)] <
f(a)) almost everywhere, then the correspondence [ y(a, x) dv(a) from T
to S is upper semicontinuous (resp. lower semicontinuous) at xo.

Proor. Let {z,} be a sequence of points of 7' converging to x,. It suffices
to let ¢(a) = ¥(a, xo) and ¢,(a) = ¥(a, z,) to obtain the situation described by
(6.3), Q.E.D.

Another concept of integral for a correspondence ¢ from 4 to S has been
used by all the authors mentioned in the introduction who have treated this
subject, with the exception of G. B. Price [34]; namely [odv = {z € 8|z =
[ f dv for some integrable function f from 4 to S such that f(a) € ¢(a) for

every a € A}.
We will first prove that for an integrable function from A to £, this new
concept does not differ from the concept introduced at the beginning of section 6.

(6.5) If ¢ is an integrable function from A fo £, then f 0 odv = / @ dv.

Proor. (1) Let z be an arbitrary point of f° ¢ dv. There is an integrable
function f from A to S such that f(a) € ¢(a) for every a and z = [ fdv. For
every a, one has p[f(a), ¢(a)] = 0. Therefore, by (6.2), p[[fdy, [ ¢dv] <
[ olf(a), ¢(a)] dv(a) = 0. Hence, z € [ ¢ dv. Thus we have proved that

(19) f°¢dyc/¢du.

(2) Conversely, let z be an arbitrary point of [ ¢ dv. There is a sequence {¢,}
of @-simple functions from A to £ determining ¢. When p — 4o, [ ¢, dv —
[ ¢ dv. Therefore, for every p, there is 2, in [ ¢, dv such that z, — z. In other
words, for every p, there is an ®@-simple function f, from A to S such that
f2(a) € pp(a) for every a and z, = [ f, dv. It will now be proved that

(1) in In(4, @, », S) the set {f,} is weakly sequentially conditionally compact.

(2.a) Since |p,(a)| = 3[6, vp(a)], fo(a) € pp(a) implies |fp(a)] < |ps(a)l-
Hence [ |f,(a)] dv(a) < [ |¢»(a)| dv(a). According to ([16], lemma 18, p. 113), the
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sequence {|¢,(+)|} determines |¢(-)|. Therefore, when p — +«, [ |¢,(a)| dv(a) —
[ le(a)| dv(a). Consequently,

(it) the numbers / |fo(@)| dv(a) form a bounded set.

(2.b) For every p and every sel £ € @, the point [, f, dv belongs to [, ¢, dv.
Hence, | [ fo dv| < | [z ep d¥| < [ les(a)| dv(a). According to the last assertion
of ([16], lemma 18, p. 113), [, le,(a) — ¢(a)| dv(a) — 0. Thus by ([16], theorem
6 (ii), p. 122), lim,&—o fp lep(a)] dv(a) = 0 uniformly in p. Therefore,

(ii1) lim | f,dv =0 uniformly in p.
v(E)—>0 JE

Because of the second assertion of ([16], corollary 11, p. 294, (ii) and (iii)
establish (i).

Now (i) implies that there is a subsequence {f;} of {f,} such that {f,} con-
verges weakly to an integrable function f from A to S. Since the integral of a
function depends linearly and continuously on that function, f WSrdv— [ f dv.
Consequently, z = [, f dv.

The symbol {¢,} will denote the subsequence of {¢,} corresponding to the
subsequence {f,!. Let e be an arbitrary positive real number. Choose ¢ such
that, for every p > ¢, [ |¢ey(a) — ¢(a)| dv(a) < e According to ([16], corollary
14, p. 422), there is a convex combination g of the f, (withp > ¢), ¢ = Xit1 aifj

where /.1 a; = 1, and foreveryi =1, - -+ , m, a; > 0, j; > ¢ such that
(iv) [ 9@ = j@)| dvla) <

For every a € A, ¢(a) is convex; hence, by (5.3),
v) rlg(a), ¢(a)] < ; aiplfi(a), ¢(@)].

