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1. Introduction

The study of characteristic functions has several aspects. Characteristic func-
tions were introduced to permit the application of powerful analytical methods
in probability theory. They were first used as a tool to study limit theorems,
however the scope of their applications has constantly widened and includes
now a large variety of problems in probability theory and in mathematical
statistics. More recently mathematicians began to investigate problems concern-
ing characteristic functions for their intrinsic mathematical interest. In some of
these problems their probabilistic or statistical origin is still apparent, in others,
the analytical character becomes dominant.
The present survey deals, therefore, with a variety of loosely connected topics.

In the first part, we study certain frequency functions whose characteristic
functions are known. These include the stable distributions, P6lya type distri-
butions, and a related family. These results are interesting from the probabilistic
as well as from the analytic viewpoint. The second part deals with problems
motivated by certain statistical questions. The third part treats the arithmetic
of distribution functions and related analytical problems.

Let F(x) be a distribution function, that is a nonnegative, right-continuous
function such that F(-oo) = 0 while F(+oo) = 1. The Fourier-Stieltjes trans-
form of F(x), that is the function

(1.1) f(t) f-f eiS-dF(x)
is called the characteristic function of F(x). In this paper we denote distribution
functions by capital letters, as F(x), and the characteristic function of F(x) by
the corresponding small letter, as f(t). If subscripts are used on the symbol for a
distribution function then the same subscripts are attached to its characteristic
function.
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P'ART I. APPLICATION OF CHARACTERISTIC FUNCTIONS TO TIlE
STUDY OF DISTRIBUTION FUNCTIONS

It is often of interest to express properties of distribution functions in terms of
their characteristic functions. In this part, we deal mainly with stable and with
unimodal distributions. However, we mention here three interesting isolated
results. J. R. Blum and M. Rosenblatt [1] gave conditions which assure that an
infinitely divisible distribution is discrete or continuous or a mixture. J. Shapiro
[52] derived a necessary and sufficient condition for the existence of moments
of an infinitely divisible distribution. E. J. G. Pitman [45] studied characteristic
functions which have a derivative of odd order at the origin.

2. Stable distributions and their frequency functions

A distribution function F(x) is said to be stable if to every bi > 0, b2 > 0, Cl
and c2 there corresponds a positive number b and a real c such that

(2.1) F (xbl ) F(x b2 ) F(x b )

holds The asterisk denotes here the operation of convolution. Stable distribu-
tions were first investigated by P. L6vy, who showed that they are limit laws of
normed sums of independently and identically distributed random variables.
The characteristic function of a stable distribution is called a stable characteristic
function. The relation (2.1) can be expressed in terms of characteristic functions
as
(2.2) f(b1t)f(b2t) = ffit)eiet
where -Y = C - C1 - C2.

It is possible to determine all stable characteristic functions f(t); they are
given by

(2.3) log faQ; a, ,B, c) = iat - cIt|a {1 + ijt w(ItI, a)}
where

~tan- a$1-!2
(2.4) w(ItI, a) = 2

l- log Iti, a = 1
7r

and where c > 0, 11 _ 1, 0 < a _ 2 while a is a real number. The number a
is called the exponent of the stable distribution.

It is known that all stable distributions are absolutely continuous; we denote
the frequency functions of the stable distribution with parameters a, a, ,t, c by
pa(x; a, j3, c) and write p(x; a, 0, c) for po(x; a, ,B, c) andf(t; a, 3, c) for fo(t; a, ,B, c).
Then
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(2.5) p(x; a, (3, c) = 21 f e-ifxf(t; a, (3, c) dt.

It follows easily from (2.3) and (2.5) that

(2.6) p(x; a, (3, c) = p,(-x; a, -3, c).

Explicit expressions for the frequency functions of stable distributions are
only known in a few isolated cases. Thus (2.5) yields for a = 2 the normal fre-
quency function, for a = 1 and d = 0 the density function of the Cauchy dis-
tribution. P. Levy and N. V. Smirnov determined also the stable distribution
with a = 1/2; it belongs to the system of Pearson curves (Type V). Apart from
these three cases, no stable distributions are known whose frequency functions
are elementary functions.
The analytical behavior of the frequency functions of stable laws was first

studied by A. I. Lapin (see [9], p. 183), who showed that p(x; a, (3, c) is an entire
function if a > 1 while for a = 1 the radius of convergence of the Taylor series
for p(x; a, (3, c) in the neighborhood of a point x of the real axis is at least equal
to c. The case a < 1 was investigated by A. V. Skorohod [55] who obtained the
following result.
THEOREM 2.1. The frequency function of a stable distribution with characteristic

exponent a < 1 has the form

0 b1(x a) z z > 0

(2.7) P(x; a, (3, c) =
.l(1xl a)' x < 0X

where 4i(z) anid 42(z) are entire functions.
V. M. Zolotarev [68] found an expression for the density of a stable distribu-

tion with exponent a greater than one in terms of a density with exponent 1/a.
In view of (2.6) it is sufficient to study the case where x > 0 while -1 < ( < 1.
Zolotarev obtained the following result.
THEOREM 2.2. Let v = -(3 tan (Tra/2) and a, = (1 + v2)1/2a then

(2.8) a,,xp(-a,x; a, B, 1) = a;x-ap (ax-a; , , 1)

for all x > 0, 1(1 < I and any a > 1. Here D = - tan (ra/2) and

(2.9) =tall, 2 Itan a2arctan v + (a -1)](2.9) = ~~2a] 2aL j7r
V. M. Zolotarev [69] studied analytical relations between stable laws with dif-
ferent parameters and also used [70] systematically the Mellin transform to
investigate analytical properties of stable laws. In the first of these two papers
he considered the case where the exponent a < 1 is a rational number and showe(d
that p(x; a, 3, 1) is the real part of a function which satisfies an ordinary dif-
ferential equation. Zolotarev used these results, and some known formulas, to
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express the frequency functions of stable distributions with parameters a = 2/3,
;=1;a =3/2,0=1; a =2/3, B =0; a = 1/3, = 1;a = 1/2, , arbitrary,

in terms of higher transcendental functions.
Somewhat related problems were treated by P. Medgyessy [43]. He assumed

that the exponent a = m/n is a rational number (m, n relatively prime integers)
and that ,B = 0 in case a = 1. He showed that p = p(x; a, ,B, c) satisfies a linear
partial differential equation with constant coefficients,

(2.10) Kl bi+aip + K2 -ab2a2 + K3 gbs+asp 0.
aCbl9Xa, 2taa 1c39a

Here the as, bi, Ki, with i = 1, 2, 3, depend on m, n and ,B but are not uniquely
determined. This fact can be used to simplify the partial differential equation
for p. In case a 1 (but not necessarily rational) Medgyessy [44] obtained two
partial integro-differential equations for p. Medgyessy used his results to study
the decomposition of mixtures of stable distributions.
Among the analytical properties of stable frequency functions that were

thoroughly investigated, we must finally mention their asymptotic behavior.
A. V. Skorohod [54] gave a comprehensive survey of asymptotic formulas; he
considers the cases shown in table I. More recently V. M. Zolotarev [70] gave

TABLE I

a<1<a >1

X X0 X X0 X X0
X = 1

x-0(X >O) X X -x

_-40XX X X0 X oo
-1 <j3 < 1

X-so ~~X-X X-o
X ----. X -o0 X >-X

X -1 x-*-
x*O(X <O) -*oo

asymptotic expansions for stable distributions as the exponent a tends to the
points a = 0 and a = 1.

