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1. Introduction

After sequential analysis was developed by Wald in the forties [5], Arrow,
Blackwell, and Girshick [1] considered the Bayes problem and proved the
existence of Bayes solutions. The difficulties involved in computing explicitly
the Bayes solutions led Wald [6] to introduce asymptotic sequential analysis in
estimation. Asymptotic in his sense, as for all subsequent authors, refers to the
limiting behavior of the optimal solution as the cost of observation tends to
zero. Chernoff [2] investigated the asymptotic properties of sequential testing.
The testing theory was developed further by Schwarz [4] and generalized by
Kiefer and Sacks [3]. This paper approaches the asymptotic theory from a
slightly different point of view. We introduce the concept of "asymptotic point-
wise optimality," and we construct procedures that are "asymptotically point-
wise optimal" (A.P.O.) for certain rates of convergence [as n -oo ] of the
a posteriori risk. The rates of convergence that we consider apply under some
regularity conditions to statistical testing and estimation with quadratic loss.

2. Pointwise optimality

Let {Y, n > 1} be a sequence of random variables defined on a probability
space (Q, F, P) where Y. is F. measurable and Fn C F.+, ... C F for n > 1.
We assume the following two conditions:

(2.1) P(Yn > 0) = 1,

(2.2) Y. Ox0 a.s.

Define

(2.3) X.(c) = Y. + nc for c > 0.

Prepared with the partial support of the Ford Foundation Grant given to the School of
Business Administration and administered by the Center for Research in Management Science,
University of California, Berkeley.

401



402 FIFTH BERKELEY SYMPOSIUM: BICKEL AND YAHAV

Let T be the class of all stopping times defined on the a-fields Fn. We say that
s e T is "pointwise optimal" if

(2.4) p [X.(c)< 1 1 for all t E T.

Unfortunately, such s's usually do not exist except in essentially deterministic
cases. Let us consider two examples of such situations:

(2.5) Yn = V oo > V > 0,n

(2.6)
=Y U -o < U <O.

n
In these examples one easily sees that the pointwise optimal rule is given by
the following:

VExample 1: stop as soon as < c;n(n - 1) '

Example 2: stop as soon as enU < c

These examples will play a role in theorem 2.1. In nondeterministic cases one
might hope that, under some conditions, we can get A.P.O. procedures. Let us
define these more formally.

Abusing our notation, in a fashion long used in large sample theory, use the
words "stopping rule" to also denote a function from (0, 00) to T, say t(-),
c e (0, 00), t(c) E T. Now in analogy to our previous definition we say s(.) is
A.P.O. if for any other t(.),

(2.7) lim sup X8()(c) <1 a.s.
C-.o t ("(c)(C

Consideration of the deterministic case naturally leads us to hope for asymp-
totically pointwise optimal solutions in situations where the rate of convergence
of Y. stabilizes. This hope is fulfilled in the following theorem.
THEOREM 2.1. (i) If condition (2.1) holds and nY n-* V, a.s. where V is a

random variable such that P(V > 0) = 1, the stopping rule, which is determined
by "stop the first time that (Y^/n) < c," is A.P.O.

(ii) If condition (2.1) holds and (log Yn/n) -+ U, a.s. where U is a random
variable and P(U < 0) = 1, then the rules (ii)a, "stop the first time Y. < c" and
(ii)b, "stop the first time Yn(l -Y'/f) < c" are A.P.O.
PROOF. Let s1(.) be the stopping time defined by rule (i). Let t(.) be any

other rule. Then

(2.8) _t _Yt+ y, + t _,+ t
sic S1 s1C sl
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It suffices to show that lim inf,,o (Yt/sic) + t/sl 2 2, a.s., but this follows upon
remarking that (x + 1/x) > 2 for x > 0 and applying the following lemma.
LEMMA 2.1. If cn -+ 0, t(c.)/si(c.) -* x > 0, t(c.) converges (possibly to +00)

with probability 1, then lim infc,,o (Yt(,.)/c,,sl(c.)) -*1/x, a.s.
PROOF OF LEMMA. It follows from the assumptions of the theorem and the

definition of s5(0) that
(2.9) P[lim s1(c) = Xo] = 1.

c-O

Suppose first that P[limc, t(cn) <0 ] > 0. On this set lim infc, Yt(c.) > 0, and
our lemma will follow in this case if we show that cs1(c) -- 0, a.s. as c -+ 0. We
in fact will show the stronger
(2.10) cs?(c) - V, a.s.

