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1. Introduction

The traditional economic concept of a set of agents, each of which cannot
influence the outcome of their collective activity but certain coalitions of which
can influence that outcome, has recently received its proper mathematical for-
mulation by means of measure theory. After J. W. Milnor and L. S. Shapley [32]
had considered in 1961 a game with a measure space of players (see also [39],
[41], [40], [13], [33]), in an article [2] published in 1964, R. J. Aumann showed
how two basic concepts for an economy, namely the set of competitive alloca-
tions and the core, coincide when the set of consumers is an atomless positive
finite measure space. Another solution of this equivalence problem based on
Lyapunov's theorem [28] was then given by K. Vind [42]. In the light of this
result, measure theory indeed appears as the ilatural context in which to study
economic competition. (The concept of a continuum of agents has also been
used in economic theory for different purposes by R. G. D. Allen and A. L.
Bowley ([1], pp. 140-141) and H. S. Houthakker [23].)
Now, given a finite set A of agents and a real Banach space S (the commodity

space), a standard operation in the analysis of economic equilibrium consists
of associating with every element a of A a nonempty subset sp(a) of S, that is,
of defining a correspondence so from A to S in Bourbaki's [9] terminology, and
of taking the sum EaeA (p(a) = {z E SIz = F2aGA f(a) for some function f
from A to S such that, for every a E A, f(a) G <(a)}.

In the new measure-theoretic context, the set A of agents is an arbitrary set;
the set a of coalitions if a a-field of subsets of A; a countably additive non-
negative real-valued function v is defined on a with the interpretation that, for
a coalition E e a, v(E) is the fraction of the totality of agents contained in E.
In this context the sum F2aeA (p(a) must be replaced by the integral fA sp dv of
the correspondence so. Thus it becomes necessary to define this integral and to
study its properties, in order to be able to reformulate the theory of economic
equilibrium. In [3], Aumann has made to this problem a fundamental con-
tribution which this article proposes to extend in several directions. The first
extension aims at replacing his assumption that the set of agents is an analytic
set by the assumption that it is a measurable space. From the viewpoint of eco-
nomic interpretation, this generalization is important, for the identification of
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econlomic agenlts with poinits of ani analytic set seeiims artificial, unilike the assmip-
tions that every countable unioin of coalitionis is a coalition and that the comple-
ment of every coalition is a coalition. The second extension consists of introducing
three criteria for the measlurability of a correspondenice in addition to the cri-
terion used by Aumnann, the four criteria beiing essentially equivalent. Since in
the various situations encounitered in the theory of integration of correspondences
one of these criteria is often far easier to apply than the others, this four-fold
diversity is of great conveniience. 'I'he tlhird extensioni attempts to relax the as-
sumption of finite dimensionality of the space S.

Aside from these extenisionis, this work differs from Aumannii's in its approaclh
which treats the theor.y of initegrationi of correspondences as a particular case
of the theory of integratlion of ftuncetionis. The reasons that make such a treatmelnt
possible can be outlinied here.
Assume that for every a E A, p(a) is compact and convex. The corresponldenice

so from A to S can be coiisidered as a function from A to the set £ of nonempty,
compact, convex subsets of S. As Price [34] (a reference for which I thank L. Le
Cam) has remarked, the properties of the set £ endowed with the Hausdorff
metric are such that the thcory of integrationi of fuinctionis from A to a real
Banach space can easily be transposed into a tlheory of integrationi of ftunietions
from A to 2. Act tally, oine can go further and, followiing RAdstrdm [35], embed
£ in a real Banach space Z. The transposition theni becomes unniiecessary.
The preceding prograin requires the set (p(a) to be compact and convex lor

every a e A. However, if the space S is finite-dimenlsionial, the convexity assunmp-
tion is inessenitial, anid a theoly of integratioln of compact-valued correspondences
is actually obtained. (iven the needs of the anialysis of economic equilibrium
for which the present theory of integration of correspondences is developed, the
two restrictions of finiite-dimenisioniality of S aiid of comnl)actness of so(a) for
every a e A do niot seem to be severe.

This article is organized in the followzinig mnaimmer. Iii section 2, S is assumedl
to be an arbitrary metric space; the Hausdorff distanice on the family of noni-
empty subsets of S is studied. Sectioni 3 reviewvs certaiin generalities about meas-
ure theory ranginig from the universally knowni (in which case our purpose is to
dispel ambiguities in terminology and notation) to the almost unknown. Section 4
is devoted to the question of measurability of compact-valued correspondences
from A to S; among its main results are propositions establishing conniectionis
betweeni three of the mcasurability criteria for correspondences mentioned
earlier, anid a measurability theoremn of central importance for equilibrium anal-
ysis. Il section 5, S is restricted to be a normed real vector space; the family £
of its noneni)ty, compact, convex subsets endowed with the Hausdorff metric
and with the operations of addition of two elemenits anid of multiplication of ani
element by a nonniiegative real number is theni embedded in a real Banach space
2; the fourth measurability ciiteniomi for correspondences, specially designed for
convex-compact-valued correspondences, is discussed. Section 6 further restricts
S to be a real B3aniach space; it is concerned with the problem of initegratinig
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convex-comnpact-valued correspondences from A to S. Sectioni 7 puts the final
restrict ion of finite-dimensionality onl S and studies the integration of compact-
valued corresponidences from A to S.

Extensive work has been donie it) statistics by Blackwell [7], [8], Chernioff [12],
Dvoretzky, Wald, Wolfowitz [17], [18], [19], Karlin [24], Kudo [25], anid
Richter [36], [37] (I owe these two references to K. Vinld) oln mathenmatical
problems closely related to those with wvhich this article deals. With the excep-
tion of the referetices miiade below to certain poinits of these conitributionis, nlo
atteml)t will be mnade to conmpare ini detail the mathemiiatical results that were
obtainied in the two lines of developmnent, the statistical one aind the economic
onie. It miiay be nioted that amiionig the propositions re(luired by the ecolnomic
theory appear genieralizationis of several results of the statistical theory.

This paper replresents a laying up) of miianiy stranids, as the bibliography alonle
inidicates, anid it could nlot have achieved its lpresellt formn without the conversa-
tions I had with econoomists, mathematicians, anid statisticians over the last
year, anid particularly, with It. J. Aumnanni, S. Kakutani, R. Radner and K.
Vind durinig the summer of 1964. I also wish to ackniowvledge certain specific
debts of this article to Aumnannii [3]. Several of the argumients below that ap)peal
to his criterioni for the mleasural)ility of a correspondenice, niamely the meas-
urability of its graph, have been suggested by [3] or by himself. Onl the other
hanid, tlie proofs of l)rop)ositiolls (6.5) anid (7.2) use ideas of the proofs of the
corresl)on(ling l)ropositions in [3].