3. Unimodality of certain families of distribution functions

A distribution function F(x) is said to be unimodal if there exists at least
one value x = a such that F(x) is convex for x < a and concave for x > a.

A. Wintner [60], [61] was one of the first to investigate unimodal distributions.
He obtained
THEOREM 3.1. The limiting distribution of a sequence of unimodal distributions

is unimodal.
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THEOREM 3.2. T'he convolution of two symmetric and unimodal distributions
is also symmetric and unimodal.
Another important result is due to A. I. Khinchin [13].
THEOREM 3.3. The function f(t) is the characteristic function of a unimodal

distribution if, and only if, it can be represented in the form f(t) = (1/t) fo, g(u) du
where g(u) is some characteristic function.
The study of unimodal distributions was recently stimulated by the discovery

of an error in a proof by A. I. Lapin. Lapin asserted that the convolutions of
unimodal distributions (not only of symmetric unimodal distributions) are
unimodal. Subsequently Lapin's (erroneous) statement was used to show that
the distributions of the L-class, and hence also all stable distributions, are
unimodal. A distribution function F(x), and its characteristic function f(t), are
said to belong to the L-class if for every c, with 0 < c < 1, there exists a charac-
teristic function f,(t) such that the relation f(t) = f(ct)fc(t) holds for all t. The
distributions (characteristic functions) of the L-class also are called self-decom-
posable distributions (characteristic functions). The error in Lapin's proof
was pointed out by K. L. Chung [3] (see also appendix II of Gnedenko and
Kolmogorov's book [9]) who gave also counterexamples. The question whether
the self-decomposable and stable distributions are unimodal became therefore
once more an open problem.

I. A. Ibragimov [10] introduced the concept of strongly unimodal distribu-
tions. He calls a distribution strongly unimodal if its convolution with any uni-
modal distribution is unimodal. Ibragimov showed that a (nondegenerate) dis-
tribution function F(x) is strongly unimodal if, and only if, F(x) is continuous
and the function log F'(x) is concave on the set of points on which neither the
right nor the left derivative of F(x) vanishes.

I. A. Ibragimov [11] constructed an example of a characteristic function of
the L-class which does not belong to a unimodal distribution.

A. Wintner [60] showed that all symmetric stable distributions are unimodal,
he [62] also succeeded in proving the unimodality of the symmetric and self-
decomposable distributions. Finally I. A. Ibragimov and K. E. Cernin [12]
showed that all stable distributions are unimodal. It would be interesting to
obtain a characterization of all unimodal distributions of the L-class.

R. G. Laha [18] recently obtained two sufficient conditions which insure that
a real valued, even function f(t) is the characteristic function of a unimodal
distribution. These conditions are similar to P6lya's condition [46] and are easily
applicable.
THEOREM 3.4. Let f(t) be a real valued and even function which satisfies the

condition,s
(i) f(O) = 1,
(ii limitl -f(t) = 0,

(iii) the function tf'(t) exists and is continuous for all real t, moreover limt-otf'(t)
= limjtgjtf'(t) = O,
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(iv) the function g(t) = f(t) + tf'(t) is convex for t > 0.
Then f(t) is the characteristic functiont of a symmetric and unimodal distributionl.
The function g(t) satisfies the conditions of P61ya's theorem (see [46], theorem

1) and is therefore a characteristic function. It follows from the definition of g(t)
that f(t) = (l/t) Jo g(u) du; according to theorem 3.3 the function f(t) is then
the characteristic function of a unimodal distribution.
THEOREM 3.5. Let f(t) be a real valued, continuous and even function of the

real variable t such that f(O) = 1. Suppose that there exists a function A (z) of the
complex variable z, where z = t + iy with t, y real, that satisfies the conditions

(i) f(t) = A(t) for real t > 0,
(ii) A(z) is regular in the region -l < arg z < 7r/2 + E2, 'E > 0, E2 > 0,
(iii) [A(z)1 = 0(1) as IzI -- 0, IA(z)I = 0(Izl-h) as lzl -oo with a> 1,
(iv) Im A(iy) _O for y >O,

where A (z) may also assume complex values. Then f(t) is the characteristic function
of an absolutely continuous, symmetric and unimodal distribution.

It follows from assumption (iii) that f(t) is absolutely integrable; the integral

(3.1) p(x) = 2-f e-ilf(t) dt = f cos txf(t) dt

exists and is a real valued, continuous and even function of x. We use assumption
(i) to write (3.1) in the form

(3.2) p(x) = 1 Re | eitxf(t) dt = -Re eitz A(t) dt.

To evaluate the last integral we consider the integral

(3.3) feizx A(z)dz

along a contour C which consists of the following four parts: (1) the segment
r . t < R of the real axis, (2) the circular arc r of radius R with center at the
origin located in the first quadrant, (3) the segment r _ y _ R of the imaginary
axis, (4) the circular arc y of radius r with center at the origin located in the
first quadrant. We see from assumption (ii) that

(3.4) f eixxA (z) dz = 0,

we also deduce from (iii) that, for x > 0,

(3.5) lim f ei ZA(z) dz = lim f ei-zA(z) dz = 0,
r--O f f

so that

(3.6) fL eilzA(t) dt = i fo e-izA(iy) dy.
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We conclude therefore from (3.2), (3.6) and assumption (iv) that

(3.7) p(x) = -f e-yx Im [A(iy)] dy,

so that p(x) > 0 for all real x. Let 0 < xl < x2, it follows from (3.7) and (iv) that

(3.8) p(O) > p(x0) > p(x2),
hence p(x) has a unique maximum at x = 0. This completes the proof of the
theorem.
The application of these theorems yields
THEOREM 3.6. The function

(3.9) f(t) = +

is, for any a in the interval 0 < a _ 2, the characteristic function of a unimodal
distribution.
The fact that the function f(t), as defined in theorem 3.6 is a characteristic

function was already established by Yu. V. Linnik [26]. If 0 < a < 1, theorem
3.6 follows from theorem 3.4; if 1 < a < 2 we obtain it from theorem 3.5. For
a = 2 formula (3.9) yields the characteristic function of the Laplace distribution
which is known to be unimodal. It is easy to show that f(t), as given by (3.9),
cannot be a characteristic function if a < 0 or if a > 2.

A. Wintner's [60] result, that all symmetric stable distributions are unimodal,
follows easily from theorem 3.6. Let n be a positive integer and write an = n-'lc.
The function

(3.10) gn(t) = [f(ant)]-n 1La)n

is, according to theorem 3.2, the characteristic function of a symmetric, uni-
modal distribution. We see from theorem 3.1 that the same statement holds for
the function

(3.11) lim gn(t) = e-
n--

PART II. CHARACTERIZATION PROBLEMS

Let Xl, X2, * , X,, be a sample from a given population or, more generally,
n independently but not necessarily identically distributed random variables.
For the sake of convenience we shall use in the following the term statistic for
a single valued and measurable function of the Xl, X2, * * *, X. even in case
these random variables are not identically distributed. In this part we consider
the problem of characterizing the distributions of the random variables Xl,
X2, - * *, X. by properties of certain statistics. The work done in this direction
up to 1955 was surveyed at the Third Berkeley Symposium [38]. However,
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research on characterization problems continued during the past five years. As
a result of these recent investigations the problem has changed its character.
Up to 1950 one studied in this connection mainly a few specific populations,
while the more recent developments deal primarily with the analytical properties
of the characteristic functions of the random variables Xl, X2, * * *, X,.