On the other hand, for every a and every p, fila) € ¢y(a); hence,
o[fr(@), ¢(@)] < ples(a), ¢(a)]. Therefore, for every p > ¢, | pfi(a), ¢(a)] dv(a) <
I plen(a), e(@)] dv(a) < [ 8[en(a), ¢(a)] dv(a) < e Consequently, by (v),

(20) [ #lo(@), e(@] dvla) < e

However, (iv) states that

@1) [ plf@, g(@} dv(a) < e.

Combining the last {wo inequalities and using (2.2), one obtains
(22) [ eli@), e(@] dv(@) < 2e.

Since this holds for every ¢ > 0,

(23) [ eli@, ¢(@] dv(a) = 0.
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Therefore, p[f(a), ¢(a)] = 0 almost everywhere; hence, f(a) € ¢(a) almost
everywhere.

In summary, given an arbitrary point z in [ ¢ dv, there is an integrable func-
tion f from A to S such that z = [ fdv and f(a) € ¢(a) for every a outside a
null set Ao. Let fo be a function that coincides with f on A\A4, and such that
fola) € o(a) for every a € A. Since f, is integrable and z = [ f, dv, we have
proved that

(24) f edv C fo o dv, Q.E.D.

7. Integrable compact-valued correspondences

Henceforth 8 is a finite-dimensional normed real vector space.

Let ¢ be an @-measurable compact-valued correspondence from A to 8. We
wish to define and to study the integral of ¢. According to (3.3), A can be par-
titioned into an atomless part A, and a countable family of atoms {4,, 4z, ---}.
It is therefore sufficient to define the integral of ¢ over each 4, Z = 0,1, ---)
and then to define the integral of ¢ over A as the sum of the countable family
of subsets of S so obtained. The definition of f 4; ¢ dv for ¢ > 0 is immediate,
for, by (4.1), there is an atom A; contained in 4; and on which ¢ is constant.
Let X; be the nonempty, compact subset of S that is the value of ¢ on Al
Since A\A} is null, [4, ¢ dv = »(4,)X; necessarily.

The integration-theoretic difficulties of the study of [, ¢ dv are therefore those
of the study of on ¢ dv, the integral of ¢ over the atomless part of A. For this
reason we will assume from now on that » is atomless.

We first prove a generalization due to H. Richter [36] of a result established
by D. Blackwell [7], [8] for the case of a constant correspondence.

(7.1) If v is atomless and ¢ is a correspondence from A to S, then fo e dv s
convex.

ProoF. Let 2y, 2 be two points of [© ¢ dv. There are two integrable functions
f1, f2 from A to S such that z, = [ fidv, 22 = [ f2 dv and, for every a € A4, fi(a)
and fa(a) belong to ¢(a). Consider the measure p with values in S X S defined
on @ by u(E) = ([gfidv, [z f: dv) for each E € Q.

The measure p is easily seen to be atomless. Suppose that E is an atom for u.
Then u(E) £ 0 implies »(E) > 0. By (3.2) applied to », E can be partitioned
into E, and Ej belonging to @ such that »(E,) = v(E1) = (1/2)»(E) and p(E)) =
uw(E), u(E}) = 0. Repeating this construction one obtains a sequence {E,} with
the property that for every p, E, € @, Eppyn C E,, »(Ep) = (1/27)v(E), and
w(Ep) = u(E). Let F = Nj-1E, Then »(F) =0 and u(F) = u(E) #0, a
contradiction.,

Observe now that p(F) = (0,0) and u(A) = (21, 22). Applying Lyapunov’s
theorem (3.2) to p, one establishes that for any real number a € [0, 1], there is
E € @ such that u(E) = (az;, az). Therefore, u(A\E) = [(1 — a)z1, (1 — a)2].
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Define the function f as coinciding with f; on E and with fo on A\E. Since
[fdv = azi + (1 — &)z, the point az; + (1 — a)2; belongs to fo o dv, QE.D.