2. Hausdorff distance

Throughout this articl(, S detiotes a fixed sct with a metric s and 3x deoltcs the
fatily of the nonemnpty, cotmlpalct subsets of S, a(d S deflnotes the Borel a-field of S,
that is, the a-field genterate(l b1y the open, suibsets of S.
The term-iniology aiid the inotatioin of N. Dtinford anid J. T. Schwartz [16]

will be followed as closely as possible.
ltor two noiiempty subsets X anid ) of S anid a point x of S , we define

(1) p(x, 2) = ilnf s(x', y), p(X, Y) = sul) p(x, Y).
yeY XEX

The niumber p(X, )) is called the Hauisdlorff sepnidistance [22] of X anid }.
It enljoys hlie followvinig tIvo p)roperties (V denotes the closure of 2)

(2.1) p(X, ))= XxCY;
(2.2) p(X, Z) < p(X, Y) + p(Y, Z).
Tue Hlausdorf dlistanice of X aiid Y is dcfinied by

(2) 6(X, )) = miiax {p(X, Y), p(Y, X)').
It satisfies
(2.1') a(X, Y) = O X= Y
(2.2') 6(X, Z) < 5(Y, )) 6(r', Z).
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Therefore, a is a metric on X which is henceforth endowed with the corresponding
metric space structure.
The continuity of p is established by the inequality

(2.3) IP(X, Y) - p(X', ,")I < 6(X, X') + 6(Y, l').
PROOF. According to (2.2),

(3) p(X, Y) < p(X, X') + p(X', l') + p(Y', Y).
Therefore,

(4) p(X, Y) - p(X', Y") < p(X, X') + p(Y', Y))< (X, X') + 6(Y, Y').
Similarly for p(X', "') - p(X, Y), Q.E.D.
The next three results assert that the properties of completeniess, comp)actness,

and separability carry over from S to X ((2.6) is a particular case of proposition
4.5.1 of E. Michael [31]).
(2.4) If S is complete, then XC is complete.
PROOF. Let {Xp' be a Cauchy sequence of elemenits of x. There is a iloi-

empty, closed subset X of S such that 6(X, X,) -O 0 (for example, [27], pp.
314-315). We have to check that X is compact.
To this end it suffices to prove that X is totally bounded. Therefore let e- be

a strictly p)ositive real number. For some p, one has 6(X, X,) < e/2. Siiiec X,
is compact, it can be covered with a finite family of open balls with radius e/2.
The finite family of open balls with the same centers and radius E covers X,
Q.E.D.
(2.5) If S is compact, thent S is compact.
This is a result of Hausdorff ([22], l). 172, proposition V1I).

(2.6) If S is separable, then there is a counstable family i of finite subsets oJf S
dense in K.

>llOOF. I,et -lx) be a couiitable dense subset of S and let 9 be the family
of the nonempty finite subsets of {x 4-. Clearly, 9 is countable, and we n0ow
prove that, given X in 3C and E > 0, there is Y in i such that 6(X, lY) < E.

Consider the open balls in S with centers iII {xflx-, radius e and whose intersec-
tion with X is not empty. They form a coverinig of the compact set X. Take a
finite subcovering and let l' be the set of the centers of the open balls in that
subcovering. The set l' belonigs to i.

Given y E Y, the open ball with center y, radius e has a nonemnpty intersectioM
with X. Therefore p(y, X) < e, and hence p(l', X) < e.
Given x e X, there is y c Y such that x belongs to the o)pen ball with cenlter y,

radius E. Therefore p(x, Y) < e; hence p(X, Y) < e, Q.E.D.

3. Concepts and results of measure theory
Let .1I be a set, z be a a-field of subsets of 31, 7' be a metric space, anid 3

be the a-field generated by the ope1n sets of Y'. A function f from M1 to Y' is sai(I
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to be measurable with respect to M or to be W-measurable, if, for every E E 3,
the inverse image fPI(E) of E by f belongs to M.

Let M be a set, Mz be a ar-field of subsets of M, and F be a set. A function f
from M to F is said to be M-simple if there is a finite partition of M into sets
belonging to on such that f is constant in each set of the partition.

Since [16] will be used as a standard reference, it must be pointed out that
these two definitions differ slightly from those of Dunford and Schwartz.
For the statement and the proof of the next result we need the following

notations:
given a subset X of S,XS= {Y E 3QIY C X} andXw = {y e CIY n x o0};
& is the c-field generated by the open sets of SC;
Es is the a-field generated by the sets X8 where X is open in S;
8W is the a-field generated by the sets Xw where X is open in S;
E\F denotes the set of elements belonging to E but not to F.
According to an unpublished theorem of Dubins and Ornstein,

(3.1) 88 C 8 and 8w C 8. If S is separable, then 88 = W = &.

PROOF (Dubins and Ornstein). We first establish that if X is open in S,
then XI and Xw are open in X.
To see that Xs is open in 3C, consider an arbitrary element Y of X8, namely,

Y e 3C and Y C X. Thus Y n (s\x) = 0. Exclude the trivial case X = S;
since S\X is closed, every point of Y is at a strictly positive distance from S\X
and the number e = minYEy P(y, S\X) is strictly positive. Every Z e 3C for
which 5(Z, Y) < e satisfies Z n (s\X) = 0, hence Z e X,.
To see that Xw is open in 3C, consider an arbitrary element Y of Xw, that is,

Y e 3C and Y n X $! 0. Select a point x E Y n X. There is in S an open
ball with center x, radius e > 0 that is contained in X. Every Z E 3c for which
6(Y, Z) < E intersects that ball, hence Z nf X # 0 and Z e Xw.
Thus for every X open in S, one has X8 E 8 and Xw E 8. Consequently,

(i) 88C & and C E.
Having established the first assertion, we now assume that S is separable.

Given a nonempty subset X of S and E > 0, we denote by (X; E) the open set
{x E Slp(x, X) < f} and by [X, e] the closed set {x E Slp(x, X) < e}.

If Y belongs to X, then

(5) Y C (X; e) X p(Y, X) < E and Y C [X; f] X p(Y, X) < E.

Given X E 3e and E > 0, we introduce the further notation

(6) (X; E)w = {Y E XclX C (Y; e)} = {Y e X|jp(X, Y) < el,
[X; e] = {Y E 3Clx C [Y;e]} = {Y E5 Ip(X, Y) <.}.

We will also need the remark that
(ii) for every subset X of S, WC\XO = (S\X)w and 3C\Xw = (S\X)8.
PROOF OF (ii). The following relations hold:
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7) z\x =3X=Y e j X} =x Y c x 1Y n (S\X) # 0, = (S\X)-,
(7)C\Xtv =

, exY n X = = ()V exiCY C (S\X)} (S\X),

Q.E.D.
The space S is sep)aral)le; therefore, accor-dinig to (2.6), X is separable. Coii-

se(iueiltly, the openiballs of X geierate 1lhe o-field F,. However, in X, the open
ball with ceiiter X, raditis e is

(8) {1Y 5Cp(X,Y) < E anid p(1, X) <K) = (X; e),, n (X; e)'.
Thus, in order to coml)lete the proof of the theorem, it suffices to establisl

(iii) (X; E),, G8C, (X; e)ea G&', (Y; E),, e £", (X; E) C U",
for this implies that every open ball in 3C belonigs to 8U a(ld to Vl, which implies
ini turni

(iv) g CU;8 ad g) Cg'
The proof of (iii) consists of the series of assertioiis (v)-(x):

(v) (X; f) C F,

because (X; E) is ol)en;

(vi) [X; (] C F"

because, by (ii), W\[X; = (S\[X; E])t aIl(l [X; e] is closed;

(vii) [E; E]W C U.s

becauise, by (ii), X\[X; E] = (S\[X; E])' and [X; E] is closed;

(viii) [K; e]" C £"
because if fE,} is a strictly decreasinig se(uence converginig t,o E, olne has [X; E]
o1 C xi ln [x; E] $d 0, = {1Y C xlthere is y C Y such that p(y, X) < e.
13y an immediate comipactness argument on Y, the last set is seen to equal
{' C 3CIfor every p, there is y C Y such that p(y, X) < ep} which, in turn,
e(quals nl{Y C xlthere is y e Y such that p(y, X) < ep = n(X; e,)1". How-
ever, every (X; ep) is open. Therefore, every (X; ep)u belongs to F"11 and so does
their countable intersection. The followiing assertion also holds:

(ix) [K; e],v e £ and [X; E],, C U";.