In section 4, we report on some developments which are still closely connected
with the earlier work. In section 5, we treat some of the recent results which have
a more analytical character.

4. Characterization of certain populations

In this section we characterize populations by means of certain regression
properties. Let Y and X be two random variables and assume that the first
moment of Y and the kth moment of X exist and write E(YIX) for the condi-
tional expectation of Y, given X. We introduce

DEFINITION 4.1. The random variable Y is said to have polynomial regression
of order k on X if the relation

(4.1) E(Y[X) = go + f1X + * + 3kXk, Ok # 0,

holds almost everywhere.
If k = 2 we use the term quadratic regression, if k = 1 we speak about linear

regression. If k = 0, that is if E(YIX) = E(Y) almost everywhere, then we say
that Y has constant regression on X. The following lemma is a simple generaliza-
tion of a result (lemma 6.1) in [38] and is proven in the same manner.
LEMMA 4.1. Let X and Y be two random variables and assume that the expecta-

tions E(Y) and E(Xk) exist where k is a nonnegative integer. The random variable
Y has polynomial regression of order k on X if, and only if, the relation

k
(4.2) E(Yeitx) = Ei E(Xieix)

j=O

holds for all real t.
In an earlier paper [38] the author characterized the Poisson population by

making the following two assumptions: (i) the population distribution function
has the point x = 0 as its left extremity, (ii) the statistic S = kp+2- k has
constant regression on k1. Here p _ 1 is a positive integer and kj denotes the
k-statistic of order j, a symmetric and homogeneous polynomial statistic of order
j such that E(kj) = K} where Kj is the jth cumulant of the population distribution
function. This result was recently generalized [40] by considering instead of S
the difference of two k-statistics of arbitrary order and by removing the restric-
tion that the population was one sided. The following result was obtained.
THEOREM 4.1. Let X,, X2, -* , X. be a sample from a population with popu-

lation distribution function F(x) and denote by p > 1, r > 1 two positive integers.
Assume that the moment of order p + r of F(x) exists. The population distribution
F(x) has the characteristic functions
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(4.3) f(t) = exp [(eit- 1) + 6,X2(e-i' - 1) + clit + I evc2t2]

if, and only if, the statistic k,p+r- k has constant regression on ki. Here
X1, X2, Cl, c2 are real constants such that X >. 0, X2 > 0, C2 > 0 while 3r = [r/2] -
[(r - 1)/2] and e, = 1 if p > 1 and El = 0.
The symbol [x] denotes the largest integer not exceeding x.
This theorem characterizes a family of distributions which consists of con-

volutions of a Poisson distribution, the conjugate to a Poisson distribution and
a normal distribution. For certain values of r and p one or two of these factors
must be absent. This theorem shows that the assumption that kp+r - kp has
constant regression on k1 is not sufficient to characterize the Poisson population.
If one wishes to characterize the Poisson population one must impose some
additional restriction.
THEOREM 4.2. Let Xl, X2, * * X,n be a sample from a population with popu-

lation distribution function F(x) and denote by p _ 1, r > 1 two positive integers.
Assume that

(i) the (p + r)th moment of F(x) exists
(ii) F(x) = Ofor x < 0 while F(x) > Ofor x _ 0.

The population is a Poisson population if, and only if kp+r - k, has constant
regression on ki.

For the proof of these results certain extensions of the theorem of Marcinkiewicz
are needed (see [39]). These provide necessary conditions which an entire func-
tion must satisfy in order to be a characteristic function.
M. C. K. Tweedie [59] investigated the regression of the sample variance on

the sample mean. He characterized several populations by assuming that the
sample variance has quadratic or linear regression on the sample mean. More
recently, R. G. Laha and E. Lukacs [19] considered a general quadratic statistic

VI it n
(4.4) Q = E E aijXiXj + E bjXj

i=1 j=1 j=i

and determined all populations which have the property that Q has quadratic
regression on the statistic Xi + X2 + * * * + X_. In this study it is necessary to
distinguish several cases which are defined in terms of relations between the
coefficients aij and bj of Q and the regression coefficients 3o, i1, 02. The following
distributions were obtained: (i) the normal distribution, (ii) Poisson-type dis-
tributions (that is, Poisson distributions with scale and location parameters),
(iii) binomial and negative-binomial distributions, (iv) Gamma distributions,
(v) distributions with characteristic function

(4.5) f(t) = eiMt[cosh at + iX sinh at]-P,
where a, X, A, p are real and a -/ 0, p > 0.
We conclude this section by mentioning two characterizations of the Wiener

process. V. P. Skitovich [53] obtained the following result.
THEOREM 4.3. Let X(t) be a homogeneous stochastic process with independent
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incrccncats which is defined in a closed interval [A, B]. Let a(t) and b(t) be two

functions which are continous in [A, B] such that JA [a(t)b(t)]2 dt FF 0 and that at

least one of the integrals
B a2(t) fE b2(t)

(4.6) fb2(t) dt or | (t) dt

exists. Suppose that the two stochastic integrals JA a(t) dX(t) and JA b(t) dX(t)

are independently distributed, then X(t) is a Wiener process.
The stochastic integrals are here stochastic limits of Riemann-Stieltjes sums;

however, the mode of stochastic convergence differs somewhat from the usual
definitions. V. P. Skitovich requires that the distribution function of the Riemann
sums should converge uniformly to the distribution of a random variable. This
random variable is then called the stochastic integral. V. P. Skitovich also ex-
tended his earlier result concerning the independence of linear forms to linear
forms in infinitely many, identically distributed random variables.

R. G. Laha and E. Lukacs [20] characterized the Wiener process by means of
the following regression property.
THEOREM 4.4. Let X(t) be a stochastic process which satisfies the conditions
(a) X(t) is defined in a finite, closed interval [A, B],
(b) X(t) is homogeneous and has independent increments,
(c) X(t) is of second order and its mean value function alnd covariance function

are of bounded variation in [A, B].
Suppose that a(t) and b(t) are two continuous functions defined in [A, B] such

that a(t)b(t) 0 0 for all t G [A1, B1], where A _ A1 < B1 < B. Suppose further
that a(t) is not proportional to b(t). Let

(4.7) Y = AB a(t) dX(t), and Z = JA b(t) dX(t)

be two stochastic integrals, defined as limits in the mean. The process X(t) is a
Wiener process if, and only if,

(i) Y has linear regression on Z
(ii) The conditional variance of Y, given Z, does not depend on Z.