Let ¢ be a compact-valued correspondence from A to S. We denote by ¢ the
correspondence taking for its value ¢(a), the convex hull of ¢(a), for each a € A.
Since S is finite-dimensional, according to a classical result (see, for example,
[20], theorem 10, p. 22), ¢(a) is a compact, convex subset of S. Therefore, ¢
can be considered as a function from 4 to £. Our last proposition asserts that
if v is atomless and ¢ is integrable, then fo ¢ dv coincides with f ¢ dv, which 1s
already known by (6.5) to coincide with [® ¢ dv. It is therefore legitimate to
introduce the following definitions.

In the case of a finite-dimensional S and of an atomless v, a compact-valued
correspondence ¢ from A to S is said to be integrable if ¢ is integrable and its integral
18 then defined by [ o dv = [ ¢ dv.

(7.2) Let ¢ be a compact-valued correspondence from A to S. If v is atomless
and ¢ is integrable, then fo edyv = f @ dv.

Proor. Tirst, [°¢dv C [°¢dv = [ ¢ dv. The inclusion is obvious since, for
every a € A, ¢(a) C ¢(a). The equality is the assertion of (6.5). Thus

(25) /0 ¢ dv C / @ dv.

Conversely, let z be a point in the boundary of [ ¢ dv. It will be shown that
z belongs to fO ¢ dv. Since by (7.1) the latter set is convex, this will establish
that [ ¢dv C [* ¢ d.

The proof is by induction on the dimension of the space S, the theorem being
{rivially true if the dimension of S is zero.

The relation z € [ ¢ dv implies by (6.5) that there is an integrable function f
from A to S such that z = [ f dv, and, for every a € 4, f(a) € ¢(a).

Now [ ¢ dv is convex. Therefore, if the dimension of S is not zero, there is a
linear form g on S, not vanishing everywhere, such that

(i) g(z) = max g(y).
vE [ edv
Let y(a) = {r € ¢(a)lg(x) = max,e, @ 9(y)}. Consequently,
(26) ¥(a) = {x € ¢(a)lg(x) = max g(y)}.
yE¢(a)

Applying (4.5) to the @*-measurable compact-valued correspondence ¢ from
A to S and to the real-valued function g which is continuous on S and independ-
ent of @, one establishes that the correspondence i is @*-measurable on A. More-
over, ¥(a) C ¢(a) implies |[§(a)| < |¢(a)| for the norm in £. Therefore, according
to ([16], theorem 22.b, p. 117), ¥ is integrable.

By a new application of (6.5), one obtains [°¢ dv = [ ¢ dv. Since the latter
sct, hence the former, is not emply, there is an integrable function /" from 4 to S
such that f’(a) € ¢(a) for every a € A. By ([16], theorem 19.¢, p. 113), ¢(f(a))
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and ¢(f'(a)) are integrable, [ ¢(f(a)) dv(a) = g(J fdv), and [ ¢(/'(a)) dv(a) =
g([ ' dv). On the other hand,

(i1) 9(f(@)) < g(f'(a))  forecvery a €A,

whereas by (i),

(iif) o([ra)>o([ra)

because [fdv =z and [f" dv belongs to [Pedv = [ ¢ dv. Inequalities (ii)
and (iii) together establish that g(f(a)) = ¢(f'(a)) almost everywhere, that is
(37) fla) € y(a) almost everywhere.

Consider now {(a) = ¢(a) — {f(a)}. According to ([16], theorem 19.a, p. 113),
f(a) = §(a) — {f(a)} is integrable. I'urthermore, for almost every a, x € {(a)
implies g(x) = 0, while 0 € ¢(a) almost everywhere. The latter relation implies
(iv) 0 [ ¢av= [¢an

Let H be the hyperplane {z € S|g(2) = 0}. For almost every a, ¢(a) C II.
Thus, by the induction hypothesis, [*¢dv = [¢dv. By (iv), 0 € [°¢dn.
Therefore, there is an integrable function k from A to S such that [ A dv = 0 and,
for every a € A, h(a) € {(a).

However, h(a) € ¢(a) means that f(a) + h(a) € ¢(a). In conclusion, f + A
is integrable, for every a € A one has [f(a) + h(a)] € ¢(a),and [ (f + h) dv = 2.
Consequently, z € [*¢ dv C [® ¢ dv, Q.E.D.
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