To prove (ix), conisider a counitable denise subset '.xrp of X. (Given a noinempty
sub)set Y of S, one has [p(r, 1 ) < E for every x C X] [p(x., Y) < e for
every p].

Therefore, [X; E],,, = ( C 3CIp(X, 1) < e = eYC 3dfor every p, p(xp, 1Y)
< e) = flp{Y C XIp(x., Y) < E) = np[Xp; e However, [xp; e],. = [Xp; e]"
Nhieih belongs to F,U by (vii) and to U" bI)y (viii).

(x) IJ {e } is a strictly increasinig seqiience convergiing to e, then (X; e)' =
U,[X; EP]s and (K; e)),v = U p[X; E,,],e

becaus(e (X; e), = -Y e xjp(Y, X) < e) = {IGC for some p, p()l, X) < eE,2 =
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UP{,Y) E JCIp(Y, X) :P = UP[X; ,], and (X; ) {= JCLP(X, Y) < e
{Y X 3CIfor some p, p(X, Y) < e} UpY E CIp(X, Y)) <P} - U[X; fp]"t-
The assertions (x) and (vi) establish that (X; E)a e 8W; (X) aind (ix) establish

that (X; E), E 8; and (X; e)1, 8e ; (v) asserts that (X; fE), F", Q.E.D.
Let M be a set, Z be a a-field of subsets of M, and L be a finite-dimenisional

topological real vector space. A measure A defined on M with values in L is a
funiction frorm MI to L such that, for every sequeiice {En} of pairwise disjoinit
elemiients of Y, one has E_n= I M(En) = s(Un = I En). Again this differs slightly
from the terminology of [16].
A set E in JI is an atom for the measure jA if AL(E) $ 0 anid [F E 'M, F C E]

[,u(F) = 0 or ,I(E\F) = 0]. The following theorem is due to Lyapunov [28], [29]
(see also [21] and [15]).
(3.2) Y'he range of MA is compact. If A has no atom, thent its range is also conivex.

Note: in the remainder of this section the values of ju are assumed to be real anid
nonnegative.

We have the result (see, for instaince [6]) that

(3.3) 211 can be partitioned into a countable family of atoms and an atomless part.

(The set of atoms and/or the atomless l)art may be em)pty).
A subset E of M is said to be null if there is F G f such that ju(F) = 0 and

E C F. An assertion about the elements of 31 is said to be true almost everywhere,
or for almost every element of M, if it is true except for the elements of a null
set. The Lebesgue extension of ' is the family M* of the sets of the form E U F
where F belongs to 1 and F is a null subset of M.

Given n sets Ml, * * , Al, and for every j = 1, * * *, n a family R,)j of subsets
of .1j, we denote by M1 X .*. X M, the family of the subsets of MI1 X .*. X M,,
of the form El X ... X E,, where E%j E 9j for every j = 1, - * *, n. This is still
another slight departure from the notationi of [16]. Given a set Al and a family
IZ of subsets of M, we denote by 6(9T) the u-field generated by MIZ. Fiiially,
we denote the projection on M of a subset E of M X S by projm E. The last
result of this section is a generalization by D. A. Freedman of a lemma of 1).
13ierlein [5]. The proof that we give is due to D. A. Freedman and J. Neveu.

(:3.4) If S is complete and(I separable, then E e M((* X 8) iimplics
proj,1 E e )R*.

PRtoo0F. (1) Assume first that S is compact. Then S is the a-field generated
by the compact subsets of S. According to the theorem of E. MIarczewski aIlil
C. Ryll-Nardzewski [30], if E belongs to the Suslin class genierated by 'M* X 8,
then projM E belongs to the Suslin class generated by OV. However, this class
coincides with M* by a classic result (for example, [38], chapter 2, section 5).
Therefore there only remains to prove that (B(M* X 8) is contained in the Suslin
class generated by M* X S. This fact is established in lemma 2.a of [5] for the
case in wlich S is the real line. It can be established for tihe presellt case of a
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compact S by the trivial substitution of the family of compact subsets of S for
the family .4 of compact real intervals in Bierlein's proof.

(2) Consider now the case of a complete, separable S. Let H be the Hilbert
cube and let 3C be its Borel ar-field. By ([27], p. 119), the space S is homeomorphic
to a subspace S' of H. Let 3' be the Borel a-field of S'. By ([27], p. 337), S' is a
countable intersection of open sets of H, and hence belongs to 3C. Thus S' C 3C,
and consequently, E' e M(!3(* X 8') implies E' e M(M* X SC). Finally, since H
is compact (for instance, [27], p. 91), E' E G(Omn* X 3C) imples projm E' E o*
by (1), Q.E.D.

4. Measurable compact-valued correspondences
Throughout this article, A denotes a given set endowed with a c-field (a of subsets

and a nonnegative real measure v on (X.
Given two sets E and F, a correspondence so from E to F associates with every

element x of E a nonempty subset (p(x) of F. Its graph is

(9) G((p) = {(x, y) E E X Fly e (p(x)}.
The correspondence so can alternatively be considered as a function from E

to the set of nonempty subsets of F. The ability to study so from either point
of view is very valuable and will often be called upon. But one must guard
against the confusion that would arise if at any time the point of view from
which s is considered were not explicit. For instance, the graph of the correspond-
ence p from E to F is the subset of E X F defined above, whereas the graph of

thejunctionuo from E to @(F), the set of subsets of F, is a subset of E X @(F),
namely, {(x, Y) e E X Y(F)jY = p(x)}.
The inverse p-1 of the function so is defined as usual: let : be a family of

subsets of F, then

(10) ox(5)= {XEIE|p(x) ei}.
The strong-inverse (po of the correspondence (p is defined as follows: let Y be

a subset of F; then

(11) 98(Y) = {x EEJ(x) C Y}.

The weak-inverse <pw of the correspondence sp is defined as follows: let Y be a
subset of F; then

(12) sw(Y) = {x e Elj(x) n Y s 0}.
Let P be an attribute defined for the subsets of F. The correspondence s

from E to F is said to be P-valued if, for every x e E, V(x) is P.
Let T be a metric space and s be a compact-valued correspondence from T

to S. We follow Kuratowski [26] in saying that the correspondence s is upper
semicontinuous at a point xo of T if, for every sequence {x,} of points of T
converging to xo, p[40(Xn), (o(xo)] converges to zero; so is lower semicontinuous at
xo if xn xo implies p[,p(xo), v(xn)] -* 0; and p is continuous at xo if x -+xo
implies [so(xo), (xn)] -- 0.