5. Analytical aspects of the characterization problem

The characterization problems which we studied in the preceding section, and
also those treated in part II of [38], dealt with specific statistics, such as the
sample mean and k-statistics. Properties of the distributions of these statistics
were used to characterize completely certain populations, except for the numeri-
cal values of some parameters. The solution of these problems usually was carried
out in three steps: (1) The assumptions concerning the distribution of the statis-
tics are used to derive a differential equation for the characteristic function of
the population or the characteristic functions of the random variables in case
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they are not identically distributed, (2) this differential equation is solved, (3)
those solutions are determined that are characteristic functions. Frequently the
last step is the most difficult, sometimes the differential equation is so compli-
cated that it cannot be solved readily. These difficulties lead then to investiga-
tions concerning the analytical properties of the solutions of those differential
equations that are characteristic functions.
The first results in this direction were obtained by A. A. Zinger and Yu. V.

Linnik [66], [67]. To formulate these results it is necessary to introduce the
following terminology.
We consider an ordinary differential equation

(5.1) E Aj,... j. flh)(t) ..* f(j-)(t) = C[f(t)]n
and denote the order of the differential equation by m. The Aj,...j. are real con-
stants and the sum is taken over all nonnegative integers which satisfy the con-
dition

(5.2) jl + j2 + **+ jn < p-
Here p is an integer such that at least one of the coefficients Aj,.. with ji +
. . . + jn = p is different from zero. We adjoin to the differential equation (5.1)
a polynomial

(5.3) A (xi, x2, , xn) = n! E A xk x

where the first summation * runs over all permutations (k1, k2, * , kn) of the
first n positive integers while the second summation is taken over all subscripts
satisfying (5.2).
The differential equation (5.1) is said to be positive definite if the adjoint

polynomial (5.3) is nonnegative.
A. A. Zinger and Yu. V. Linnik obtaiiied
THEOREM 5. IA. Suppose that the function f(t) is, in a certain neighborhood of

the origin, a solution of the positive definite differential equation (5.1) and assume
that m > n - 1. If the solution is a characteristic function, then it is necessarily
an entire function.
We indicate here also the motivation for this study. Let

(5.4) P = P(X1, X2, * * * , X.) = L Aj,...j.Xl... XJ
be a polynomial statistic of degree p. We adjoin to P the statistic

(5.5) P* = 1 Y* E Aj,...j,XkJ'- *.XL,

where the summations * and E are taken in the same way as in formula (5.3).
The statistic P is said to be a regular polynomial statistic of degree p and order

m if the following three conditions are satisfied:
(i) The statistic P*, adjoint to P, is a nonnegative polynomial,
(ii) no exponent in P exceeds m,



318 FOURTH BERKELEY SYMPOSIUM: LUKACS

(iii) at least one variable in P has the exponent m.
The assumption that a regular polynomial statistic P has constant regression

on the sample mean X = (X1 + X2 + ... + Xn)/n leads then to a positive
definite differential equation for the characteristic function of the population.
In this case, one can apply theorem 5.1a and obtain
THEOREM 5.1B. Let Xl, X2, *.. , X.X be a sample from a population with dis-

tribution function F(x) and assume that F(x) has moments up to order m. Let A be
the sum X, + X2 + + X. and let

(5.6) P = EAjl.. j.Xil xjn
be a regular polynomial statistic of degree p and order m, where m _ p. If

(i) P has constant regression on A,
(ii) m _ n - 1,

then the characteristic function f(t) of F(x) is an entire function.
Theorem 5.1A is a very interesting result concerning the analytic properties

of the solutions of certain ordinary differential equations. If one wishes to use
it in connection with characterization problems one obtains theorem 5.1B.
However, in applying theorem 5.1B one is greatly handicapped by the severe
restrictions contained in its assumptions. This is illustrated by the following
facts. The positive definiteness of the differential equation excludes the k-sta-
tistics kp of order p > 2, whereas we know that the normal distribution is
characterized by the property that kp has constant regression on A for any p > 2.
Moreover, in the case of k2, condition (ii) of theorem 5.1 B restricts the sample
size n to 3. It would therefore be desirable to derive similar results under modified
conditions.
In the early attempts to characterize populations by the independence of two

statistics it was always assumed that certain moments of the population dis-
tribution function exist. Later it was possible to relax or remove this assumption
in special cases. For example, K. C. Chanda [2] and Yu. V. Linnik [29] study
the independence of a polynomial and a linear statistic and show that it is
sufficient to suppose that the moment of order 6 > 0 exists, where a is not
necessarily an integer and can be arbitrarily small.

A. A. Zinger [63], [64] investigated the independence of two polynomial
statistics and eliminated the assumption concerning the existence of moments.
For the formulation of his results we need the following definition.
A polynomial P = P(x1, X2, *.. , x.) of degree m is said to be admissible, if

the coefficients of the terms xj, where j = 1, 2, - *, n, are not zero. Here and in
the following we assume that similar terms have been collected in every poly-
nomial which we consider.
THEOREM 5.2. Let X,, X2, * * X.X be n independently (but not necessarily

identically) distributed random variables. Let P1(X1, * * , X.) and P2(X1, - * * , X.)
be two admissible polynomials. If P1 and P2 are independent, then each Xi, where
j = 1, 2, * , n, has finite moments of all orders.
A stronger result is obtained if one of the polynomials is a linear statistic.
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THEOREM 5.3. Let X1, X2, ... , X,, be n independently (but not necessarily
identically) distributed random variables urth characteristicfunctionsfi(t), f2(t), *. *,
f1,(t) respectively. Let P = P(X,, X2, *.. , X.) be an admissible polynomial sta-
tistic and A = A(X1, X2, - , X,,) = J-27.I a,X;, with a, 0 0 forj = 1, 2, * * *, n,
be a linear form. If P and A are independent then the characteristic functions f,(t),
for j = 1, 2, * - *, n, are entire functions offinite order.

Theorems 5.2 and 5.3 are due to A. A. Zinger who showed that they are valid
also for admissible quasipolynomial statistics. A function S = S(x1, x2, * * *, x.)
is called a quasipolynomial if there exists a continuous function T(x) and two
nonnegative polynomials P1 = P1(xI, x2, * * *, xn) and P2 = P2(Xl, X2, ... X,X) of
the same degree such that the inequality
(5.7) P1(X1, X2, ... , Xn) _ T[S(xi, X2, * * Xn)] _ P2(Xi, X2, * , Xn)
is satisfied for all xI, X2, *. *, x,. A quasipolynomial is said to be admissible if
P1 is an admissible polynomial. We give next a condition which assures that
f2(t) is the characteristic function of a normal distribution.

COROLLARY TO THEOREM 5.3. Suppose that the conditions of theorem 5.3 are
satisfied and that the characteristic function fj(z) has no zeros in the entire complex
plane, then the random variable Xj is normally distributed.
According to theorem 5.3, the function f,(z) is an entire function of finite

order m without zeros. We apply Hadamard's factorization theorem and see
that fi(z) = exp [Pm(z)] where Pm is a polynomial of degree m. The statement of
the corollary follows then from Marcinkiewicz' theorem.