This follows immediately from the inequalities

(2.11) 51 -< (-1)
(2.12) s1Y81 .~~8s(Si.

(2.12) SlYJI < SiC < (S - 1)2 (Si - OY(J1-I)
and (2.9).
The general case of the lemma, on the set [t(c) -oo ] is a consequence of the

identity

(2.13) s-S t c
and our assumptions.
We prove case (ii)a; case (ii)b follows similarly. Let 82( ) be the rule defined

by (ii)a, t(-) be any other stopping rule. Again we have,

X Y.,2 + an as
(2.14) XJ= L ,! and S2 °, a.s.

S2C 82

But then, Y,/S2C .< 1/82 -*0, a.s. In an analogous fashion to lemma 2.1, we use
lemma 2.2.
LEMMA 2.2. If c. -* 0, t(cn) converges a.s. (possibly to +00), t(cn)/s2(c.)

x < 1, then, Yt(,.)/cs2(cn) -* 00.
PROOF. We prove first that

(2.15) s2(c) - a.s.Ilog ci IL/I',
This is a consequence of inequalities,
(2.16) Y,, < c < Y(,z- ),

(2.17) log Y,, < log c < log Y(J-1) (S2 - 1)
S2 S2 (82-1) s
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Now suppose t(cj) -> oo, a.s. Then,

(2.18) logy t (log Ye s2 (log 82+ 19 c
Cs2 t t 82 82/

Now,

(2.19) log Y, U, a.s.,
t

(2.20) log c U, a.s.,
82

and

(2.21) -(C) > 1
t (C.) X

by hypothesis and (2.15). Since U < 0, the result follows.
The theorem is proved.
COROLLARY 2.1. Let N(c) be defined as any solution of XN(C)(c) = infn Xn(c).

Then, in both cases of theorem 2.1,

(2.22) lim X(.)(c) = 1.
c--O XN(C)(C)

PROOF. Note that in the proof of the theorem, no use was made of the fact
that the t(c) is a stopping time.
REMARK. In both cases it may readily be seen that si(c) is strictly better

than t(c) if t(c)/s(c) -> 1, a.s. However, although in case (i) the converse holds,
that is, t(c) is also asymptotically pointwise optimal if s(c)/t(c) -+ 1, a.s., this is
not true necessarily in case (ii). However, as the existence of rule (ii)b indicates,
here too there are many A.P.O. rules. We shall see more in the conclusion.

3. Sequential estimation with quadratic loss

The main theorem of this section states that for the one parameter exponential
family (Koopman-Darmois, R-D), Bayes estimation with quadratic loss satisfies
condition (i) of theorem 2.1, and therefore the rule given in theorem 2.1 (i) is
A.P.O. This result can in fact be generalized to an arbitrary family of distribu-
tions under some regularity conditions. A theorem of this type will be stated at the
end of this section. We give the proof only for the K-D family both for ease
of exposition and because we hope to weaken the regularity conditions of our
general theorem. Let {Zi, i > 1} be a sequence of independent identically dis-
tributed random variables having density function fe(z) = eq(e)T(z)-b(O) with
respect to some a-finite nondegenerate measure u on the real line endowed
with the Borel a-field where q(o) and T(z) are real-valued.
We let 0, the parameter space, be the natural range of 0; that is,

0 = {: f e(O)T(z)(dZ) < m}

and endow it also with the Boel a-field and the usual topology.
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It follows that 0 is an interval, finite or infinite, and we assume that
(i) q(0) possesses at least two continuous derivatives in the interior of 0 and
(ii), q'(0) $ 0.

It is known that under these conditions the following propositions hold:

(A) Ee[T(Z1)] = b'(0).

(B) If q(0) = 0, then b"(0) = vare [T(Z1)].

(C) Let cI(0, z) = log fe(z) and A(0) = Ee [(D(I, Zi))]; then 0 < A(8) =

[q(0)]2 vare [T(Z,)] < 0;
nl 6c1,(0, Zi)_(D) For Oo in the interior of 0, the equation E = 0

i=1 .30

has eventually a unique solution 0, the maximum likelihood estimate, and
n- 0o, a.s. Peo where Po. is the measure induced on the space of all real sequences
{zl, z2, * - -} by the density feo(z).
Let v be a probability measure on 0 which has a continuous bounded density 'I

with respect to Lebesgue measure such that f 021(0) dO < 0. Consider the
problem of estimating 0 sequentially, where the loss on taking n observations
and deciding 0 = d is given by nc + (d - o)2 when 0 is the true value of the
parameter. The overall risk, R(6, t), for a sequential procedure consisting of a
stopping rule t and estimator G(Z1, * * *, Zt) is then given by,

(3.1) R(6, t) = cE(t) + E[(g(Z1, ... , Z) - 0)2].