INTEGRATION OF CORRESPONDENCES 359

A compact-valued correspondence p from A to S is said to be aX-measurable (resp.
W*-measurable) if the function (p from A to 3C is a-measurable (resp. a*-meas-
urable). Propositions (4.2)-(4.4) will study the relationship between three criteria
for the measurability of the correspondence so, the first one being the definition
of measurability adopted here, and the third one being the generalization of
Aumann's [3] definition of measurability to the present situationi:

(a) for every E c 8, ,p'(E) belongs to a [or to *];
,(b) for every X c 8, f'(X) (:nv(X) belong to a [or to *];
(c) G(p) belongs to (a3( X 8) [or to (B(a* X 8)].
By trivial transpositions of the proofs of classic theorems about funetiolns from

A, endowed with its measure space structure, to a Banach space (see [16],
lemma 9, p. 147, and corollary 13, p. 150) to the present case of functions from
A to a metric space, one can establish that, for a separable S, (a) [so is X*-meas-
urable] is equivalent to (a') [there is a sequence {ppo} of X*-simple functions from A
to XC converging almost everywhere to o] which is equivalent to (a") [there is a
sequence {fpp} of -*-simple functions from A to X converging in measure to *p].
Thus two standard additional measurability criteria are immediately obtained.

This remark permits an easy proof of a result on which we will call in section 7.

(4.1) If S is separable, (p is an a--measurable function from A to 3C and E is
an atom for v, then E contains an atom E' for v on which (p is constant.

PROOF. There are a null set A0o E a and a sequenice {0l, 2, "} of a-simple
functions from A to X converging to p outside of Ao. Choose for sco some constanlt
function from A to W.

Let Eo = E\Ao. Obviously E0 is an atom, sno is constanit on Eo, and {Pn con-
verges to so on Eo. Construct the sequence {E,} inductively as follows. Make
the induction hypothesis (satisfied for q = 0) that Eq is an atom containied in
E, for every p < q, and that pq is constant on E. Consider a finite partition
of E, into a-sets associated with the a-simple function p,+,. One of these sets,
denote it by Eq+i, is an atom; all the others are null. Therefore, the inductive
construction cani be carried out. Let liOXo E' = nq=o Eq. The sets Eq are non-
increasing. For every q, one has v(Eq) = v(E). Hence v(E') = v(E). Thus E'
is an atom. On E' every Sp,n is constant and {fP} converges to s. Therefore, s
is constant on E', Q.E.D.
The next result concerns the connection between criteria (a) and (b).

(4.2) Consider a compact-valued correspondence p from A to S and the following
three assertions:

(a) sp is a--measurable;
(p3) for every X open in S, fo8(X) belongs to a;
(d') for every X open in S, (pcv(X) belongs to a;
> (a) implies (/3) and (d').

If, in addition, S is separable, then the three assertions (a), (e), and (/3')
are equzivalent.



360 FIIY H BERKELEY SYMPOSIUII: DEIBREF1-
PROOF. For any subset X of S, one has so(X) = {fa A*41(a) C X;

10-'(Xa). Moreover, according to (3.1), the cr-field 88 generated by the sets Xs
where X is open in S is contained in 8. Therefore (a) implies (/3) since [X open
in S] implies [Xs E &8(C 8)], whereas wo(X) = V-l(XR).
Assume n1ow that S is separable. According to (3.1), 88 = 8. Therefore (/)

lml)lies (a) since [for every X open in S, ,o(X) e a] is equivalenlt to [for evely
X open in S, pl(X8) E a] which implies [for every ff e 8&(= 8), -1(9) e (t].
The implications relating (a) and (/') are established in a similar manner,

Q.E.D.
The connection between criteria (a) and (c) is dealt with in two separate

propositions.

(4.3) If S is separable and 0 is an a-measurable comnpact-valued correspondlence
from A to S, then G(4.) belongs to (B(a X 8).

PIROOF. Let Y be a countable dense subset of S anid deniote by B(x, r) the
open ball in S with center x e S and positiv-e radius r. Define the sequence {+d'
of correspondences from A to S by 0,,(a) = {x e SI there is y c Y such that
p(y, 0(a)) < (1/n) and s(x, y) < (l/,n), for every a c A. Clearly, for every a,
O(a) = nn= ,O.(a). Hence G(o) = nn(=h G(4t,,). MIoreover, G(4,,) = Uy a e A
p(y, 0(a)) < (1/n)} X {x e Sls(x, y) < (I/n)}- = 0ev+c(B(y, (1/n))) X
B(y, (1/n)). In this last product the first set belongs to R, by (4.2), and the second
set belongs to 8. Since G(O,,) is the IunionI of a cotuntable family of sets belongilng
to a X 8, it belongs to 61((t X 8). So does G(0), Q.1F.I).

(4.4) If S is complete and separable andl zp is a correspondence fromi A to S such
that G(Qp) belongs to f((?t* X S), then for every X c S, ,po(X) and zp"8(X)
belong to a*.

PROOF. We have so (X) = la e A|,o(a) n X # 0, = proj.10 [G(Qp) n (AI x
X)]. Since A X X belongs to (t* X 8, the set G(sP) n (A X X) belongs to
63(a* X 8). By (3.4), sp"(X) belongs to a*. We also have <p8(X) = {a e A Ip(a) C
X} = {a E AIp(a) n (s\=X)= = A\q8'(S\X). Sinice S\X belongs to 8,
ow(S\X) belongs to a*. So does A\p,o(S\X), Q.E.I).
We now prove a theorem that is basic to the theory of economnic equilibrium.

This proposition generalizes some of the results of ([14], section 2.16) and of
([4], lemma 5.6 and end of proof of lemnma 5.10).

(4.5) Given an a-*measurable conipact-vaicded correspondence O from A to S
and a function u fromt G(O) to the real line R, mneasurable with respect to
(B(a* X 8) and upper semicontillous on7 0(a) for every a e A, let v(a) =
maxxe<(a) u(a, x) andm (a) = {x e O(a) Iu(a, x) = v(a)'. If S is complete
and separable then the function v fromii A to R? anid the function ,6 front .

to 3C are a-*neasurable.

PROOF. According to (4.3), G(0) belongs to (c(ia* X 8). Let c be a real nuimiber.
The set {a E A tv(a) _ c'- is the projection on A of the set .(a, x) C G(0)Iu(a, x) _
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c) which belongs to W(a * X S). By (3.4), {a e A lv(a) > c} belongs to *. There-
fore v is *-measurable.
The graph G(#) of the correspondence it from A to S is the set {(a, x) E

G(4)lu(a, x) = v(a)}, which belongs to G3(a* X 8). By (4.4) and (4.2), 4, is
V*-measurable, Q.E.D.