This corollary is of no immediate use in characterization problems since one
of its conditions is expressed in terms of the characteristic function f,(t).
It is therefore desirable to find a condition which the polynomial statistic
P(XI, --- , X.) of theorem 5.3 must satisfy in order that fj(z) should have no
(real or complex) zeros. Before proceeding further we must introduce a special
class of polynomials. Let

(5.8) P(xb, Xn,x) = Aj...j, XI x

be a polynomial of degree p; it can be written as the sum

(5.9) P(Xi, X.* *,X) = PO(X1, * , X.) + Pi(Xi, Xn ),
where
(5.10) Po(xi, X.*,x,) = . E ...xj * Xn

j1+***+ji-P

is a homogeneous polynomial of degree p, while PI(xi * , x") is a polynomial
of degree less than p. We say that the polynomial P(xi, * , x*) is nonsingular
if the following two conditions are satisfied:

(i) Po(xi, - , x") contains the pth power of at least one variable,
(ii) ,ro(v) . 0 for all integers v > 0. Here 7rO(v) is the polynomial formed by

replacing each positive power xj by v(w) = v(v - 1)... (v - j + 1) in
Po(x1, * * * , X.).
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We call 7ro(v) the adjoint polynomial to P(xi, * * *, x,).
THEOREM 5.4. Let X1, X2, .. , X,, be n independently and identically dis-

tributed random variables and assume that the characteristic function f(z) of their
common distribution is an entire function. Suppose that a nonsingular polynomial
statistic

(5.11) P = P(X1, ,,X) EjZ *in X I X!&
jl+-+j,_'+iP

of degree p has constant regression on A = X1 + *- + X_. The characteristic
function f(z) has then no zero in the whole complex plane.
We emphasize that the characteristic function f(t) is defined for all complex

arguments z = t + iy, where t, y real, by writing it as f(z). Theorem 5.4 is due
to Yu. V. Linnik [29]; we give here a somewhat simplified proof.

It easily follows from lemma 4.1 that the relation

(5.12) E(PeizA) = E(P) E(eizA)
holds for all complex z. We write

(5.13) f(j) = f(j)(z) = - f(z) = ii E(Xieizx)dzi

and note that f(0)(z) = f(z). We see from (5.12) that

(5.14)~E i-(jl+-+jn) & ... j, f 00 ... .f(jn) = E t(P) [f(t)]
j1+ * *-+jn-_p

We give anl indirect proof of the theorem aind assunme therefore that the funle-
tionf(z) has zeros. Let the point z = zo be one of the zeros of f(z) which are nearest
to the origin and denote the order of z, by v, where v is a positive integer.

Since f(z) does not vanish in the circle lzl < jzol we may divide (5.14) by
[f(z)]n. We write

f ( j0 . .. f ( j.)

(5.16)~~~~~~~~~~~~~~~~~~~~~~~~~~-(, RI
. f( ,

(5.15) Rol(z) z E. fil'('j).l.j,,i')

J(+ +Jn < I ) . f( fi
and see that

(5.17) Ro(z) + Rj(z) = C IzI < Izol,
wvhere (1 = ijE(P). Let
(5.18) 0 = +(z) = logf(z);
it is then easily verified that

(5.19) = +(i) + Mj(O, ¢", * (i1)) j = 1, 2, * *

whlere Oj is a polyniomial ill 4', o", , (h-1). We also write (O) =_ I anld O-(=0.
We substituie (5.19) into (5.17) aind get for lzl < Izol

(5.20) Se(z) + Si(z) = C,
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where

(5.21) S(z) A it.. j..[O(i +OJj.] [00-) + Ojj]
and
(5.22) Si(z) =iP-P(i1+ +M..)A1. j.[O(j) + 0j1]-... ['0(j) + on].

According to our assumptions

(5.23) f(z) = (z - zo)Pg(z),
where g(z) is an entire function such that g(zo) #d 0. It is easy to verify that

(5.24) k'(z)= v + hi (z),
and in general
(5.25) 1( )(z) (-1)i-(j -1)v + hj(z), j = 1, 2,

(z - zo) i

Here the functions h,(z) are regular at z = zo. We substitute (5.25) into (5.20)
and see that

(5.26) -P -+ Tp-' + -+ Yi + H(z) = C,(z -zo)v (z -zo) -' z- z

where H(z) is regular at z = zo.
We note that relation (5.26) leads to a contradiction if at least one of the

coefficients TYl, 7Y2, .....*yrp is different from zero. We complete the proof of the
theorem by showing that ryp 0 0.
We remark that -yp depends only on v and on the coefficients of the homo-

geneous polynomial PO(xI, x2, -..., x.). We see that yp is the coefficient of
(z - zo)-P in the expression which we obtain by substituting (5.25) into (5.21).
We get the same value for the coefficient of (z -zo)-P if we substitute (5.23) into
(5.15). The coefficient yp can also be obtained by substituting ,6(z) = Ci(z - zo)t
instead of f(z) into (5.15). Here Ci 0 0 is a constant. We see then that
(5.27) 4i(i)(z) = Cv()(z- zo)"i, j = 1, 2, P, v.
Therefore

(5.28) TP = E ,&.. *vCi").
i,+ .+j = P

Thus -y, = 7ro(v) 0 0 for all positive integer values of v and theorem 5.4 is
proved. We can use theorems 5.3 and 5.4 and the corollary to theorem 5.4 to
get the following characterization of the normal distribution.
THEOREM 5.5. Let XI, X2, ... , X,, be n independently and identically dis-

tributed random variables. Let P = P(X1, X2, ... , X,,) be an admissible, non-
singular polynomial statistic and A = Xl + X2 + * - * + Xn. If P and A are
independent then the common distribution of the random variables Xj is normal.
We consider applications of theorem 5.5.
THEOREM 5.6. Let XI, X2, ... , X,, be n independently and identically distri-
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buted random variables with common distribution function F(x). Let A = X1 +
X2 + * * * + Xn and P = P(X1, X2, * , X.) be an admissible, homogeneous poly-
nomial statistic of degree p satisfying

(i) P and A are independently distributed,
(ii) E(P) = K, where KI, is the pth cumulant of F(x). Then F(x) is normal.
Note that the existence of the cumulants of F(x) is insured by the fact that

F(x) has, according to theorem 5.4, an entire characteristic function. Let f(t) be
the characteristic function of F(x). Then +(t) = log f(t) exists in a certain neigh-
borhood of the origin. It follows from the assumptions of our theorem that
+(P)(t) = dP4(t)/dtP exists. It is easily seen by induction that +(P)(t) is a poly-
nomial in f'/f, f"/If, * , f(P)/f which has the form

)111 (f1 )1\2. /(p)8p / " ()
(5.29) +(P)(t) = GX.a8 , (f) (51) (L* )eP = ... J

The summation is here extended over all nonnegative integers sI, s2, , sp
which satisfy the relation
(5.30) 81+ 282 + + pep = p.
We put t = 0 in (5.29) and obtain
(5.31) Kp =E- Xs182.. e,altal2 * .a'p = G(al, a2, a,a,),
where aj is the jth moment of F(x) and where the summation is extended over
all subscripts satisfying (5.30). Let

(5.32) p= E Aji.. ..>Xi -X';
it+..+iN=p

it is always possible to choose coefficients b.,....**;j. ...j so that
(5.33) P = F_*.J b., ..P;j.. . Xi.***X>n.
Here, and in the following, the summation E is extended over all si, * * , sp
satisfying (5.30) while the summation _* runs over all permutations of
(ii, * * * I jn) such that sr, of these exponents equal r for r = 1, 2, * , p and the
remaining n - s - * -sp exponents are zero.

