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1. Introduction

In addition to obtaining point estimates, one of the central problems of
statistical inference is the construction of confidence intervals. In most works,
as a rule, considerations are limited to independent sampling, which restricts
the range of application without justification. The present paper intends to
show that the problems of constructing confidence sets and intervals may be
solved for diverse models of mathematical statistics. Underlying the methods
is the concept of systems of confidence sets (see [1], [2], [3]). The material
expounded below is part of the lectures in a course in mathematical statistics
read to students in the Mathematics-Mechanics Faculty of Moscow University
in the Fall semester of 1965.

2. Construction of confidence intervals

We consider the statistical model [X, 63x, 0, Po] where X = {x} is the set
of possible results x of the experiment, and Ox is a o--algebra of events. A family
of stochastic measures Po governing the outcome of the experiment is given
on 63x. The object 0 is a set of unknown parameters. Let us consider the subset H
of points (0, x) in the direct product 0 X X. The sets Ho = {x: (0, x) E H} are
called 0-sections of H. The sets Hz = {l: (0, x) c H} C 0 are called x-sections
of H. The subsets {Hx} of the set 0 are called confident with a coefficient of
confidence not less than (equal to) y if the set {O E Hz} G c3x and

(1) infPe{0 Hz} > (=)'Y.ee

THEOREM 1. (See [1].) If the 0-sections He of the set H are measurable, and if
for every 0 Ee0they satisfy the condition

(2) inf Pe{x E He} > (=)-y,ee

then the x-sections of the set H C 0 X X form a system of confidence sets with a
coefficient of confidence not less than (equal to) -y, or briefly, a y system.
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The proof is a direct consequence of the equivalence of the events

(3) {(0, x) e H}I {x He}- { e H.}.
Let us consider the following example. Let us assume that the space X is formed
by sets of integers x = (d1, * * *, di), di = 0, 1, * * *, whose coordinates are
mutually independent Poisson random variables with unknown parameters
forming the vector 0 = (X1, **- , X,), that is, M9di = Xi. Here 0 is a positive
quadrant of m-dimensional Euclidean space. Let us construct 0-sections of the
set H by means of the formula
(4) Ho = {x: di + + dm > dy},
where d, is the greatest integer for which

(5) Po{di+ + dm dy} = E (Xi+ *-+x)k 1+ -+-) > Y.

It is easy to verify (see [2]) that the x-sections of such a set H are defined by
the formula

(6) H. = {(X1,*-,) *+X. <Al_y(di+ -+ d), Xi °0},

where A,a(k) is the solution of the transcendental equation _k=o (zk/k!)e- = a.
By virtue of (4), condition 2 of theorem 1 is satisfied and the sets H. given by
formula (6) form a y system.

In statistical models to which multidimensional spaces of unknown param-
eters 0 correspond, the need often arises for a construction of the confidence
interval for the function f(x, 0). It is assumed that f(x, 0) is 03x measurable for
each 0 e 0. The interval [f(x), f(x)] is called confident for f(x, 0) with a coeffi-
cient of confidence not less than (equal to) y, if f(x), f(x).are 63x measurable, and

(7) inf Pe{f(x) <f(x,0) <f(x)} 2 (=)hy.ee

Let us designate such stochastic intervals briefly as y intervals. The need to
extend the problem to functions dependent on x as well as on 0 arises in a natural
way in problems of statistical acceptance testing, say [2].

If all the constructions of confidence intervals in mathematical statistics are
analyzed, we then shall see that they either explicitly or implicitly follow the
plan of the following theorem.
THEOREM 2. If {Hz} is a y system, and

(8) f(x) = inf f(x, 0) and f(x) = sup f(x, 0)

are (Bx measurable functions, then the interval [f(x), f(x)] is a y intervalforf(x, 0).
The proof is a consequence of the relation {0 E H.} C {f(x) < f(x, 0) < A(x)}

from which we obtain for any 0 E 0

(9) -y < PO{0 e Hz} < Po{f(x) < f(x, 0) < f(x)}.
It is sometimes useful to keep the following in mind.