It follows from the results of Arrow, Blackwell, and Girshick that whatever
be the choice of t, the optimal estimate given t is the conditional expectation
of 0 given the past, E[OjZ,, - - *, Zt] = GB. Hence, finding optimal procedures
for the sequential problem is equivalent to constructing optimal stopping rules
for the sequence {Xn} where Xn = Yn + nc and

(3.2) Yn = E[(0 - 6B)IZl, * * * , Zn] = var (01Z1, .*),
In order to find an A.P.O. rule by the method of theorem 2.1 (i), we have to
show that P(Yn> 0) = 1 and nYn -+ V, a.s. where P(V > 0) = 1.
THEOREM 3.1. For the K-D family obeying assumptions (i) and (ii), we have

P(Yn > 0) = 1 and

(3.3) nY -+1/A (0).
PROOF. Since the a posteriori density exists with probability one, the condi-

tional variance of 0 is positive with probability one.
To show (3.3) we will establish

(3.4) Pe,{nE[(0 - Gn)21Z,, Znl] - 1/A(Oo)} = 1

and
(3.5) n1/2(E[OIZo,**, Z.] - an) -* 0
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with probability one, where O,n is the maximum likelihood esitmate of 0. The
theorem readily follows from (3.4), (3.5), and the identity,

(3.6) var (01Z1, * , Z.) = E[(O - O,n)2IZ1, * , Z.]
- [E(0IZ1, , Z.) -On]2.

Let us define, I*(tlZl, * , Z.) to be the a posteriori density of nll2(O -
Thus,

(3.7) I*(tlZl,* , Zn) = exp (on + <= Zi)}

* (rG= + On) [n I2 f exp 41(s, Zi)} (s) ds]
Equations (3.4) and (3.5) follow easily from

(3.8) Po.[fI Itli|F*(tlZ,, Zn) - VA(0)-§0(tA(Oo)) I dt-*0] = 1

for i = 1, 2, where +(x) is the standard normal density.
Define the random quantity

(3.9) vn(t) = exp d [(O. + 7n= zi) - 04(, Zi)

To prove (3.8), it suffices to show

(3.10) f Itijvln(t) - V"+ 40( (00) t)I'I (On + d-dt O, a.s. P0

for i = 0, 1, 2. To see this, note that by the case i = 0 we would have

(3.11) | Vn(t)F (On + <) dt

- |-2-- 0'(-V ( t)t 0+ t r)dt .

Now by the dominated convergence theorem, the boundedness and continuity
of I, and the consistency of On, we have

(3.12) f : O(VA(Oo) t) On + t dt (-2
Let

(3.13) Cn = exp{t( ( = + On, Zi)-D(n Zi))}j (j + on) ds.

Then,

(3.14) **(tlZl, Zn) = Vn(t)*(On + t/Nn)
Cn

and since**'s is a probability density, we have
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(3.15) C= V,,(t)T (a + ) dt.

Therefore,

(3.16) c,->

and the sufficiency of (3.10) for our result is clear.
Write (3.10) as,

(3.17) f _ t+ ) ItliIv.(t) - V'1 5(VA(0) t)j dt

+ | t (f9n +-t) ltl'lVn(t)-9/7 J ( t)l dt.
It> 5* -n- <7

We first establish the following lemma.
LEMMA 3.1. Under the above conditions,

(3.18) A. = f _ (n + t tjvn(t) dt-0, a.s. Po,,
It>5*v/n 7n

for i = 0, 1, 2, and all 5* > 0.

PROOF. We change variables to y = - Then,

i+1 rn
(3.19) An = n 2 J lyji exp E {4(y + On, Zi) - 4,(n, Zi)}4F(On + y) dy.

Define,

(3.20) Hn(y) = [q(&n + y) -q(n)] E T(Zi) - [b(O. + y) -b(n)].

Then, in our case, (3.14) reduces to

i+l
(3.21) An = n 2 j1 >3* Iyji exp {nH.(y)}jI(y + En) dy.

By (D), for n sufficiently large the equation H'(y) = 0 has a unique solution
given by y = 0, and moreover, 0 is then the unique local maximum of Hn.