It follows from (5.33) that
(5.34) E(P) = aXi... .cP -asl*E* b81.. a.,; ji ...jn-
Hence we see from condition (i) and (5.31) that
(5.35) E* b., ...8,;j, ...j.= 1
for all p-tuples (si, * *, sp) for which X..n..,8 0. We form now the polynomial
7ro(v) corresponding to P. We get from (5.33)
(5.36) 7ro(V) = E XI- - *Jp *bi *e.,; it ...jn[v(l)]-i. . . [v(P)]8V

and thus in view of (5.35) and (5.31)
(5.37) 7ro(v) = G(('),v v(P)).
Since K, iS the coefficient of tP/p! in the expansion of log [F_ ajti/j!], we note
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that 7ro(v) is the coefficient of tP/p! in the expansion of log [j v(')ti/j!] =
log [(1 + t)j]. We obtain therefore

(5.38) lro(p) = (-1) p-, (p P1)!
Since iro(v) $ 0 for all positive integers v, we see that P is a nonsingular poly-
nomial. Theorem 5.6 follows then immediately from theorem 5.2.
The conditions of theorem 5.6 are satisfied if P is the k-statistic of order p.

This special case was already proved earlier by several authors (see [38], p. 201).
However, it was then assumed that the pth moment of F(x) exists. The more
general methods used here make this assumption unnecessary.
A second class of polynomial statistics for which it is possible to compute the

adjoint polynomial are the central moments.
LEMMA 5.1. Let p be a positive integer and write

n _i1n
(5.39) P = P(X1 ,x,,)= k (Xk , -

n Xk.kc=1 nk=

The adjoint polynomial of P is then

(5.40) 7rp(P) = (-1) E(p! )r(n,, -)r( )( _ ).
For the proof of this lemma we refer to [22]. We can use the explicit form of

7rp(v) to derive a condition which assures that the sample moment of order p is
a nonsingular polynomial statistic.
LEMMA 5.2. Let p be a positive integer and write

(5.41) P= P(xi, .,x")= E (xk P) , X = Xk.

If (p - 1)! is not divisible by n - 1, the adjoint polynomial 7rp(v) of P has no
nonzero integer roots.

Suppose that for some integer v, with v /- 0, we have 7rp(v) = 0. Then we see
from lemma 5.1 that

(5.42) (nv- v) = (n -1)(v)( - )
- (n - 1)2()(nv- v) + ... + (_1)P-(n -1)P

Thus multiplying by p! and cancelling the common factor (n - 1) v we find that

(5.43) (nv- v - 1)(nv - v -2)-..*(nV- v - p + 1) -O{mod (n - 1)}
so that 0

(5.44) (p - 1)!!O{mod (n - 1)}.

We consider in the following a sample X1, X2, * , X,, from a certain population
and write

(5-45)-X= n (Xl+ X2 + ** * + X mp =1in
(5.45) X= (Xi +X2+ + X,), MP = F (Xi -X) P

n n i-1
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for the sample mean and the sample central moment of order p, respectively.
We prove
THEOREM 5.7. Let XI, X2, * * X,, be a sample of size n from a certain popula-

tion. Let p be a positive integer such that (p - 1)! is not divisible by (n - 1). The
population is normal if, and only if, the sample central moment mp of order p is
independently distributed of the sample mean X.
REMARK. The condition that (p - 1)! is not divisible by (n - 1) is satisfied

if n > (p - 1)! + 1.
The necessity of the condition of theorem 5.7 follows from the wvell known fact

that in a normal population any translation-invariant statistic is independent
of the sample mean. The sufficiency of the condition follows from theorem 5.5 and
lemma 5.2.
We conclude this section by mentioning two other recent developments.
Yu. V. Linnik [28] studied the possibility of determining the family of dis-

tribution functions to which the population distribution function belongs from
the distribution function of a statistic. The second problem is of a different
nature since it concerns the characterization of distributions and not of popula-
tions. Let X and Y be two independently and identically distributed random
variables and assume that their common distribution is normal with zero mean.
It is then known that the quotient Z = X/Y is distributed according to a Cauchy
law. A number of authors investigated whether the normal distribution could be
characterized by this property. Counterexamples were constructed by R. G. Laha
[15], G. P. Steck [56], and J. G. Mauldon [42]. R. G. Laha [16], [17] undertook
a systematic study of the family C of distributions F(x) which have the following
property: If X and Y are two independently and identically distributed random
variables with common distribution F(x), then the quotient XIY has a Cauchy
distribution. He obtained a number of properties of F(x) and could also charac-
terize the normal distribution, assuming F(x) E C and some additional restric-
tions which include the existence of all moments af F(x).

PART III. THE ARITHMETIC OF DISTRIBUTION FUNCTIONS AND RELATED TOPICS

The arithmetic of distribution functions deals with the decomposition of
characteristic functions into factors which are characteristic functions of non-
degenerate distributions. Most of the recent developments in this area were
stimulated by some results obtained by H. Cram6r [4], P. L6vy [24] and
D. A. Raikov [47] more than twenty years ago. We state here two of the classical
results.
CRAMAR'S THEOREM. Let f(t) = exp (i,ut - o2t2/2] be the characteristic function

of the normal distribution and suppose that f(t) = fi(t)f2(t) where fi(t) and f2(t)
are characteristic functions. Then fi(t) and f2(t) are necessarily characteristic func-
tions of normal distributions.

This theorem was first conjectured by P. L6vy and later proved by H. Cram6r
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aind it is therefore often called the theorem of L6vy-Cram6r. A similar property
of the Poisson distribution was established by D. A. Raikov.
RAIKOVYS THEOREM. Letf(t) = exp [X(eit- 1)] be the characteristiefunction of

the Poisson distribution and suppose that f(t) = f1(t)f2(t) where f1(t) and f2(t) are
characteristic functions. Then fi(t) and f2(t) are necessarily characteristic functions
of Poisson distributions.
We see immediately from the theorems of Cramer and Raikov that the normal

distribution, as well as the Poisson distribution, belongs to the family of infinitely
divisible distributions that have no indecomposable factors. We shall discuss
this family in section 6, and we shall treat other problems which are closely
connected with the investigations of Cram6r, Levy, and Raikov in sections 7
and 8.

6. Infinitely divisible characteristic functions that have no
indecomposable factors

D. A. Raikov raised (in [47]) several questions concerning the structure of
infinitely divisible characteristic functions that have no indecomposable factors.
These problems are vcry difficult and thc first advances in this area were made
by Yu. V. Linnik approximately twenty years after the publication of Raikov's
paper. Yu. V. Linnik's work on the factorization of infinitely divisible laws will
be discussed in this section.