5. Embedding operations

Henceforth, S is a normed real vector space. The norm of an element x of S is
denoted by lx| and 0 denotes the origin of S. Also 0 denotes the one-element set {O}
and £ denotes the family of the nonempty, compact, convex subsets of S.
We have already appealed to a transposition of results established for functions

from a measure space to a real Banach space to the context of functions from
a measure space to the metric space X. In the sequel a similar transposition
from the case of a real Banach space to the case of the metric space £ endowed
with a certain algebraic structure would be necessary on many more occasions.
While there is little doubt that these transpositions can be carried out in a
trivial fashion, a complete solution requires that this long and tedious work be
actually performed. An alternative approach will be followed here. The metric
space £ with its algebraic structure will be embedded in a real Banach space.
The theorems of the standard theory of integration (for example, [16]) will
then be directly applicable. In the same manner the operation of transposition
could be dispensed with in section 4 if one consented to work with the set £
(instead of with the set 3c), which presupposes that one had introduced a vector
space structure on S. However, it has seemed worth emphasizing that the meas-
urability results of section 4 depend only on the metric space structure of S.
The sum X + Y of two subsets X, Y of S is defined by

(2) X + Y = {z E Slz = x + y for some (x, y) in X X Y}.
This addition has the properties (X, Y, Z are arbitrary subsets of S)

([') X+ (Y+Z) = (X+ Y) +Z; X+ Y = Y+X; X+ 0 = X.

The product aX of a nonnegative real number a and a subset X of S is defined by
(WI) aX = {z e Slz = ax for some x in X}.
This multiplication has the properties (a, ,B are arbitrary nonnegative real

numbers; X, Y are arbitrary subsets of S)
(WI') a(#X) = (a/3)X; 1X = X; a(X + Y) = aX + aY; if X is convex,

then (a + ,B)X = aX + ,3X.
In the present more special context the Hausdorff semidistance p and the

Hausdorff distance a have additional properties. In (5.1)-(5.4), (5.1'), and
(5.2') capital letters are arbitrary nonempty subsets of S, a is an arbitrary
nonnegative real number (properties (5.2) and (5.4) are given by Price [34]:
(5.1) p(aX, aY) = ap(X, Y);
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(5.2) P(XI + X2, Y1 + Y2) < p(XI, Y1) + p(X2, Y2).
PROOF OF (5.2). Let xi, x2, yl, Y2 be arbitrary points of Xi, X2, Y1, Y2, respec-

tively. One has

(13) j(XI+ X2) -(l +Y2)1 = I(Xl- y) + (X2 -Y2)1 < IxI -Yil + 1x2 - Y21.
Therefore p(xi + x2, YI + Y2) < p(xi, Y,) + p(x2, Y2). Hence the result.
From (5.1) and (5.2), one obtains the following assertion.

(5.3) On the set of pairs of nonempty, convex subsets of S, the function p is
convex.

Denoting by X the convex hull of X, one has
(5.4) p(X, Y) < p(X, Y).
PROOF. For every x e X, p(x, Y) < p(X, Y). According to (5.3), p(x, Y) is

a convex function of x on S. Thus for every x e X, one also has p(x, Y) <
p(X, Y). Therefore p(X, Y) < p(X, Y). Finally Y C Y implies p(X, Y) <
p(X, Y), Q.E.D.

Assertions (5.1)-(5.4) obviously remaini true if p is replaced by a therein.
We make explicit for future reference

(5.1') S(aX, aY) = ab(X, Y);
(5.2') 3(X1 + X2, Y1 + Y2) < 6(X1, Y1) + 6(X2, Y2).

Since the sum of two elements of 2, as well as the product of a noniegative
real number and an element of C, belong to 2, the set 2 is endowed with an
algebraic structure satisfying (21') and (9') and with a metric S satisfying (5.1')
and (5.2'). According to a theorem of Radstrom [35],

(5.5) C can be embedded as a convex cone uith vertex 0 in a normed real vector
space 2 in such a way that

(i) the embedding is isometric,
(ii) addition in £ induces addition in C,
(iii) multiplication by nonnegative real numbers in L induces the cor-

responding operation in 2,
(iv) £ spans L.

The norm of an element X of C will be denoted by IXI. To prevent confusion
with a widespread usage, one must emphasize that, given an element X of £,
-X denotes its negative, namely, the element of £ which, if added to X, gives 0.
For an element X of 2, -X coincides with the set {z E Slz = -x for some x
in X} if and only if X is a one-element subset of S. We can also say that an
element X and its negative -X both belong to the cone 2 if and only if X is
a one-element subset of S. Therefore, the greatest vector subspace of £ con-
tained in the cone 2 is the set co of the one-element subsets of S, which can be
identified with S.

(5.6) If S is complete, then £ is complete.
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PROOF. Let {X,} be a Cauchy sequence of elements of S. According to
(2.4), there is a nonempty, compact subset X of S such that 6(X, Xp) -* 0. We
have to check that X is convex.

Notice that, by (2.2), for every p, p(X, X) < p(X, Xp) + p(Xp, X). One also
has by (5.4), since X, is conivex, p(X, Xp) < p(X, Xp) for every p. Therefore
p(X, X) < 26(X, Xp) for every p. Coinse(quenitly, p(X, X) = 0 anld, by (2.1),
Ak C X. Hence, X = X, Q.E.D.
(5.7) IJ S is separable, then S is separable.

PROOF. The space 2 is a subspace of the metric space XC. Since the latter is
separable by (2.6), so is the former. Let then {X4' be a countable dense subset of
S. It will be shown that the countable set of the YP. = XP- X is dense in S.
Consider an arbitrary elemenit Y of 2 anid an arbitrary E > 0. Since S spans £, I
can be written in the form Y = X- X2 with X' and x2 beloniginig to S. There
are Xp, Xq belonging to 'X,,' such that 6(X', Xp) < e/2 and 6(X2, Xq) < E/2.
Therefore, 1Y - Y, = I(XI X2) - (X, - Xq)J = {(X1- X,) + X, -X2)
< -XI Xpl + 1X2- XJ <e, Q.E.D.
Proposition (5.6) asserts that if S is complete, theii £ is complete. One

naturally wonders whether, in that case, 2 is also complete. The following
example due to Aumaini and Kakutani answers the questioni negatively. Let S
be the Euclidean plane R2. Let {ai} be a decreasing se(luence of positive real
numbers such that a, < 7r/2 and Zi sin ai < +cc. Given ani angle a, denote
by Fa the closed straight line segmenit whose extremiiities have coordinates (0, 0)
and(cos a, sin a). Let Xp = 1= 1 EaiE YP = pEo anld pZ = X, - Y',. It is easy
to see that 'Z,} is a Cauchy sequence in 2. Anid one can prove that there is
no Z e 2 to which {Zp} converges.
However, 2 can be embedded as a dense sulbspace of a real Banach space 2 by

a standard operation ([16], p. 89). (I thanik K. Vind for this reference.)
When the correspondenice so from A to S is compact-convex-valued, the

measurability criterion (d) introduced by Kudo [25] in the case of a finite-
dimensional S (see also Richter [36]) is available.

Criterion (d): for every continuous linear form f on S, the function ,uf defined
for every a c A by ,uf(a) = max.,0(a) f(x) is a-measurable (or a*-measurable).
(5.8) If (p is an a-measurable function from A to KC, then, for every continuous

linear form f on S, 4f is a-measurable.
PROOF. Consider a continuous linear form f on S. Let c be a real number,

and let X be the open set {x e Slf(x) < c}. On1e has -a E AIlf (a) < c} =
{a E A Jp(a) C X} = ys(X) which belongs to a by (4.2). Therefore, j.f is a-meas-
urable, Q.E.D.