CONFIDENCE INTERVALS 53

COROLLARY. If one is given a priori the supplementary information that
0 E e0 C 0, then a narrower y interval may be constructed by means of the formulas

(10) f'(x) = inf f(x, 0) and f'(x) = sup f(x, 0).
eEHzfno GEHfnlOo

The following trivial remark may also turn out to be useful sometimes.
THEOREM 3. If {Ht} is a y, system, i = 1, 2, then the system of sets

{Hz = HW n H'} is a (71 + 72 - 1) system.
It follows from theorems 2 and 3 that in certain cases of statistical models

with a space of large dimensionality 0 the problem of seeking the upper bound
of a one-sided y interval [0, f(x)] takes the specific form of a concave nonlinear
programming problem. More specifically, in some cases it is required to find
the upper confidence level for the concave function f(0) when the -Y system is
formed by random convex polyhedra. In such cases the max f(0) is sought at
the vertices of the confidence polyhedra. For example, for the y system described
by sets of the form (6) and the function f(0) = Et 1fi(Xi), where the fi are
concave functions, the upper bound of a one-sided -y interval equals

(11) f(x) = max {fi(A-,( d))}
with fi(O) = 0.
The construction of a y system is done in a simpler way by using the assign-

ment of stochastic variables dependent on both the outcome of the experiment
x E X and on the parameter 0 E 0. Generally, let g(x, 0) be a vector stochastic
variable. In the space G of values of the stochastic variable g(x, 0) we select
for each 0 E 0 a subset Ge(y) such that
(12) Pe{g(x, 0) E Ge(7)} 2 7.

It follows from condition (12) that the set He = {x: g(x, 0) E Ge(y)} may be
considered as a 0-section of some set H in the product space 0 X X. We obtain
the following assertion from theorem 1.
THEOREM 4. The system of sets

(13) H. = {0: g(x, 0) E Ge(y)},
where the Go(y) satisfy relation (12), is a y system.
The method of constructing y systems is particularly simple in those cases

when g(x, 0) has a distribution independent of the unknown parameters 0. Here
Ge(y) = G(y), that is, independent of the unknown parameter 0.

Let us illustrate the method of constructing 7 systems by two examples.
Let the test outcomes be x = (trP, ... , t11), where tt2 is the time of the

appearance of the ri-th event in a Poisson process with index i and unknown
intensity Xi. It is assumed that the t(t) are stochastic variables which are mutually
independent with respect to i. The sets 0 = (X1, *---, Xm), Xi 2 0 play the part
of the unknown parameter 0. It is easy to check that 2XAitr has a x2 distribu-
tion with 2ri degrees of freedom. Correspondingly, the stochastic variable
g(x, 0) = 2 -E- 1 Xitt, has a x2 distribution with 2F_L1 ri degrees of freedom.
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If we select the interval [0, x2(2 F= ri)] as the set Ge(-y), where x2 is the
quantile level -y for the x2 distribution with 2 Et'l ri degrees of freedom, then
in conformity with (13), the sets

(14) H, {(, , Xm): 2 E kit( < X> (2 1 ri)}

generate a -y system. Thus the confidence sets are formed by points (Xi, * , Xm),
cut out of the first quadrant by the hyperplane 2 Z_=lIitr1 =i 2(2 E_=l ri).

Let us use the second example to illustrate the methods of constructing
confidence intervals for one of the components of the unknown parameter,
when the other parameters may be considered as nuisances.

Let 0, be a Wiener process with Mo3t = ,u-t and variance M(3t - At)2 = t.
The process /3t is observed up to the cut-off time t*. It is assumed that
P{t* > t} = e-xt and that t* is independent of the value of j3t. Hence, the trial
outcome is a piece of the trajectory of the Wiener process /38, 0 < S < t*. The
unknown parameters are 0 = (y, X), that is, the local drift coefficient p and the
cut-off intensity X. If we start from sufficient statistics [3], then we may limit
ourselves to the space of values X = {x}, where x = (t, y) are the coordinates
of the Wiener process At = y at the cut-off time t* = t. It follows from the
conditions of the problem that the probability density is

(15) p5(X) = X-e-11 I - exp {(y - pt)2/2t}.

Let us consider the two-dimensional stochastic variable

(16) g(x, 0) = (s1, 82); Sl = Xt, 82 = \/- (it- pt).
It is easy to verify that its distribution is independent of the unknown values
of the parameter 0 and is given by the density

2

(17) p(si, 82) = e P( s

In conformity with theorem 4, we may select any domain G(-y) in the plane of
the points (sl, s2) such that

(18) IG( ) p(SI, S2) ds, ds2 = -Y
In conformity with (13), the confidence sets generating the y system are

(19) H. = {(p,, X): (Xt*, V§,(Ot* -pt*)) E G(-y)}.