D. A. Raikov and P. L6vy established the following remarkable fact: The
convolution of two Poisson type distributions has no indecomposable factors;
however, convolutions of three Poisson type distributions may have indecom-
posable factors. This result made it desirable to investigate the factorization of
the convolution of a normal and a Poisson distribution. Yu. V. Linnik [30], [31]
obtained
THEOREM 6.1. Let

(6.1) f(t) = exp {X(eit - 1) + iut -art}2 A real, a' > 0, X > 0,

be the characteristic funizction of the convolution of a normal and of a Poisson distri-
bution. Suppose that f(t) admits the decomposition f(t) = f1(t)f2(t). Then

(6.2) f,(t) = exp tXj(ei - 1) + iA,jt - a2t2} j = 1, 2,

where

(6.3) X =X +X2, a2 = 2l + a2 Xj > 0 oaJ =.
Theorem 6.1 contains Cram6r's theorem and Raikov's theorem as special

cases. However, the method of proof is entirely different and requires more

powerful analytical tools. This is explained by the fact that Cram6r's theorem
deals with an entire characteristic function of finite order while Raikov's theorem
is concerned with a periodic characteristic function with real period (thus nec-

essarily the characteristic function of a lattice distribution). Under the assump-
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tions of theorem 6.1 both these advantages are lost, and the proof becomes much
more complicated and requires some sharp estimates used in Vinogradov's study
of trigonometric sums.
The method developed for the proof of theorem 6.1 also permitted the attack

of the more general factorization problems of infinitely divisible laws. A series
of papers by Yu. V. Linnik [32], [33], [34], [35], [36] contains his investigations
on this subject; the principal problem is the determination of the structure of the
infinitely divisible laws that have no indecomposable factors. In the following,
we call this class of characteristic functions the class IO. In order to discuss
Linnik's investigations of the class Io we must introduce certain terms and
notation.

It is well known that every infinitely divisible characteristic function f(t) can
be written in the canonical form

(6.4) log f(t) = ita - o't2 + Ceit. itu )dM(u)

+ + eitu 1 +u dN(u),

where the constants a and 2 are real, a2 > 0, and where M(u) and N(u) satisfy
(i) M(u) and N(u) are nondecreasing in the intervals (-xo, 0) and (0, +oo)

respectively,
(ii) the integrals f0 u2 dM(u) and fo u2 dN(u) are finite for every e > 0,

(iii) M(-oo) = N(+oo) = 0.
It is convenient to call M(u) the negative and N(u) the positive Poisson
spectrum of f(t). We say that an infinitely divisible characteristic function has
bounded negative Poisson spectrum if there exists a positive number A such

that JA dM(u) = 0. Similarly we define infinitely divisible distributions with

bounded positive Poisson spectrum. We say that the Poisson spectrum of an
infinitely divisible characteristic function f(t) is bounded, if its positive as well
as its negative Poisson spectrum is bounded. An infinitely divisible character-
istic function is said to have a finite spectrum if

1 m(6.5) log f(t) = ait - 2t2 + E X3(eitz'-1) + E X (eitvi-1)2 i-1 1-

Here m and n are nonnegative integers, Xi > 0, X-j > 0, Ij.L > 0, vj > 0. If
either m or n is equal to zero then the corresponding sum is omitted. An infinitely
divisible characteristic function f(t) is said to have a denumerable Poisson spec-
trum if
(6.6) logf(t)
= ait - 1 2t2+ EXj (ttpj-1-12)+E X-i (eitvi-1 + 1ij 2

2 ke ) -
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where Xi > 0, X-j > 0 and where the series
2

(6.7) and Ej11+it~ an j=1

are convergent and where

(6.8) L X,j + L
mi<e Pij<e

tends to zero as e approaches zero. The numbers Uj and Vj are called the Poisson
frequencies, the Xj and X-j the energy parameters of f(t). A characteristic function
with finite or denumerable Poisson spectrum is said to have a rational spectrum
if A/ILk = rik and Vj/vk = Sjk are rational numbers. Let f(t) be a characteristic
function with a bounded Poisson spectrum which is contained in the interval
[-A, B]. We say that the spectrum of f(t) is rational to the right of the point
a, where 0 < a < B, if

0/ itu
(6.9) log f(t) = ita -2 c2t2+ | eitu - 1 - 1 + 2) dM(u)

+ f(eiu-iu_ tu ) dN(u) + Xi, [exp (iM) - 1],
J÷o\ 1~~+U2, iI L q) i

where A > 0, X, > 0, where j 1, , m, while 0 < a, < ... < am are integers
such that alu/q > a. In a similar manner we can define a Poisson spectrum
which is rational to the left of the point /3, where -A < ,B < 0.
We can now state some of Linnik's results.
THEOREM 6.2. In order that an infinitely divisible characteristic function with

normal component, with a2 > 0, should have no indecomposable factor it is necessary
that its Poisson spectrum be finite or denumerable. Moreover, the Poisson frequencies
of the positive spectrum must have the form

(6.10) * * *'k_2k_1, k_l, I., A kk ' ...ki1Tk-2 ' k1k2..k,
while the Poisson frequencies of the negative spectrum must be

(6.11) ..**v_g_ , - v,, , vX** v
)9291P g-V)Vy91 9192 g1g2 .. g.9

where the * * *, k2, k1, ki, k2, * * * and the * *, g-2, g-1, 9g, 92, * * are arbitrary
integers (not necessarily all different) which are greater than one. If the Poisson
spectrum of f(t) is bounded then this condition is also sufficient for the absence of
indecomposable factors.

This is probably one of the most important advances in the arithmetic of
distribution function since the publication of the fundamental studies of P. L6vy,
A. I. Khinchin, and D. A. Raikov. The necessity of the condition of theorem 6.2
is established in [34]. The proof is based on several lemmas which are of inde-
pendent interest. As an example we mention the following theorem (this is
Linnik's basic lemma I).
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THEOREM 6.3. Let y, X1 and X2 be three positive numbers and let a = p/q be a
rational number where p and q are two integers such that 1 < p < q and (p, q) = 1.
Then
(6.12) f(t) = exp [--yt2 + Xl(ei - 1) + X2(eita- 1) - v(eitlq- 1)]
is a characteristic function provided that v > 0 is sufficiently small.
REMARK. This theorem can be used to construct convolutions of a normal,

a Poisson, and a Poisson type distribution that have indecomposable factors.
This is similar to the result of D. A. Raikov and P. L6vy concerning the factors
of a convolution of three Poisson type distributions (see the paragraph before
theorem 6.1).
The sufficiency of the condition of theorem 6.2 for characteristic functions

with bounded Poisson spectrum is established in [35]. In the last mentioned
paper we find also the proofs of several theorems, stated already in [34]. We
quote here only one of these results.
THEOREM 6.4. Let f(t) be a characteristic function with bounded Poisson spec-

trum, then all its factors have the form

(6.13) g(t) = exp {P3(it) + t4 |_ eOu 4(u) du},
where P3(it) is a polynomial of degree not exceeding three and where b(u) is quad-
ratically integrable (in the Lebesgue sense) over the interval [-A, B] which contains
the spectrum of f(t).

Linnik [35] studied infinitely divisible characteristic functions that have a
normal component and a bounded Poisson spectrum which is rational to the
right (or left) of a point of [-A, B]. He determined the possible factors of such
characteristic functions.
The investigation of infinitely divisible characteristic functions without a nor-

mal component or of infinitely divisible characteristic functions with unbounded
Poisson spectrum is very difficult. We mention here one of the few results (see
[36]) which are known at present.
THEOREM 6.5. Suppose that an infinitely divisible characteristic function f(t)

has the form (6.6) and that its Poisson frequencies ,u; and vj satisfy the conditions
(6.10) and (6.11). Assume further that there exist positive constants u, P, c and a such
that

1
>

±a
log log->cXui(f6. 14) X

log log I
> c v, +,

for all Aj > ju and vj > v, then f(t) has only infinitely divisible components.
The condition of the theorem means that the energy parameters correspondiing

to high frequencies decrease rapidly.
The theorems discussed in this section indicate that the class lo forms a rather

small subset of the class of all infinitely divisible characteristic functions. The
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problem of filding the indecomposable factors of infinitely divisible characteris-
tic functions not belonging to the class lo has not yet been attacked. For instance,
it is known (as a consequence of a more general result of H. Cram6r [5]) that
the Gamma distribution has indecomposable factors; however, these factors have
not yet been determined.