In order to prove a converse of (.5.8), we need the following.
(5.9) Let S be separable. Then there is a countable set C of continuous linear

forms on S such that if X is a nonempty, compact, convex subset of S
and B is a closed ball in S disjoint from X, then there is f e C for which
max f(X) < inf f(B).
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PROOF. Let 3F = {Xp,} be the countable family of proposition (2.6). Let {yi}
be a countable dense subset of S. Let {Bq} be the countable family of closed
balls with centers in {yi} and positive rational radii. The set of pairs (Xp, Bq)
is countable, and whenever X Bq = 0, there is, by ([16], p. 417), a contin-
uous linear form fpq with norm 1 strictly separating the compact, convex set Xp
and the closed, convex set B. We define C as the set of all the fp and the-fp
so obtained.

Let X and B be as in the statement of the proposition. Denote by e the
positive number minzex p(x, B).

According to (2.6), there is X' E 1: such that 6(X, X') < E/6. A fortiori, by
(5.4), 6(X, X') < e/6. Thus

(i) x e X' implies p(x, X) <

Let y and r be the center and the radius of the ball B. Select y' in {y1} such
that ly- y'l < e/6. Consider now the closed ball B' with center y' and rational
radius r' so chosen that r + e/3 < r' < r + 2/3E. One has B(B, B') = Iy' - yl +
ir' - rl. Therefore, 5(B, B') < 5/6e. Consequently,
(ii) x e B' implies p(x, B) <Ke.
From (i) and (ii) one obtains X' n B' = 0, for if x were in this intersection,

there would be xl in X and x2 in B such that lxl- x2l < E, a contradiction of
the definition of e. Therefore, there is f E C such that maxf(X') < inf f(B').
However, since the norm of f is unity, 6(X, X') < E/6 implies maxf(X) <
max f(X') + e/6 while inff(B) = f(y) - r and inff(B') = f(y') - r'. More-
over, ly - y'I < E/6 impliesf(y') - f(y) < e/6 < r' - r -e/6; hence inff(B') +
E/6 < inff(B). Consequently, max f(X) < maxf(X') + E/6 < inff(B') + e/6 <
inff(B), Q.E.D.
(5.10) Let S be separable and let s be a compact-convex-valued correspondence

fromA to S. Iffor every continuous linearformf on S, sif is a-measurable,
then so is a-measurable.

PROOF. Given a closed ball B in S, let EB = {(f, r)If e C and r is a rational
number less than inff(B)}. According to (5.9), one has {a E AIs(a) n B = 0}
= U (fr) eEB {a e A Iuf(a) < r}. Since EB is countable and 4f is t-measurable,
this union belongs to (t.

Let now X be an open set in S. The set X is the union of a sequence {Bn}
of closed balls. Moreover, A\vpw(X) = {a e Aj(p(a) n (Un.EN Bn) = 0} =

nAEN {a E A Ip (a) n Bn = 0}. According to the last paragraph, each set in
this intersection belongs to t. Therefore, so does A\q,w(X), hence also sow(X).
By (4.2), v is a-measurable, Q.E.D.

6. Integrable compact-convex-valued correspondences
Henceforth S is a real Banach space.
For two a-simple functions so, 4' from A to C, let



INTEGRATION OF CORRESPONDENCES 365

(14) (f, )= f J(a) -{(a) dv(a).

A sequence {op,} of a-simple functions from A to 2 is said to be A-Cauchy if
t(p fo)j- 0 as p and q --+ +0. A function p from A to Sis said to be integrable
if there is a A-Cauchy sequence of a-simple {op,} from A to 2 (which is said to
determine (p) converging in measure to (p. Its integral is f so dv = limp.rf P dv.
According to ([16], lemma 16, p. 111), this limit exists and is independent of
the sequence chosen to determine sp. For two integrable functions s, 4' from A
to 2, let A(,p, 4,) = f kp(a) - 4,(a)I dv(a).
Actually we will study integrable functions from A to S, and it is essential

to know whether such a function can be determined by a sequence of a-simple
functions from A to 2 (rather than from A to 2). The answer is given by the
following assertion.
(6.1) If <p is an integrable function from A to S, then there is a sequence {fpp}

of a-simple functions from A to S determining p.
PROOF. Since so is integrable, there is a sequence {4',} of a-simple functions

from A to 2 determining Vo. According to ([16], corollary 3, p. 145), there is a
subsequence {4,} of {f4'} converging v-uniformly to so. Thus for every p, there
is Ep E a contained in Ep,1 such that v(E,) < 1/p and {A'} converges uniformly
to s on A\Ep. Hence, there is qp such that

(i) 1,(a) -4'+,(a)j < on A\Ep.
p

Consider a set F of the finite partition of A\Ep associated with 4's, denotiilg
the value of 4'a, in F by Xpp, which is a point of 2 whose distance to the cone s
is, according to (i), smaller than i/p. Select a point YPF in S such that

(ii) |XPF - YpFI < -

Now define op, as the function from A to 2 that, on each set F of the finite
partition of A\Ep, takes the value YPF and, on E, takes the value 0. We will
prove that the sequence {Sop} of a-simple functions from A to S determines sC.
Because of (i) and (ii), for every p, one has

(iii) 1po(a) -5o(a)j < on A\E,.p

Therefore, {fpp} converges to ;p v-uniformly, hence also in measure. There
remains to prove that {,p,} is A-Cauchy. Assume that p < q. Then

(15) A(PP f2 = Lf lvp(a) -<,(a)j dv(a) = IA\Ep pp(a) - ,(a)j dv(a)
+ fE \E lpp(a) - (p(a)l dv(a) + f 1P,,(a) - pq(a)l dv(a).

OIn A\Ep, by (iii), Jfp(a) - o(a)I < 4/p; helce,
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(iv) I p -(a) 9p4(a)| dv(a) < -v(A).
OnEp\El,,<pp(a) = 0; therefore, Jopp(a) - (p,(a)I = 1loq(a)l .< 1k(a)I + kSop(a) -

,p(a)l < ksp(a)l + 2/q, hence

(v) j |p,(a) - q(a)l dv(a) < jp(a)l dv(a) + - v(A).BP\Eq EP\Eq q

On EQ, (p(a) = spo(a) = 0; hence,

(vi) fE" <pp(a) - (a)I dv(a) = 0.

From (iv), (v), and (vi),

(vii) A(50P, IN) <
4

v(A) + - v(A) + JE (a)I dv(a).
When p and q -- +o, v(Ep\Eq), which is less than 1/p, converges to zero.
Therefore, according to ([16], theorem 20.b, p. 114), the last term in (vii) con-
verges to zero. Consequently, so does A($op, 5q), Q.E.D.
The next result introduces an important convexity inequality:

(6.2) if (p, 46 are integrable functions from A to S, determined by the sequences
{sop}, {%J} of (3-simplefunctionsfromA to 2, then thefunction p[(p(a), At(a)]
is integrable and determined by the sequence {p[sp,(a), i/p(a)]} and
p[f (p dv, f 4& dv] < f p[<p(a), A(a)] dv(a).