Therefore we may conclude that

(3.22) sup Hn(y) = max (Hn(b*), Hn(-b*)) < -M < 0,
11,>5*

eventually. Therefore,

(3.23) A. < n 2 exp (-Mn) f IYlyi*(y + &.) dy - 0, a.s. Pe,

since On are bounded a.s., which proves the lemma.
From lemma 3.1, the boundedness of ', and the well-known properties Qf the

normal distribution, it follows that
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(3.24) ft, (On + -)Itl lvn(t)--\/2 (/A(O) t)l dt-÷0, a.s. Po..

We finish the theorem with lemma 3.2.
LEMMA 3.2. Under the above conditions, there exists a 6* > 0 such that

(3.25) Bn= ft<-*vg;jv(t)- VG (VI 5 t)I dt -. 0, a.s.
PROOF. We expand log vn(t) formally to get

(3.26) log v(t) = 2 (*(t Zi) Zi))

where On(t, Zj) lies between f9n and f3n + t/N/n.
Of course, Et'1 64/60(0,, Zi) = 0 whenever this expression is valid. In our

case, (3.26) is valid and simplifies to

(3.27) log Vn(t) = {q"(On(t)) n Y2 T(ZM) -b'(On(t))

Choose E > 0 so that 3E < A (0o). Then, by the continuity of q", there exists a
5*(e) so that

(3.28) Iq"(s) - q"(o)l< 21b'(Oo)

and Ib"(s) - b"(0o)l < e, for Is - Gol < 6*(E).
On the other hand, with probability one for n sufficiently large,

(3.29) |1 E TM)b'(.) ejq'(<o)|

and therefore, for such n, It/'V7l < 3*(E), we have

(3.30) |log v,(t) -. f{q"(O0) E§f - b"(GO)}| < 3e.

But,

(3.31) q"(0o) b,(00)-b'(0o) = -A(Oo).

Equality (3.31) follows by double differentiation of the identity

(3.32) |' eQ()T(z)-b(6)t,(dz) = 1

and (C).
Therefore, vn(t) < exp {(3e -A(o))(t2/2)} for n sufficiently large, independ-

ent of t. But Vn(t) - V2 0(Vui7o t) -O0 for each fixed t by (3.27) and (3.31).
Applying the dominated convergence theorem, the lemma follows.
The theorem is now an immediate consequence since I is bounded. For ref-

erence we now consider the general model and state theorem 3.2. Let 0 be an
open subset of the line. Let {Zi, i > 1} be distributed according to fe(x), a
density with respect to a o-finite measure ,u for 0 e 0. Let I be a probability
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density on 0 with respect to Lebesgue measure satisfying the conditions of this
section. We define c(0, x) = logfe(x) as before. We then have the following
theorem.
THEOREM 3.2. If

(1) a"" (0, x) exists and is continuous for almost all x;

(2) Eo( sup [b(s, Z1) - 4(0, Z1)]) < Ofor almost all 0 and all e > 0;
18-61 >e

EOi rUe
62,1

(3J E4s#uIp [602 (s, Z1] ) <0 for some e > 0, for almost all 0;

(4) Ea (624(0, Z1)) Eo- 64(0' Z,)]2
\'* 302 I) E s0o

(5) maximum likelihood estimates {fn} of 0 exist and are consistent;
(6) 'I satisfies the condition of this section, is continuous, bounded, and

£ 02I(0) dO < 00;
then nY -+ A-)' a.s., where A (0) = E([Eo (, Zi)])-the Fisher information
number, and Yn = var (0IZI, * , Zn).

4. Sequential testing

The main theorem of this section states that for the one parameter K-D family
sequential Bayesian testing satisfies condition (ii) of theorem 2.1, and therefore
the rules given in theorem 2.1 (ii)a, (ii)b are A.P.O.
Again we shall state a more general theorem at the end of the section whose

proof will appear elsewhere.
Without loss of generality, we assume {Zi, i > 1} to be distributed according

to the density fe(x) = e9T(x)-b(G) with respect to some nondegenerate a-finite
measure ju. Let ,u be as before and let v be a probability measure on 0 such that
v assigns positive probability to any nonempty open subset of 0.
As is customary in the testing problem, we have a decomposition of 0 into

two disjoint Borel sets H and 7H (H complement), H being the hypothesis. We
have a choice of two decisions (accepting or rejecting H); we pay no penalty
for the right decision and incur a measurable loss t(0) > 0 when 0 is the true
parameter and we make the wrong decision. We assume that f t(0)v(dO) < - .
In addition, as usual, we pay c > 0 for each observation. The overall risk R(4, t)
for a sequential procedure consisting of a stopping rule t and randomized test
O(Zl, * **, Z,) is then given by
(4.1) R(4, t) = cE(t) + E[4(Z1, * , ZI)t(0)IH(0)1