7. Factor-closed and strongly factor-closed families

The theorems of Cramer and Raikov which we stated in the introductory
paragraph of part III can be formulated in a somewhat different manner.
We say (see H. Teicher [57]) that a family f of characteristic functions is

factor-closed if the relations
(i) f C f
(ii) f = fif2, where fi, f2 are characteristic functions, imply that fi E f, f2 E f.
The theorems of Cram6r and Raikov admit then the following two, different

formulations: (a) The characteristic functions of normal (respectively Poisson)
distributions belong to the class lo. (b) The characteristic functions of normal
(respectively Poisson) distributions form a factor-closed family.
The first formulation leads to the studies discussed in section 6; in the following

we treat problems which are related to the second formulation.
A. A. Zinger and Yu. V. Linnik [65] stimulated these investigations by proving

the following, interesting extension of Cramer's theorem.
THEOREM 7.1. Let fi(t), f2(t), * , f,,(t) be arbitrary characteristic functions and

suppose that the relation

n1

(7.1) HI [f(t)]"i = exp [i,t a-t']
j=1

holds for some positive real numbers a,, a2, * * a,, in some neighborhood of the
origin. Then the characteristic functions f,(t), for j = 1, 2, * , n, belong to normal
distributions.

In order to give a concise formulation of certain results we introduce the fol-
lowing terminology.
A family f of characteristic functions is said to be strongly factor-closed if

the relations
(i) fe f

(ii) fJ' , fji = f, where fi, * *, f. are characteristic functions, valid for some
positive a,, * a,, imply that fj EC f, for j = 1, 2, - , n.
We can then state the result of theorem 7.1 by saying that the family of

normal distributions is strongly factor-closed.
Every strongly factor-closed family is also factor-closed; at present one has no

example of a factor-closed family of characteristic functions which is not strongly
factor-closed. The properties of being factor-closed or strongly factor-closed have
a different character: The first can be regarded as a probabilistic property of a
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family of characteristic functions and can also be expressed in terms of random
variables; the second is essentially of an analytical nature. It is therefore not
surprising that the proofs establishing these two properties use different tech-
niques.

In conclusion, we give a table of references to papers which contain the proofs
that certain families of characteristic functions are factor-closed, respectively,
strongly factor-closed. In this table we denote the family of analytic character-
istic functions by fA, the family of entire characteristic functions fE and write
92m for the family of characteristic functions which have derivatives up to the
order 2m, where m is a positive integer. Actually, H. Teicher [57] discusses a
somewhat more general family than the binomial.

TABLE II

Family Factor-closed Strongly factor-closed

Normal Cram6r [4] Zinger-Linnik [65]
Poisson Raikov [47] Dugu6 [7], [8]
Binomial Teicher [57] Teicher [58]
fA, fE Raikov [47], Laha [14]

LIvy [23], [25]
EDt2. Devinatz [6] proof similar to the one in

[65] makes use also of [6]

We mention also that the family of the characteristic functions of discrete
distributions is factor-closed and that the characteristic functions of lattice dis-
tributions form a strongly factor-closed family. The proofs of these two state-
ments are almost trivial. Yu. V. Linnik [37] showed also that a rather wide
subset of the class Io is strongly factor-closed.
Yu. V. Linnik [27] questioned whether it is possible to extend theorem 7.1 to

infinite products. This problem was solved recently by L. V. Mamay [41] who
obtained
THEOREM 7.2. Let {fj(t)}, for j = 1, 2, * , be an arbitrary sequence of char-

acteristic functions and let {a,}, for j = 1, 2, * , be a sequence of positive numbers
such that aj > Eo > 0. Suppose that g(z) is a function of the complex variable
z = t + iy which is regular in the strip
(7.2) IIm(z)I <X
and which has no zeros. Assume further that there exists a A > 0 such that

(7.3) HI ifi(t)lai = g(t)
j-1

is valid for ItI < A. Then the f,(t) are analytic characteristic functions which are
regular at least in the strip (7.2) and the relation (7.3) holds also for complex values
satisfying (7.2).
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8. Stability theorems
We say that a family of distribution functions is factor-closed if the cor-

responding characteristic functions form a factor-closed family. The existence of
factor-closed families leads to the following question. Suppose that a distribution
function F(x) is, in some sense, close to a distribution of a factor-closed family f
and assume that F is the convolution of two distributions F1 and F2, that is,
F = F1*F2. Is it then possible to assert that the components F1 and F2 are neces-
sarily close to some distribution of the factor-closed family f? We call theorems
which make this assertion stability theorems.

In the following we denote the normal distribution function by

(8.1) (x) = dy

and the Poisson distribution function by
' X'e(x - j)(8.2) F(x; X) =e-x1 E Xi( -)

Here e(X) = 0 for x <0 but E(x) = 1 for x _ 0 is the degenerate distribution
function, while X is a positive constant.
The first stability theorem was derived by N. A. Sapogov [48] who obtained

the following result.
THEOREM 8.1. Let X = X1 + X2 be the sum of two independent random var-

iables and assum.e that the distribution function F(x) of X satisfies the condition

(8.3) sup IF(x) ->(x)I < f,
-X <I<X.

where e < 1 is a given positive number. Let Fl(x) be the distribution function of X1
and write

(8.4) a, = f x dFi(x), 2 = fx2 dFI(x) - a 0, N = (log 1.
Then

-~~~~ <x- i)<<C"_s (log(8.5) sup FI(x)-F (X a, < I 3 g
-- <x<.I ale

here C is a constant which is independent of e, oa, a,. A similar inequality holds for
the distribution function F2(x) of X2-

Recently N. A. Sapogov [49], [50] improved this estimate and extended it also
to random vectors. We state also a stability theorem for the family of Poissoi
type distributions which is due to 0. V. Shalayevskiy [51].
THEOREM 8.2. Let X = X1 + X2 be the sum of two independent random var-

iables and assume that the distribution function F(x) of X satisfies the condition

(8.6) sup IF(x) F(X; X)1 <e,
-wa <X<nd

where e < 1 and X are positive numbers. Let F;(x) be the distribution function of



332 FOURTH BERKELEY SYMPOSIUM: LUKACS

Xi, for j = 1, 2, and let a be the upper bound of those values y for which P{X1 < y}
_ C We worite X1 = f0N+1 x dFi(x + a) and X2 = JN+l x dF2(x + a), where
1/e = NN. Then for sufficiently small e

sup IFI(x) - F(x - a; X1) < (x + -)[log f-],
(8.7) -e <x<- e

sup IF2(x) - F(x + a; X2) < ( + -
-oo <x<o 'X o 'I

where w < 1/2 is a constant.
A general stability theorem for a wide class of infinitely divisible distributions

was given by Yu. V. Linnik [36].
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