PROOF. According to (2.3), for every a e A,

(16) lp[,(a), {(a)] - p[spp(a), f,,(a)]l < B[,p(a), pp(a)] + 6[4'(a), 4tp(a)].
Therefore, given e > 0, {a E Al lp[Ip(a), 4p(a)] - p[<pp(a), 4',(a)]l > e} is con-

tained in the union of {a e Alb[<p(a), (pp(a)] > e/2}, and {a E A15['(a), 4tp(a)] >
E/2}. This inclusion relation establishes that p[pp(a), 4&,(a)] converges in measure
to p[p(a), A,(a)]. Moreover,

(17) f jp[,pp(a), #,(a)] - p[pf(a), 4'a(a)]l dv(a) < A(pp, pj) + A(4'p, As),

which establishes that {p[(pp(a), 4'p(a)]} is A-Cauchy.
According to (5.3), for every p,

(18) p [f sxp dv, f 4'p dv] < f p[p,(a), kp(a)] dv(a).
When p - +x, the left-hand side converges to p[f p dv, f i6dv] by continuity
of p, Q.E.D.

It is now possible to obtain extensions of the Lebesgue dominated convergence
theorem to the case of correspondences.
(6.3) Let (p be an integrable function from A to S and {jpp} be a sequence of

integrable functions from A to S such that p[,p,(a), p(a)] -- 0 (resp.
p[,p(a), sop(a)] - 0) almost everywhere. If there is an integrable real-
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valued function f on A such that, for every p, p[<p(a), 0] . f(a), (resp.
pE, (p,(a)] < f(a)) almost everywhere, then p[f vp dv, f p dv] -O 0 (resp.
p[f (o dv, f p,, dv] -*0).

PROOF. According to (6.2), for every p, the functions p[<p,(a), <o(a)] and
p[p(a), (pp(a)] are integrable. By the Lebesgue dominated convergence theorem
([16], p. 151), f p[ p,(a), p(a)] dv(a) - 0 (resp. f p[ (a), 'p(a)] dv(a) -*0). All
application of the convexity inequality of (6.2) completes the proof.
As an immediate corollary of (6.3) we have the following proposition.

(6.4) Let T be a metric space and let 4' be a functionfrom A X T to £ that is inte-
grable in afor every x E T. Iffor almost every a, 4,t is an upper semicontin-
uous (resp. lower semicontinuous) correspondence from T to S at a certain
point xo of T and there is an integrable real-valued function f on A such
that, for every x E T, one has p[,t(a, x), 0] < f(a) (resp. p[0, /'(a, x)] <
f(a)) almost everywhere, then the correspondence f k(a, x) dv(a) from 7'
to S is upper semicontinuous (resp. lower semicontinuous) at xo.

PROOF. Let {x,} be a sequence of poiInts of 7' converging to xo. It suffices
to let ip(a) = {(a, xo) and 'p(a) = {(a, x,) to obtain the situation described by
(6.3), Q.E.D.
Another concept of integral for a correspondence 'p from A to S has been

used by all the authors mentioned in the introduction who have treated this
subject, with the exception of G. B. Price [34]; namely f 'p dv = {z E Sjz =
f f dv for some integrable function f from A to S such that f(a) E <o(a) for
every a e A}.
We will first prove that for an integrable function from A to 2, this new

concept does not differ from the concept introduced at the beginning of section 6.

(6.5) If 'p is an integrable function from A to £, then 'p dv = f 'p dv.

PROOF. (1) Let z be an arbitrary poinit of f0 'p dv. There is an integrable
function f from A to S such that f(a) E <p(a) for every a and z = f f dv. For
every a, one has p[f(a), (p(a)] = 0. Therefore, by (6.2), p[ff dv, f p dv] <
f p[f(a), p(a)] dv(a) = 0. Hence, z e f 'p dv. Thus we have proved that

(19) f0 p dv C f'p dv.

(2) Conversely, let z be an arbitrary poilnt of f 'p dv. There is a sequence {fp,}
of a-simple functions from A to 2 determining sp. When p - +oo, f

p ddv
f 'p dv. Therefore, for every p, there is z, in f 'p, dv such that zp-* z. In other
words, for every p, there is an a-simple function f, from A to S such that
fp(a) E 'p,(a) for every a and zp = f f, dv. It will now be proved that

(i) in L1(A, a, v, S) the set {fp is weakly sequentially conditionally compact.

(2.a) Since I'p,(a)l = 5[0, (p,(a)], fp(a) e 'p,(a) implies lf,(a)I < 1'pp(a)J.
Hence f Ifp(a)I dv(a) < f J'pp(a)I dv(a). According to ([16], lemma 18, p. 113), the
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sequence {I<P()I}determines isp(*)1. Therefore, whenp fc., ep(a)I dv(a)
f J$o(a)I dv(a). Consequently,
(ii) the numbers f lf,(a) d(v(a) form a bounded set.

(2.b) For every p and every set E e a, the point fl. f, dv belongs to fJE Sp dV.
Hence, IJfp dvl < I.Ep dvl < fJE Jp,,(a)j dv(a). According to the last assertion
of ([16], lemma 18, p. 113), fA jfp(a) - o(a) I dv(a) ->0. Thusby ([16], theorem
6 (ii), p. 122), limr(E)-o fE |5p(a)I dv(a) = 0 uniformly in p. Therefore,

(iii) lim f fp dv = 0 utniformly in p.

Because of the second assertioni of ([16], corollary 11, p). 294', (ii) and (iii)
establish (i).
Now (i) implies that there is a subse(quenec f,,, of 'f4- such that f4J coil-

verges weakly to an integrable function f from A to S. Since the integral of a
function depends linearly and continuously on that function, fA fp f dv.

Consequently, z = fA f dv.
The symbol {f0p) will denote the subse(lueciee of {$pp- corresponding to the

subsequenee Lf,,,.Let e be an arbitrary positive real number. Choose q such
that, for every p > q, f lJp(a) - p(a)I dv(a) < e. Accorditig to ([16], corollary
14, p. 422), there is a convex combination g of thefp (with p > q), g = ,=i aiJ,
where F_'= i i = 1, and for every i = 1, , m, ai > 0, ji > q such that

(iv) fI g(a) - f(a)l dv(a) < e

For every a e A, (p(a) is convex; heiice, by (5.3),

(v) p[g(a), (p(a)] < a,p[fj,j(a), ,(a1)].

On the other hand, for every a and every p, f,(a) e (p(a); helce,
p[fp(a), p(a)] < p[,pp(a), p(a)]. Therefore, for every p > q,Jp[f,(a), p(a)] dv(a) <
f p[yp(a), p(a)] dv(a) < f 6[pp(a), (p(a)] dv(a) < e. Consequently, by (v),

(20) f p[g(a), So(a)] dv(a) < e.

However, (iv) states that

(21) f p[f(a), g(a)] lv((a) < e.

Combining the last two inequalities and usinig (2.2), onie obtains

(22) f p[f(a), (p(a) ] dv(a) < 2e.
Since this holds for every E > 0,

(23) f p[f(a), (p(a)] dv(a) = 0.
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Therefore, p[f(a), (p(a)] = 0 almost everywhere; hence, f(a) E p(a) almost
everywhere.