+ E[(1 - Z,*Z , Zt))f(0)In(0)]
where IA(o) is 1 if 0 E A, and 0 otherwise. Again by [1], we can separate the
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final decision problem from the stopping problem; that is, there is an obvious
optimal choice of 0 given t. We may now write Xn = Yn + ne where

(4.2) Y. = *B(Z1, - - * , Zn)E[t(D)[IH(0) - I7(0)]IZ1, * * , Zn]
+ E[t(o)In(o)IZ1I - -, Z.],

and ,B is the Bayes test given n observations. Now again the problem is to find
optimal stopping rules for the process X.. We will establish under some regularity
conditions on v that log Yn/n -* U and P(U < 0) = 1. Let v*be the measure
defined by v*(A) = fA t(O)v(dO). We have the following theorem.
THEOREM 4.1. Assume, in addition to the conditions given beforehand in this

section:
(1) 0 < v*(H) <v*(O),
(2) v(X7) = 0 where Rt is the boundary of H, and v(U) > 0 for all open U, and
(3) 1(D) is strictly bounded away from zero outside of some compact K. Then,

(4.3) log Y -- (v*) ess sup J(D, 0o)IH(Do) + (V*) ess sup J(D, Do)Iij(Do) = B(DO)
n OEH @eH

where

(4.4) J(D, Do) = E,o,(c(D, Z1) - cb(Do, Z1)),
and IA(8) is the indicator function of A.
PROOF. It is well known that J(D, Do) <0 if PO $- Po,. This observation and

the following lemma will establish that P[B(Oo) < 0] = 1 in our case.
LEMMA 4.1. In a K-D family as above, J(D, Do) is concave in 0 with a unique

maximum of 0 at 0 = Oo.
PROOF. According to condition (A), J(D, Do) = (0 - Oo)b'(0o) + b(Do) - b(D).

Further, J'(DO, Do) = 0 and J"(0, Do) = -b"(D) < 0 by (B). The lemma follows.
To prove convergence of log Y,/n, it evidently suffices to consider Yn/n which

is given by

(4.5) y/fl = 1/[kexp nQn()v(d)] min{(fH t() exp nQn(O)v(d)),

(fJH( ) exp nQn(O)P(dO)) 1}n
where Q.(D) = [1/n _te? T(Zi)]D - b(D). Let Q(D, Do) = b'(0o) - b(D).
LEMMA 4.2. Let {Wn} be a sequence of essentially bounded random variables

such that ess sup IWn - WI -- 0. Then El/nlWnIn - ess sup W.
PROOF. By Minkowski's inequality,

(4.6) El/nlWln- El/nlWn- Win < El/nlWnln < El/nIWIn + El"IW. -Win.
Since EI/nlWn- Wln < ess sup IW. - WI, the lemma follows from the con-
vergence of the L. norm to the L. norm. Q.E.D.
To establish the theorem, it suffices to show that if v*(B) > 0,

(4.7) {JB[exp Q-n()]nt(O)v(dO) (P*) ess sup [exp Q(D, Do)],
liE n(D)"AD)(dD)"" (*)OEB
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and in particular,

(4.8) {fe [exp nQ.(G)]v(dO)} (v) ess sup [exp Q(0, Go)]

since then, a.s. Pe,, yl/n converges to
min {(v*) ess sup exp Q(G, Go), (v*) ess sup exp Q(G, 0o)}

(4.9) OCH OEH
(v*) ess sup exp Q(G, Go)

0Ee

Now (v) ess sup Q(G, Go) = Q(Go, Go) by lemma 4.1 and condition (2), and J(G, Go) =
Q(G, Go) - Q(Go, Go). We prove (4.7). By lemma (4.1) and condition (3), there
exists a compact K such that
(4.10) (v*) ess sup Q(G, Go) = ess sup Q(G, Go)

OEKnB OEB
and

(4.11) (v*) ess sup Q(G, Oo) < ess sup Q(G, Oo).
0E=KnB 0eeB

Now clearly v*(K n B) > 0. Remark first that

(4.12) (v*) ess sup exp Qn(G) 2 [fB exp nQn(G)v*(dO)]1/n

2 [fK fB exp nQn(G)v*(dO)]
But by lemma 4.2,

(4.13) lim [fK B exp nQn(G)v*(dO)]