It is possible to formulate and solve the problem of selecting the best domain
G(T), which would minimize the chosen "width" index of the confidence interval.
In this example we limited ourselves to a rectangular domain of the form
G(-y) = {si 2 a, -b < 82 < b} where a and b are connected by means of (18).
For such a domain G(-y) the confidence domain is

(20) H. = {(p, X): Xt* > a, -b < -\/ (3t* - pt*) < b},
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or finally,

(21) X(';):p t*> t *bA- 12 < < Ot- + bX-l/2

Let us now assume that we are required to construct a -y interval, for the param-
eter /.4 when X plays the part of the nuisance parameter. To apply theorem 2,
let us note that f(O) = ,u. From (8) and (21) we find

*- 1-bt*132a-12t* + bt*1I2a-c12(22) M = inf = t* ' = sup = t*

The selection of the optimum a and b may be carried out by using the method
of Lagrange multipliers.

Let us now consider the generalization of an example of Fisher [4], [5] to
elementary models of Markov processes with a countable set of states which are
observed up to a certain stopping time. The material expounded below is an
extension of results of L. N. Bol'shev [6], [7], and [2], which are associated
with observations of a Poisson process.

Let us assume that the space of trial outcomes X can be made into a com-
pletely ordered set by introducing the relation x -< y meaning "x to the left
of y." The reader might at once imagine the points of the stopping limit of a
stochastic process as the generalization of a line. Furthermore, let us assume
that for any z E X the probability 5(z, 0) = Po{x < z} is a nonincreasing
(nondecreasing) function of the parameter 0, which we consider to be a real
number in this case. Let us use the notation (z, 0) = Pe{z > x}. It is convenient
to consider that the family of probabilistic measures P9 assigned on X is con-
sistent in the sense that for each interval [a, b], Pe{a -< x < b} > 0 is continuous
with respect to 0, with the possible exception of the critical value of 0 only. It
is thereby implicitly assumed that those points x which cannot be observed as
a result of the experiment are excluded from consideration. For each value of 0
in the space X let us prescribe an interval [x(8), x(a)], as narrow as possible,
for which
(23) Pe{O(0) < x < x(@)} 2 (=) -Y.

Since 5;(x, 0) is nonincreasing (nondecreasing) in 0, the bounds of x(O), x(8)
may be chosen as nondecreasing (nonincreasing) functions of 6. It is traditional
to select such values of the trial outcomes for which

(24)
~ ~~~{XI>Z (a)WO$(), 0) 2 1-'E 2 suSU (X2, 0)(24) 1Y(x(0), 0) 2 1 -e 2.sup §i(x2, 0)

as He = [x(0),x(@)]. Analogous relationships are written down for nondecreasing
9(x, 0). If el and 62 satisfy the condition y = 1 - (E + E2), then (23) follows
from (24). Hence, the interval [x(@), x(0)] may be considered as a 0-section of
the set H C 0 X X; the x-sections generate a -y system. From the fact that the
functions x(8), x(0) are nondecreasing (nonincreasing) it follows that the
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x-sections are the intervals [8(x), @(x)]. The boundaries of the confidence inter-
vals for the observation of the outcome x* are found from the relations

(e(x) = sup {6: 9(x*, 6) > 1- El sup 9(xl, 6)},
(25) xi2>z*

5(x) = inf {6: 0(X*, 6) 2 1 -e2 > sup (x2, 6)},
X2 <X*

when 5;(x, 6) is nonincreasing, and from the relations

(8(x) = sup {6: 5(x*, 6) 2 1 -E2 2 sup 5(x2, 6)},
(26)

.2 <2*((X) = inf {l: S(x*, 6) 2 1 -el sup 9(xi )},
xi >x*

when the function 5(x, 6) is nondecreasing in 6. The following theorem is there-
fore proved.
THEOREM 5. If the set of trial outcomes can be completely ordered in such a way

that the function cf(z, 6) = Pe{x* < z} is nonincreasing (nondecreasing) in 0, then
the boundaries of the -y intervals are found from formulas (25), ((26)).

Let us note that in those cases where 5:(x, 6) is a continuous function of x,
equations (25) and (26) take a simple form. Here 9= @(x*), e = Q(x*) are
solutions of the equations
(25') 5(x*, ')= El, Y(x*, Q) = 1-f2,
(26') 3i(x*, 0) = fl, 9(x*, 9) = 1-E2,

which is, however, a simple consequence of the fact that under this assumption
the stochastic variable 5;(x*, 6) has a uniform distribution in the interval [0, 1]
(see [4]).
As a nontrivial application to life-testing of the theorem proved above, let

us consider the following statistical model. A Markov process {e of the pure
birth type is observed whose possible values are the integers and t0 = 0. Let
the intensity of the transitions from the state k to the state k + I be /2k(6).
Here 0 > 0 is an unknown value of the parameter which affects this intensity.
A set S of stopping points is given in the plane of (t, k) points, where t is the
time coordinate and k is the value of the process (e. As a result of testing, the
trajectory of the process t, is observed up to the time of first hitting one of the
points of the set S. We make the following assumptions relative to the set of
stopping points S and the process t: (a) for any 6 > 0 the trajectory of t,
reaches one of the points of S with probability 1; (b) the set S can be completely
ordered; hence, for an arbitrary nondecreasing function k(s) taking integer
values, any of the boundary points x not lying below the graph (s, k(s)) wil
be "to the left" of any of the boundary points lying below this graph, if the
graph (s, k(s)) is drawn up to the first hit of the set S; (c) ,k(0) is a nondecreasing
function of 6 for every k; mink /1(6) -4 0o, 6 - -o.