In summary, given an arbitrary point z in f p dv, there is an integrable func-
tion f from A to S such that z = f f dv and f(a) E (p(a) for every a outside a
null set A(. Let fo be a function that coincides with f on A\Ao and such that
fo(a) E <(a) for every a e A. Since fo is integrable and z = f fo dv, we have
proved that

(24) f sodv C f s dv, Q.E.D.

7. Integrable compact-valued correspondences
Henceforth S is a finite-dimensional normed real vector space.
Let so be an a-measurable compact-valued correspondence from A to S. We

wish to define and to study the integral of p. According to (3.3), A can be par-
titioned into an atomless part Ao and a countable family of atoms {Al, A2, .
It is therefore sufficient to define the integral of so over each Ai, (i = 0, 1, ** )
and then to define the integral of so over A as the sum of the countable family
of subsets of S so obtained. The definition of fA, o dv for i > 0 is immediate,
for, by (4.1), there is an atom At contained in Ai and on which so is constant.
Let Xi be the nonempty, compact subset of S that is the value of so on A'.
Since A1\Ai is null, fAL v dv = v(Ai)Xi necessarily.
The integration-theoretic difficulties of the study of fA (p dv are therefore those

of the study of fAO so dv, the integral of so over the atomless part of A. For this
reason we will assume from now on that v is atomless.
We first prove a generalization due to H. Richter [36] of a result established

by D. Blackwell [7], [8] for the case of a constant correspondence.
(7.1) If v is atomless and (p is a correspondence from A to S, then fo sp dv is

convex.

PROOF. Let zi, z2 be two points of f0 s dv. There are two integrable functions
fi, f2 from A to S such that zi = f fi dv, Z2 = Sf2 dv and, for every a E A, fi(a)
and f2(a) belong to p(a). Consider the measure ,u with values in S X S defined
on e by p(E) = (fEfi dv, fEf2 dv) for each E e a.
The measure ,u is easily seen to be atomless. Suppose that E is an atom for J,.

Then jA(E) =6 0 implies v(E) > 0. By (3.2) applied to v, E can be partitioned
into El and E' belonging to a such that v(E1) = v(E') = (1/2)v(E) and u(E1) =

ju(E), A.(E') = 0. Repeating this construction one obtains a sequence {Ep} with
the property that for every p, Ep e a, E,p1 C EP, v(E,) = (1/2P)v(E), and
g(Ep) = #(E). Let F = npfl. E,. Then v(F) = 0 and J(F) = j(E) # 0, a
contradiction.
Observe now that I,(0) = (0, 0) and ,u(A) = (zl, Z2)- Applying Lyapunov's

theorem (3.2) to A, one establishes that for any real number a E [0, 1], there is
E E a such that p(E) = (azi, az2). Therefore, MA(A\E) = [(1 - a)z1, (1 - a)Z2]-
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Define the function f as coinciding with fi on E and with f2 on A\E. Since
ff dv = azi + (1 - a)Z2, the point azj + (1 - a)Z2 belongs to fJ0o dv, Q.E.D.

Let (p be a compact-valued correspondenice from A to S. We denote by o I he
correspondence taking for its value '(a), the convex hltll of 'P(a), for each a e A.
Since S is fiiiite-dimenisioial, accordinig to a classical result (see, for example,
[20], theorem 10, p. 22), '(a) is a compact, convex subset of S. Therefore, <
can be considered as a funiction fromii A to £. Ouir last plrol)osition asserts that
if v is atomless and s is integrable, tlieii Jf0 dv coincides with f 0 dv, wlhichl is
already known by (6.5) to coincide with Jo 0 dv. It is therefore legitimate to
introduce the following definitions.

In the case of a finite-dimensional S and of an atomless v, a compact-valued
correspondence (pfrom A to S is said to be integrablc if s is integrable and its integral
is then defined by f p dv = f S dv.

(7.2) Let (p be a compact-valued correspondetcec fromt A to S. If v is atonmlss
and 0 is integrable, then fJ0 dv = f s dv.

PIROOF. First, fJ so dv C f' s dv = f s dv. The iiclusioin is obvious since, for
every a E A, r(a) C O(a). The e(quality is the assertion of (6.5). Thus

(25) f sr (Iv Cf ( dv.

Conversely, let z be a pOint in the boundary of f s dv. It wvill be shlowII that
z belonigs to f0r dv. Since by (7.1) the latter set is convex, this Awill establish
that f 0 dv C .f sO dv.
The proof is by itnduction onl the dimienisioni of the space S, the theoremll beilng

trivially true if the dimeension of S is zero.
The relatioti z e f p (lv implies by (6.5) that there is ani integrable function f

from A to S such that z = Jff dv, and, for every a e A, f(a) c o(a).
Now f S dv is convex. Therefore, if the dimensioni of S is not zero, telCIC is a

linear form g on S, not vanishinig everywhere, such that

(i) g(z) = miax g(y).
c fI dv

Let 4'(a) = {x C p(a)jg(x) = maxyc(a) g(y)} . Conise(quenitly,
(26) {(a) = {x e '(a)Ig(x) = max g(y)}-

yEj(a)

Applyinig (4.5) to the -imeasurable compact-valued corresponidelnce s fromll
A to S and to the real-valued functioni g wlhichl is conitiniuous oni S and indepenid-
Cent of a, one establishes that the correspondenice s6 is a*-measurable onl A. Mlore-
over, '(a) C O(a) implies IQ(a)j < I '(a)j for the norm inh . Therefore, according
to ([16], theorem 22.b, p. 117), ; is integrable.
By a new application of (6.5), one obtaiins J° A (l = f ' dv. Since the latter

set, helnce the formier, is not empty, there is aii initegrable funcietioni f' fromii A to S
suclh tilat f'(a) c {(a) for every a e A. Bly ([16], theorem 19.c, p. 113), g(f(a))
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atid U(f'(a)) aic initegrable, f g(f(a)) dv(a) = y(Jff dY), anid f g(f'(a)) Iv(a) =
(ff' dv). On the other hand,

(ii) y(f(a)) < g(f'(a)) for every a e A,
whereas by (i),

(iii) g (f f dv) > g (f f' dv)

because ff dv = z anid ff' dv belongs to fo f dv = f < dv. Iniequalities (ii)
and (iii) together establish that g(f(a)) = g(f'(a)) almost everywhere, that is

(37) f(a) E A(a) almost everywhere.
Consider now t(a) = 4p(a) - {f(a)}. Accordinig to ([16], theorem 19.a, ). 113),

t(a) = {(a)- {f(a)} is integrable. Furthermore, for almost every a, x ce(a)
ilnm)lies g(x) 0, while 0 c &(a) alinost everywhere. The latter relatioli imnplies

(iv) 0 e f% dv = | dv.

Let H be the hyperplanie {z E Slg(z) = 0]. For allmiost every a, &(a) C II.
Thus, by the induction hypothesis, fo v dv = f ¢ dv. By (iv), 0 fo v dv.
Therefore, there is ani integrable function h from A to S such that f h dv = 0 and,
for every a E A, h(a) G P(a).

However, h(a) e t(a) means that f(a) + h(a) G 4,(a). In conclusion, .f + h
is initegrable, for every a e A one has [f(a) + h(a)] (a), and f (f + h) dv = z.
Consequently, z e fo t dv C fo0p dv, Q.E.D.
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