= lim [l/v*(K n B) * f exp nQn(G)v*(dO)]1/n
= (v*) ess sup exp Q(0, Go),

OE=KnB

since Qn(G) -- Q(G, Go), a.s. Pe0 uniformly on K by the S.L.L.N. On the other
hand, by lemma 4.1, (4.11), and the S.L.L.N.,

(4.14) (v*) ess supexp Qn(G) -. (v*) ess sup exp Q(G, Go);
0EB OEB

which completes the proof of the theorem.
As in section 3, we again state a general theorem without proof. Let {Zi, i > 1}

be distributed according to a density fe(x) with respect to a a-finite measure js for
a E 0 C RP for some p, 0-Borel measurable. Let H be a measurable subset of 0.
Then let v, t(G), v*, Y., J(G, Oo), B(G), 4b(G, x), H be defined as before. We have
the following theorem.
THEOREM 4.2. Suppose that
(1) v(U) > Ofor any open set U, 0 < v*(H) < v*(0);
(2) v*(12) = 0;
(3) t(G) 2 0 and is strictly positive outside a compact;
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(4) '1(D, x) is continuous in 0 for almost all x;
(5) Eeo{supll-tl<.A(o,)j4(s, Z1) - (b(t, Zi)I} < oo for some A(0o) > 0, and for

all O0;
(6) Ee.[4P(s, Z1)] > -X for all s;
(7) Ee,{SUP11e-e011 .K(eO) [4(0, Z1) - 'I(00, Z1)]} < B(6o) for some K(oo) < r.

Then, log Y/n --+ B(Oo), a.s. P9,.
This theorem of course covers the multivariate as well as univariate K-D

families and also many other examples. The reader will also note the by no
means accidental resemblance of our conditions to those of Kiefer and Sacks
in [3]. Of course, the conditions required to prove pointwise optimality are less
stringent.

6. Conclusion

Some of the procedures suggested in this paper and similar A.P.O. procedures
for estimation and testing have already appeared in the literature. Thus, Wald
[6] proved that under some regularity conditions, similar to those of theorem 3.2,
the following procedure is asymptotically minimax: "Stop the first time
(1/(n + 1)A(O.)) < c" where fin is the maximum likelihood estimate and A(0)
is as before. It is not difficult to verify that this procedure is asymptotically
equivalent to the rule given in theorem 2.1 (i) since, under the conditions of
theorem 3.2,

(6.1) [(n + 1)Yn _
40l, a.s.

Schwarz [4] showed the procedure of theorem 2.1 (ii)a to have asymptotically
the same shape as the optimal Bayes region for the exponential family under
essentially the conditions of theorem 4.1. Kiefer and Sacks [3] extended his
results to more general families and strengthened them. They proved, under
some regularity conditions, that, in the presence of an indifference region be-
tween hypothesis and alternative, the procedure "Stop when Yn is first < c"
is asymptotically Bayes. It may be shown from their results that the Bayes
optimal rule is A.P.O. as might be expected.
The procedure given in theorem 2.1 (ii)b seems to be "better" if an indifference

region is not assumed. We are, at present, investigating the connection between
A.P.O. rules and asymptotic Bayes solutions in this and other instances. The
results of [3], [4], [6] give the reader some idea of what can be expected. It
may be noted that the rules of Wald and one of the asymptotically Bayes rules
proposed by Kiefer and Sacks which is A.P.O. are essentially independent of the
choice of prior distribution. In general (because of dependence on large samples),
the concept of asymptotic pointwise optimality seems to be "prior distribution
free" a property which augurs well for its application to non-Bayesian and even
nonparametric statistics. We hope to explore these questions also in subsequent
papers.
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Finially, it seems that the results of this paper are answers to interesting
examples of a more general question. Suppose we are given a stochastic sequence
of processes, {XC(t)} consisting of a deterministic component {D,(t)} and a noise
component {NC(t)}. Let d(c) denote the time at which {D,(t)} reaches its
minimum, and o(c) denote the time at which {XC(t)} reaches its minimum and
suppose that o(c) -÷oo as c -* 0. Assume further that we can estimate DC(t)
consistently from Xc(t) by DC(t), where consistency refers to the behavior of D
as c -- 0. Let d(c) denote the approximation to d(c) based on Do(t). When is it
true that Dc(d(c)) -D(d(c)) - Xc(o(c))? Obviously, NC(t) -+ 0 as c -+ 0, but
further investigation is required. We intend to deal with this question in a
forthcoming paper.
We would like to thank A. Dvoretzky for a remark which led to corollary 2.1.
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