It is useful to employ the following rule in establishing the order relation
Xl < x2 or "x1 is to the left of x2" for x E S. If xi and x2 belong to one segment
in the (t, k) plane formed by stopping points of the form (s, k), s' < s < s",
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k = const., then we assert that xi = (t1, ki) -< x2 = (t2, k2), when ki = k2 = k,
s' . tl < t2 < s". If the values tl = t2 coincide at the points xl, x2, we assert
xI < x2 when k1> k2. Furthermore, the order relation is established in such a
manner as to satisfy (b). This is possible for a broad class of sets S.
THEOREM 6. Assuming conditions (a)-(c), the confidence 'y intervals for 0 are

defined by (26), where 5;(x, 0) is the probability of not stopping "to the right," and
9(x, 0) is the probability of not stopping "to the left" of the point x E S.
The absorption probabilities 3;(x, 0), 9(x, 0) may be calculated by using con-

ventional Markov process techniques (see details in [8]). When the points of S
have the form (t, k(t)), where k(t) is a nonincreasing function of t,

k
(27) (X, 0) = ; Pz(t, 0), 9(X, 0) = E P(t, 0).

0=0 I>k

Here x = (t, k) and pl(t, 0) is the probability that the value of the process
is tt = 1 at time t for free motion without stopping points. For example, for the
Poisson process Pkk(0) = 0, pi(t, 0) = ((0t)')/l!)e-0t, from which one of the
L. N. Bol'shev results [7] easily follows.
The proof of theorem 6 may be obtained by using a stochastic transformation

of the time along the trajectory of the process t. If Uk(0") > gk(0t) for 0" > 0',
then the transition to the value 0" corresponds to a decrease of the sojourn
time in the state k, which also increases the probability of stopping the trans-
formed trajectory at the points y e S "to the left" of x.

In conclusion, let us make several remarks on the construction of the shortest
system of confidence intervals. For the case of one-parameter exponential
families, the shortest confidence intervals are connected in a definite manner
with the most powerful tests of hypotheses (see [3]). If series of statistical
models [X,, Bxg, 0, Pe,,] dependent on the "time" t of data accumulation are
considered, it is recommended to start from the effective estimates g(x) in
constructing confidence intervals for f(0). The -y interval is constructed by
means of (13). Unfortunately, such a procedure is difficult to carry out in practice
for statistical models with spaces of large dimensionality, because of the com-
plexity of the algorithms giving f(x), f(x) by means of (8). It is necessary to
compromise and to construct simpler Py systems which take into account in some
way the specific properties of the function f(0), and at the same time use com-
paratively simple algorithms to achieve (8).

For f(0) = Elm- fi(Xi), where the fi(Xi) are concave functions satisfying con-
ditions leading to the systems (6), better results than those of (11) are obtainable
for small values of di by using the following system of sets:

(28)

Hz{= (Xi, * *X,m): Xi < A1l( di) < Xi < A,_2(di), i = 1, * *m}

In conformity with theorem 3 the sets (28) generate (,yl + y'2 -1) systems.
The H,, are convex polyhedra. The upper confidence bound is max f(0) taken
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over the vertices of the polyhedron H.. It is easy to show that the coordinates
of those vertices of the polyhedron Hz at which maxf(O) is achieved are the
following. The set S U io, S C (1, * *, m), for which

(29) E \Aj_,l(dj) < A1j_( E di) < E Al-8,,(di) + max Al-,,(dj)
iES i=l icS j{ES

corresponds to each vertex. The values of the vertex coordinates Xi, i E S are
assumed to equal A1,_2(dj). The remaining are Xi = 0 with the exception of
Xi = x, io f S, which is the solution of the equation

(30) E A1_,2(d1) + x = A1j_,(L di), x < A1-,(dio)

In practice it is impossible to sort out all such vertices since they are many and
to find the max f(6). However, it is possible to mention a completely realizable
algorithm whose complexity depends not so much on m as on the number of
different values of di.
The algorithmic character of the problems on confidence intervals for compli-

cated spaces 0 is apparently typical.
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